
 
 

 

  

CONTINUOUSLY RECORDING 
MICROPHONE 

By 

Brian Song 

James Chen 

 

Final Report for ECE 445, Senior Design, Spring 2019 

TA: Dong Wei 

01 May 2019 

Project No. 79 



ii 
 

Abstract 

Our senior design is to create a device that can continuously record audio from the user’s surroundings 

and save a 15 second clip with a button. In the design, we implement manual and automatic saving as 

well as cropping the recorded audio. The manual save is done by pressing a button while the automatic 

save triggers on when the volume gets too loud or a strong downward force was applied to the user. 

Audio cropping allows the user to cut unwanted parts of audio files, and a speaker on the device gives 

instant playback to the user on the cropped audio file. For the display, an OLED was used to save space. 

In our final implementation of the design, we were able to get the manual save and cropping functions 

to work, while the automatic saves and speaker didn’t work.  
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1. Introduction 
In the modern day, everyone has smartphones that can record audio whenever they want. However, 

this is only for pre-planned moments when people know they want to record. Sometimes, there are 

points in time you’d wish you were recording but missed the chance because you weren’t ready or 

didn’t expect to. It’s moment like these that are unplanned, spontaneous, or unexpected that our device 

wants to capture.  

Our device’s purpose is to allow easy recording of audio without needing to click ‘start’. That is, the 

device will be constantly recording without saving the audio files until told to do so. In addition, the 

device will have a second feature that allows automatic saving when the user is in danger or in a quarrel 

for safety purposes. Both features will record clips that would never be recorded otherwise. Finally, the 

device will be able to crop clips that have already been recorded. 

1.1 Functionality 
In our original project description, we wanted our device to be small enough to be handheld or wearable 

as a clip-on accessory. However, due to time constraints and design errors regarding the PCB, we were 

only able to implement the device on a breadboard and partially on the PCB. For our final design, we 

were able to implement the manual saving and cropping functions. The user would press a button to 

save the last 15 seconds of audio captured by the microphone and another button would allow the user 

to crop a clip. For cropping, the user would begin the cropping process by clicking the crop button. They 

would then use the knob to choose which clip they would like to crop and press the crop button again to 

confirm. Afterwards, they would use the knob to crop from the beginning of the clip and the end of the 

clip, pressing the crop button in between to confirm how much they would like to crop. The device 

would then save the cropped clip in a separate file for the user to listen to. We were able to get the 

accelerometer to trigger an autosave; however, we couldn’t integrate it with the rest of the design due 

to RAM limitations on the microchip. Finally, we failed to implement the speaker module along with the 

audio-based autosave. Due to running out of time, we wanted to focus on the main functionality of the 

device. As a result, we decided to leave out these functions. 

1.2 Subsystem Overview 
Figure 1 shows our device has five separate submodules: User Interface, Control Unit, Power, Audio 

Interface, and Sensory Module. 

Our user interface consists of the knob, two buttons, and an OLED. The knob is used to choose a clip to 

crop and how much to crop of that clip. One button is used to save a clip, and the other is used to 

control the cropping function. The OLED is used to give the user feedback on which clip they are 

cropping and how much of it they have cropped. It is not used when during passive operation or while 

saving a clip since it is unnecessary and saves power. 

The control unit consists of the microcontroller, the SRAM buffer, and the microSD module. The 

microcontroller is used to control the functionality of the device. It controls where the audio data 

coming from the microphone should go, what should be displayed on the OLED, when to crop, and 
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when to save. The SRAM buffer is used to store the unsaved audio because of the limited amount of 

RAM on the microcontroller. The microSD card is used to store the clips once the user has decided to 

save.  

The power module consists of a microUSB module, a Li-ion charger, a rechargeable Li-ion battery, and a 

voltage regulator. The battery charger was chosen such that it would be able to be powered by the 5V 

output of a microUSB and charges a 3.7V Li-ion battery. Since all of our parts run on 3.3V and the 

battery outputs a nominal voltage of 3.7V, we needed to use a voltage regulator to step down the 

voltage from 3.7V to 3.3V. 

