
Gesture Controlled Robot

By
Arvind Vijaykumar

 Qinlun Luan
Bofan Yang

Final Report for ECE445, Senior Design, Spring 2019
TA: David Hanley

2nd May 2019
Project Number: 30

1

Abstract:

This project essentially serves as a proof of concept for the implementation of a hand gesture
controlled robotic vehicle. Hand gesture recognition is achieved using modern machine learning
algorithms and techniques in Python using a CNN classifier. Data transmission from the
software application to the vehicle is facilitated via Bluetooth and the vehicle utilizes Arduino
and a dual H-bridge motor driver for motion control. Seven gestures translate to seven different
directions of motion including moving forward, left, right, backwards, reverse left, reverse right,
and stopping. Our main goals as engineers in the context of this project was to explore a
modular design based methodology, specifically one involving software-hardware interactions,
as well as develop a novel robotics control mechanism such that the field can be more
accessible towards older people and people with disabilities.

2

Contents:

1.Introduction

1.1 Background and Purpose 4
1.2 Block Diagram 5
1.3 Gesture Design 6

2.Design

2.1 Design Procedure 6-12
2.2 Design Details 12-15
2.3 Design Verification 15-18

3.Cost 18-19

4.Conclusion 19-20

4.1 Achievements 19
4.2 Setbacks 19
4.3 Ethics 19
4.4 Future improvement 19

5.Citations 20-21

Appendix

3

1.Introduction:
1.1 Background and Purpose
Wireless communication systems form the backbone of modern-day human-robot
interaction. Namely, wireless remote control methodologies including IR, RF, and
network-based technologies such as WiFi and Bluetooth facilitate communication
between a client and a robot such that the robot can successfully actualize its desired
functionality. The main advantage they possess over wired control is that they provide a
much broader range for the robot to interact with its environment. External peripherals
(game controllers, smartphones, etc.) are usually required in order to wirelessly transmit
data to the robot, however, these wireless physical peripherals still withhold constraints
such as the difficulty of using for people with physical disabilities and easy to wear issue
for delicate electronic parts. In our project we want to free the user of these physical
peripherals by introducing a touchless UI technology based on artificial intelligence, in
particular, the use of machine learning methodologies like CNN (Convoluted Neural
Networks) for gesture recognition combined with wireless technology such as Bluetooth
to form a gesture-based control scheme, could form the backbone of a potential solution
to these problems, as our solution only requires one hand to operate and requires no
hardware control device, this means people with only one arm can also operate the robot
control by our gesture control system, and users no longer need to worry about control
device running out of battery or getting less sensitive and accurate due to extensive
using. Moreover, our primary objective in this course is to combine these technologies to
explore a new and innovative method of robotic control.
of motion for the robot as well as a gesture to cease movement. We intend to utilize a
convolutional neural network (CNN) based architecture for our hand gesture recognition
system, the details of which will be elucidated upon in the following sections.

4

1.2 Block Diagram

Figure 1: Gesture Controlled Robot Block Diagram

5

1.3 Gesture Design

Figure 2: Gesture to Corresponding Direction

2.Design:
2.1 Design Procedures
Hand Gestures:

At first, we only considered using one hand to demonstrate gestures, because
gestures made by one hand were simpler. However, later we switched to using

6

two hands because the 7 gestures need a minimum level of distinction from one
another. We cannot design so many notably distinct gestures with just one hand.
Another important reason is that the gestures work well with the CNN classifier
because the two-handed gestures are larger in size and size is an important
variable in classifying different images.Figure 3 and 4 in the Appendix
demonstrate the ideal and real time cases.

Web Camera and Camera Driver:
We decided to include the above two components together because they
represent the hardware camera and the software to adjust the images taken by it.
We use the built-in camera of Qinlun’s personal computer and used the OpenCV
Python 3 library to manipulate the camera. The advantage is that implementation
is simpler since we already have a camera and we can directly use functions
from the OpenCV library to achieve our goal. One issue is that the camera is low
quality and it does not have great performance under all light conditions. We will
discuss the importance of light conditions in the image preprocessing module and
the conclusion was that the low-quality camera is heavily influenced by the light
conditions. For example, under strong light conditions, the camera can only
recognize a small part of skin while it fails to recognize anything under weaker
light. The following two images show the ideal cases and real-time cases.