The audio interface consists of a microphone, a speaker, and a Digital to Analog Converter (DAC). The 

microphone is used to record audio from the user’s surroundings. The microphone outputs an analog 

signal so we used the microcontroller’s internal ADC to sample the audio. In order to play the audio on a 

speaker, we needed a DAC to convert our digital data into an analog signal. The speaker is used to 

playback audio while the user is cropping so they know which parts of a clip would be cropped. 

The sensory module consists solely of the accelerometer. The accelerometer is used to detect when the 

user falls as an indication of danger. When a significant downward force is detected from the 

accelerometer, the past 15 seconds of audio would be saved onto the SD card as a safety measure.  

 

Figure 1 High Level Block Diagram of Device 
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2 Design 

2.1 Design Procedure 
For our power module, we wanted to use a rechargeable battery to make it easy for the user to power 

the device and since we wanted the device to be small, we chose a coin cell battery to save space. 

Because of this, we decided to use a 300mAh 3.7V Li-ion battery. For an alternative, we could have used 

replaceable AA batteries, but that would take up a lot more space and would be more inconvenient for 

the user. The batteries would need to be changed every week or so and there is no control on when the 

device would suddenly stop due to dead batteries. We chose to charge the battery with a micro USB 

port since it’s something that most people would have to charge their phones. Choosing the charger was 

just a matter of finding a part that fits the above specifications.  

When choosing a microcontroller, we originally went with the ATmega328pb because of its two SPI and 

I2C buses. We thought that each device needed its own bus to function, but later discovered that the 

buses can be shared if none of the devices needed to communicate with the microcontroller at the same 

time. Because of this, we made a lot of errors in design choices that will be stated below. Not only that, 

but there is no Arduino that uses the ATmega328pb, so there is no bootloader that fully supports the 

microchip. After discussing this problem with our TA, we decided to change from the ATmega328pb to 

the ATmega328 since it came on the Arduino Uno and we could simply take it off and put it onto our 

PCB. 

Regardless of what microcontroller we use, we need an external set of memory to store audio and clips. 

We knew that we wanted to use an SD card, so the user could remove it and transfer the files to their 

computer. However, we also chose to have an extra set of RAM on board simply because the microSD 

consumes 100mA while writing. Since we would be constantly writing to it, the battery would run out in 

less than three hours. Table 1 shows the tradeoffs between using SRAM or DRAM. In the end, we 

decided to use an SRAM due to the speed being faster and the power consumption being lower. Since 

we needed to store 15 seconds of audio sampled at 8kHz with a bit depth of 8 bits, the SRAM needed to 

be at least 120kB large. Regarding the audio bitrate, we chose to use 8kHz x 8 bits after consulting with 

our professor and researching telephone communications standards [1]. 
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When designing the user interface, we knew that we needed at least two buttons, at least one knob, 

and a display of some sort. For the knob, we had a choice between using a potentiometer or a rotary 

encoder. While a potentiometer has a simpler interface with only one output pin, they also can’t rotate 

infinitely. For our design, we decided it was easier for the user if we had a knob that could rotate 

indefinitely for cropping and choosing clips. For the display, our original design used a four piece seven-

segment display. While a seven-segment display is bulky and relatively hard to interface with, we 

thought that it was our only option since all of our serial buses were taken. After finding out that 

multiple devices can use the same bus, we switched our design to use an OLED because it took up less 

space and could display more information to the user. 

For the microphone, we chose to use a MEMS microphone simply because of how small it was. To add 

to the simplicity, we chose a microphone that would output its data as an analog signal and use the 

internal ADC on the microcontroller to convert from analog to digital. Both the microphone and the 

speaker needed to record frequencies up to 4kHz since we were sampling at 8kHz, so that was taken 

into consideration as well. 

Originally, we used a standalone chip as our accelerometer. After doing some preliminary research, we 

found that the accelerometer would need to record forces up to at least 4g [2]. After spending weeks of 

trying to get the accelerometer to work on a breadboard, we switched to a premade breakout board 

and were able to get it working. 

 

Table 1: SRAM and DRAM Differences [2] 
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2.2 Design Details 
Shown in Figure 2 is the schematic of the battery charger. IN is connected to the 5V output of the 
microUSB breakout and OUT is connected to the voltage regulator. EN1 and EN2 are tied to ground to 
set the maximum charging rate to 100mA since we didn’t want to overheat the battery. Because of this, 
we were able to leave ILIM floating. The resistor used for TS was set at 10k as specified by the datasheet 
when not using a thermistor. The resistor used for ISET was calculated using 

𝐼𝑆𝐸𝑇 =
𝐾𝑆𝐸𝑇

𝑅𝑆𝐸𝑇
 

(1) 

where ISET is the charging current, KSET is the current factor, and RSET is the resistor value used to 
connect ISET to ground. KSET is 870 as stated in the datasheet and ISET is 100mA, which gives a value of 
8700 for RSET. Since we didn’t have any 8.7k resistors to use on a breadboard, we chose a value of 8.66k 
as the next best value. 

Shown in Figure 3 is the schematic used to interface between the microphone and the microcontroller. 
This is needed since the microcontroller can’t read negative voltage values. Since the peak to peak of the 
microphone is only around 100mV, we chose to use the microcontroller’s internal ADC reference of 1.1 
instead of 3.3V. Because of this, the analog signal needs to be centered around 0.55V since that will 
represent silence in the audio. We do this by using a capacitor to get rid of the DC offset of the 
microphone. Then, we use a voltage divider to center the AC signal around 0.55V to get audio data that 
can be read by the microcontroller and played in a wave file. In the simulation, V1 outputs a sine wave 
with a DC offset of 0.67V, an amplitude of 100mV and a frequency of 1000Hz to represent the output of 
the microphone. Figure 4 shows the voltage in between R1 and R2. As seen from the figure, the voltage 
is centered around 0.55V and preserves the AC qualities of V1. 

  

Figure 2 Li-ion Battery Charger 
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Shown in Figure 5 is the flowchart of device operation when the device is passively recording audio. If no 
buttons are pressed, the device simply takes audio from the microphone, puts it into the SRAM in the 
address specified by Address, increments Address and sets it to 0 if it hits 120000, and loops back to 
sampling audio. The reason Address needs to reset at 120000 is because 15 seconds of audio sampled at 
8kHz gives a total of 120000 samples. After a byte of audio is transferred to the SRAM, the 
microcontroller then checks if either the save button or the crop button is pressed. Each respective 
button moves the program into their respective functions. 

Figure 3 Microphone Interface 

Figure 4 Simulation of Schematic in Figure 3 
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Shown in Figure 6 is the flowchart of the saving function. Since the buffer we use is 100 bytes large, we 
need to fill that buffer 1200 times before the entire 15 seconds is transferred. The only caveat we need 
to be careful of is when the address counter hits 120000. At that point, we need to stop communication 
with the SRAM and reset the address to 0. The buffer is chosen such that it is as large as it can be such 
that the device still has enough RAM to perform its other functions. The larger the buffer is, the faster 
the transfer will be. This is because every time the buffer is filled, we need to stop communication with 
the SRAM, move the data to the SD card, and resume communication with the SRAM. 

Figure 7 shows the flowchart of the cropping function. It is essentially the same as the saving function 
except it doesn’t need to check if address goes above 120000. The front crop cannot go below 0 bytes 
and the back crop cannot go above 120000 bytes. When the fully cropped clip has been transferred, the 
function ends, and the device returns to passively recording audio. 

While cropping, the OLED display is turned on to give the user some information on what is going on. It 
shows the user which clip they are cropping and shows how much of the clip they are cropping. When 
the cropping function has finished, the OLED display turns off again to save power. 

It is important to note that the device does not continue recording audio while saving or cropping. This 
means that the user cannot press the button immediately after saving or cropping because the audio in 
the SRAM will not represent the past 15 seconds of audio and will be corrupted by the audio data that 
was in the SRAM previously. 

Figure 5 Passive Audio Recording 

Figure 6 Saving Function 
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Figure 7 Cropping Function 
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3. Design Verification 
The final verification of our device was a full test consisting of having the device record 15 seconds of 
audio and saving it to the microSD. Then, having the device retrieve the file to be cropped and creating a 
new file that holds the cropped portion. Each component was also tested separately to ensure that each 
part was fully functional separately. 

We were unable to integrate all subsystems together. The power subsystem was not successfully 
verified and not all submodules that worked could be connected with the control unit. Specifically, the 
integration of the sensor module could not be integrated with the control unit due to RAM restrictions 
on the microcontroller. By having the main record, save, and crop functions along with the user 
interface, the microchip could not handle an extra check from the accelerometer. 

3.1 Power Subsystem 
We were unable to verify if the power subsystem worked since we did not manage to implement the 

charger properly into our physical design. Thus, in our final product, there was no power system that 

was providing the power to the device. A more detailed explanation for each part of the power 

subsystem can be found in appendix A. 

3.2 Control Unit 
The control unit contains all the functions that allows the device to record, save and crop audio. The 

recorded audio is saved onto the microSD and retrieved back to the microchip for cropping. 

3.3 User Interface 
Each part of the UI was tested separately. Once each part of the UI was verified, this subsystem was 

tested along with the control unit. 

3.4 Audio Interface 
The microphone was tested by recording audio with the microphone and checking the output signal. In 

figure 8, the y axis represents a normalized voltage value where 0 is 0V and 1 is 1.1V. The highest peak 

to peak shown in the figure was around 120mV (highest at 0.461mV and lowest at 0.352mV). As a result, 

we didn’t implement in a microphone autosave because the peak to peak magnitudes between loud 

sounds and soft sounds were too small. This resulted in an unreliable autosave mechanic as it was 

uncertain if a jump in audio was truly loud. The speaker was not implemented in our final design due to 

incorrect circuit design and lack of time. A more descriptive analysis of the failure is described in 

appendix A. 
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3.5 Sensor 
In order to get the correct results for autosave mechanism, we needed to figure out the peak 

acceleration needed. To verify this, we tested for the peak acceleration by dropping the accelerometer 

from waist height (about 80cm). From fig 9, the tested value was around 35m/s2. In addition, we needed 

to check the orientation of the accelerometer. This was done by the built-in orientation function of the 

accelerometer. The verification process was to check that the orientation showed portrait orientation 

when the accelerometer was lying flat and landscape orientation when the accelerometer is standing 

up. A depiction of the orientation is shown in fig 10. 

  

Figure 8 Output of Microphone when Talking Close to Microphone 

Figure 9 Output of Accelerometer from Freefall Impact 
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Figure 10 Accelerometer Orientations 
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4. Costs 
While the costs of our parts do not seem realistically plausible as a commercially viable device that could 

be sold on the market, a lot of the part choices are chosen to make prototyping easier and smoother. 

For example, the Adafruit and Sparkfun parts can be chosen as their respective parts instead of the 

breakouts. This would significantly lower the part costs by a good margin. Thus, a final product of the 

device could probably be generously lowered down to around 30 USD for mass production. 

4.1 Parts 

Table 2   Parts Costs 
Part 

(Manufacturer Part 
Number) 

Manufacturer Retail Cost 
($) 

Bulk Purchase Cost 
($) 

Actual Cost 
($) 

Lithium-Ion Charger 
(BQ24232RGTR) 

Texas Instruments 2.59 1.19 2.59 

Coin Cell Battery 
(RJD3048) 

Illinois Capacitor 13.37 7.14 13.37 

Battery Holder 
(36-301-ND) 

Keystone 
Electronics 

1.92 0.855 1.92 

Linear Voltage Regulator 
(TS14002-C033DFNR) 

Semtech 0.95 0.395 0.95 

Microcontroller 
(ATMEGA328P-PU) 

Microchip 
Technology 

2.14 1.78 2.14 

SRAM 
(23LC1024T-I/SN) 

Microchip 
Technology 

2.16 2.08 2.16 

microSD SanDisk 5.75 N/A 5.75 

microSD Breakout Board 
(254) 

Adafruit 7.50 6.00 7.50 

OLED 
(LCD-13003) 

SparkFun 15.95 N/A 15.95 

2x Momentary-On Switch 
(K12SCS1.55NOLFTX) 

C&K 2.33 1.86 4.66 

SPST Switch 
(GPTS203211B) 

CW Industries 1.53 1.09 1.53 

Rotary Encoder 
(PEC12R-4225F-S0024) 

Bourns Inc. 1.28 0.72 1.28 

MEMS Microphone 
(2716) 

Adafruit 4.95 3.96 4.95 

Speaker 
(CMS-160925-078SP-67) 

CUI 2.24 1.17 2.24 

Accelerometer 
(2019) 

Adafruit 7.95 6.36 7.95 

microUSB-B Breakout 
(1833) 

Adafruit 1.50 1.20 1.50 

D to A Converter 
(MCP47CVB01-E/UN) 

Microchip 
Technology 

0.75 0.566 0.75 

Total 
 

74.86 36.37 77.19 
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4.2 Labor 
Since a typical Illinois graduate averages $71,856 a year, assuming a 40 hour work week, that 

comes out to around $35/hour. Assuming we put in 10 hours a week for 16 weeks, our fixed 
development costs ends up being: 

2 × 35
𝑑𝑜𝑙𝑙𝑎𝑟𝑠

ℎ𝑜𝑢𝑟
× 10

ℎ𝑜𝑢𝑟𝑠

𝑤𝑒𝑒𝑘
× 16 𝑤𝑒𝑒𝑘𝑠 × 2.5 = $25,000 

(2) 
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5. Conclusion 
Our device provides on demand audio recording that doesn’t require any prior ‘start’ command. The 
audio files that are saved on the device can be cropped to remove sections the user doesn’t want. In 
addition, it has autosaving functionalities to defend the user from threats both physically and verbally. 

While our device idealistically does all the objectives summarized above, our device we conjured up 
during this semester cannot handle all the requirements. The major lessons we learned from this project 
includes the relationship between one master and multiple slaves in I2C and SPI communications, 
utilizing two rounds of PCB with the first round to print only for testing purposes and not full integration, 
and exercising caution when connecting parts together that require specific voltages (SPI/I2C 
communications 5V vs. 3.3V) and setups (speaker & microphone needing amplifiers) 

5.1 Accomplishments 
For the audio portion of design, our design successfully records audio into the SRAM buffer and rewrites 
the data inside the SRAM buffer every 15 seconds. The audio data inside the SRAM buffer is also capable 
of being send to the microSD card for permanent saving. The file saved in the microSD and can be read 
and written back to the microcontroller to be cropped into a new file. 

For the automatic saving functionality, the accelerometer autosave detection works and can be 
implemented. 

5.2 Uncertainties 
During our senior design, there were several parts that we didn’t get working. The whole power module 
was not verified and some parts even untested. As a result, we could not test the size constraints and 
battery lifetime of the device. While our design should pose no issue for the uptime from our power 
calculations, the same thing can’t be said about the size. Currently, the  device still remains slightly 
oversized for a device that is to be worn like a watch. Idealistically, it would be even better to shrink the 
size of the design to make it more suitable for wearing. There also might be an issue of the device being 
too heavy as well. However, most of the weight comes from the battery. This is something we didn’t get 
to fully test out and decreasing the size of the battery could end up lowering the uptime of the device 
significantly. 

In addition, we would need to reconsider the designs for audio modules. The current design’s 
microphone cannot record a reasonable distance away. We would like to include some adjustments to 
the microphone unit. This will be discussed in the future work section of the conclusion. As for the 
speaker, we never tested the part to be fully functional. This is mainly because we forgot to include an 
amplifier for the speaker to allow it function properly. Since playback isn’t a major part of the design 
considerations, as long as a general speaker that is small enough and can playback recognizable voice 
audio would be sufficient for the device. 

5.3 Ethical considerations 
While the device cannot directly violate any ethical concerns, it is possible for a user to use the device 

for unethical purposes. The device can potentially violate privacy through misuse such as eavesdropping. 

According to the ACM code of ethics, our device has the possibility to violate sections 1.2, 1.6 and 1.7 

[4]. All three sections deal with issues directly and indirectly due to breaching privacy. In order to 

combat against such misuse, we implement multiple methods of catching the attention of others when 

the device is in use. 
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The first method of grabbing attention is with the use of flashing lights. By lightning up the OLED and the 

built-in LED from the microSD breakout whenever the device saves a file. The second method if we 

correctly implement speakers, is to add an audible sound such as a high pitch beep or voice to indicate 

audio saving. We hope the bright light and sound will catch the attention of others nearby the user. 

5.4 Future work 
With our current design, the first problem that is in dire need to fix is the low processing power. We 
propose a solution to this issue by separating the autosave mechanisms and the audio recordings onto 
two separate microcontrollers. This way, both the audio collection and the autosave calculation can be 
done at faster rates. 

Currently, the MEMS microphone used does not output a clear audible sound. Thus, we propose adding 
in an amplifier for the microphone to increase the effective distance the microphone can pick up as 
audible sound. 

More advanced algorithms that require extra processing power can be implemented to increase the 
accuracy and precision of the autosave mechanism. Specifically for the accelerometer, it is possible to 
increase precision by using the three vectors to calculate the angle of the resulting acceleration from 
each axis. Then by using the angle to determine when device experiences a fall. As for the microphone’s 
autosave, a second constraint should be included to ensure that sudden changes from silent to normal 
talking volume doesn’t trigger autosave. This second constraint can be something as simple checking if it 
the volume of the sudden increase is loud enough to be considered a shout or loud voice. 
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Appendix A Requirement and Verification Table 
 

Table 3 Power Subsystem 

Requirement Verification Verification status  
(Y or N) 

Lithium-Ion Charger 

1. Charges the 
battery to 
between 4.15-
4.20V when 
supplied with a 
5V source from 
micro USB 

2. While charging, 
the IC does not 
exceed 50 
degrees Celsius 

 

1.  
a. Discharge the battery to 3V 
b. Charge the battery while 

connected to the microUSB 
c. After the charger indicates that 

charging is finished, ensure that the 
battery’s voltage is between 4.15-
4.20V 

2. While charging, measure the 
temperature of the IC with an IR 
thermometer to ensure that the IC 
does not exceed 50 degrees Celsius 

No 

We tested the chip several 
times. The first time the chip 
was not solder on properly; 
however, we did not realize 
this until we tested it the 
second time. On our second 
try, it burned up due to a 
capacitor misconnected 
resulting in a short circuit from 
charging pin to ground. By this 
time, it was already late in 
semester and we decided to 
give up on this subsystem to fix 
the other modules. 

Lithium-Ion Battery 

1. Supplies at 
between 4.15-
4.20V when 
fully charged 

2. Can power the 
device for at 
least 8-9 hours 

 

1.  
a. Fully charge the battery while 

connected to the charger 
b. Measure the voltage of the battery 

to make sure the voltage is 
between 4.15-4.20V 

2.  
a. Fully charge the battery 
b. Connect the battery to a circuit 

that approximates the current load 
and impedance of the actual device 
and leave it running 

c. Inspect the voltage of the battery 
after a couple hours to extrapolate 
how long the device would last  

No 

Due to our charger not 
working, we could not properly 
test charging the battery. In 
addition, even if we managed 
to charge the battery without 
the chosen charger, we didn’t 
manage to implement the 
control unit on the PCB to test 
how long the battery can 
power the device. 
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Voltage Regulator 

1. Able to step 
down voltages 
from between 
4.2V-3.0V to 
3.3V  

 

1.  
a. Connect the voltage regulator to a 

variable power source 
b. Measure the output of the voltage 

regulator using an oscilloscope 
while slowly varying the input 
voltage from 4.2V to 3.0V 

 

No 

Similar to the battery, we 
didn’t manage to implement 
the control unit on a PCB. Thus, 
the power source was straight 
from an Arduino. As a result, 
the voltage regulator was not 
used. 

 
Table 4 Control Unit 

Requirement Verification Verification 
status  

(Y or N) 

Microcontroller 

1. Able to route 
data at a rate of 
at least 64kbps 

 

1.  
a. Connect the microcontroller to the microphone 

and the microSD 
b. Record audio for 15 seconds and store it onto 

the SD card 
c. Listen to the audio to verify audio integrity 

Yes 

MicroSD 

1. Able to 
communicate 
with a 
microcontroller 
via SPI 

 

1.  
a. Insert the SD card into the microSD breakout 

board and connect it to an arduino 
b. Try to read and write to the SD card and 

confirm that it works. 

Yes 

SRAM 

1. Able to read and 
write to the 
SRAM from the 
microcontroller 

 

1.  
a. Connect the SRAM to the microcontroller 
b. For each address up to 100, write its respective 

address into that memory space 
c. Read all of the data from addresses 0-100 to 

verify that the SRAM has stored the data 
correctly 

Yes 
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Table 5 User Interface 

Requirement Verification Verification status 
(Y or N) 

OLED Display 

2. Able to display text 
and numbers on the 
screen  

 

1.  

a. Connect the display to an arduino via 
breadboard 

b. Verify hardware connection by using 
the test program given by the library 

c. Verify that we can write our own text 
to the OLED  

Yes 

Rotary Encoder Knob 

3. The encoder is able 
to send two different 
signals to the 
microcontroller when 
the knob is being 
turned clockwise or 
counterclockwise 

 

1.  

a. Connect the rotary encoder to a 
breadboard and an Arduino such that 
the Arduino is connected to the two 
channels of the encoder 

b. Rotate the encoder clockwise and 
counterclockwise and observe the 
signals received on the Arduino to 
determine if the encoder sends usable 
signals 

Yes 

 
Table 6 Audio Interface 

Requirement Verification Verification status 
(Y or N) 

Microphone 

4. Able to record 
audio from a 
human speaker 
that is 
recognizable 
when listened 
to 

 

1.  
a. Connect the microphone to the device and 

start recording to an SD card 
b. Start speaking into the microphone 
c. Playback the audio on a computer to verify 

that the microphone works and can record 
the frequencies needed to recognize voice 

Yes 
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Speaker 

5. Able to play 
sounds from 
100Hz up to 
4kHz 

 

1.  
a. Connect the speaker to the device 
b. Have the device play a sine sweep starting 

from 100Hz up to 4kHz 
c. Record the sound played with an external 

microphone 
d. Perform a spectrogram on the recorded 

sound to confirm the speaker can play the 
lower and higher frequencies 

No 

Due to our 
flawed circuit 
design, we didn’t 
manage to 
implement the 
speaker. In 
addition to the 
DAC, we needed 
an amplifier to 
allow the speaker 
to produce 
sound. By the 
time we realize 
our amplifier was 
faulty, we were 
already out of 
time to test a 
new amplifier. 

 
Table 7 Sensor Module 

Requirement Verification Verification status 
(Y or N) 

Accelerometer 

6. Able to detect 
changes in 
position in 
three 
dimensions 

7. Able to detect 
at least 5G in 
force 

 

1.  

a. Connect the accelerometer to an external 
device such as an arduino 

b. Have the device start collecting data the 
accelerometer is giving 

c. Confirm from the data that the accelerometer 
can detect changes in position in three 
dimensions 

2.  

a. Connect the accelerometer to an arduino 

b. Start recording data with the accelerometer 

c. Confirm that the data provided has a wide 
enough resolution to use in our device 

Yes 

 