Image Preprocessing Module:
The functions of this module are to process the real-time images such that only
aspects of an image with a similar complexion to the user’s skin can be picked
out and the background is removed. At first, we planned to further process the
images to grayscale images because we can reduce noise and eliminate the
influence of the light conditions to some extent. However, the CNN classifier is
better with three channels because it would have more information to predict the
class of an image. Therefore, we decided to use color images instead. This
option actually further makes our algorithm vulnerable to extreme light conditions.

Classifier Module:

We have two choices in implementing this classifier. The first option was to use a
2D image filter as the convexity detection to find out the convexities and defects
and then predict the gestures based on these inputs. This option is easy to
implement but it might not be able to classify all the 7 gestures. The second
option is to build a CNN as a classifier with Kera and Tensorflow libraries. This
choice is more accurate and could be used to other applications if we want to
further work on the project.

Power Supply:

7

At the beginning of our design, we planned to use an Arduino board to power our
Bluetooth chip, and a 9V external battery to power our PCB. However, due to our
failure to design a PCB for our project, we switched to using a separate 9V
battery to power the L298N motor controller, and another 9V source to power the
Arduino board. The Arduino Mini required the use a power bank to power the
Arduino board in the final demo due to time constraints.

Communication Module:

Pyserial and Pybluez are the two libraries we used for communicating with the
HC-06 chip from the user’s laptop. We had to use two libraries because we were
testing the HC-06 chip on both Mac and Windows platform, and due to the
differences between both systems, we were not able to get Pybluez to work on
Windows correctly, resulting in us opting for Pyserial instead.

Pybluez is a library design specifically for Bluetooth programming on Python,
however, the library has not received any major update since 2015, so there are
a lot of compatibility issues with installation. As shown in Figure 5, Pybluez
connects with a Bluetooth chip through an RFCOMM channel. The RFCOMM
channel, regardless of the availability of the Bluetooth device, stays in an
unconnected state if the program does not attempt to send any data through it. If
the program intends to send data through the RFCOMM channel to Bluetooth
chip, the MAC address of the chip is required to locate the chip and establish a
connection, the port number is chosen by the programmer to listen on.

Another thing worth mentioning about pybluez is that it did not work with
Windows. We weren’t able to find solid evidence on the reason why, but the
inbuilt function provides clear evidence that the problem is the port number
windows has provided is invalid.

This could be caused by the Windows 10 security update, forbidding an
unauthorized application to use an RFCOMM port.

8

Figure 5: PyBluez Flowchart

Pyserial is more straightforward to connect and is much easier to install, as the
user can simply install it through pip command. However Pyserial is not designed
specifically for Bluetooth connectivity, in that the user would have to manually
pair his laptop with the HC-06 chip, as Pyserial transfers data through a serial
port. On both Windows and Mac this would require the operating system to first
assign a port for the connected device. Figure 6 demonstrates how Pyserial
works in our project. As shown in the graph what Pyserial does is simply push
data to the assigned serial port, and nothing more.

Figure 6: PySerial Flowchart

9

Bluetooth Module and Voltage Divider:

The HC-06 chip can provide a transmission range of 9 meters, equipped with a
2.4GHz digital wireless receiver and can operate at a low voltage of 3.3V to 5V.
All these specs exactly meet the requirement of the communication module for
our project. The Tx and Rx ports take in 3.3V whereas the power supply for this
chip takes in 5V, so a voltage divider was required for conversion.

Figure 7: HC-06 to MCU Connection

Microcontroller:

For our initial design, we intended to use a 40 pin PIC16F877A. The
microcontroller consists of 5 port registers, Tx and Rx ports for serial
communication purposes, and 2 CCP ports used for speed control via PWM. An
external crystal oscillator is required for the microcontroller to function. We
believed that it would be the best option for this project since it was readily
available in the lab and possessed all the necessary components for interfacing
with the HC-06 and the motor control module. In addition, we possessed prior
programming experience with PIC microcontrollers. The required circuit
environment was to be transferred to a PCB; however, due to unforeseen
circumstances that will be elaborated upon in the following sections, we made a
last minute switch to the Arduino Mini. For reference, below is a pinout diagram
of the PIC16F877A:

10

Figure 8: PIC16F877A Pinout

Motor Control Module:
We decided the use of an special IC, namely the L298N. The L298N consists of
two internal H-bridges that can control two separate motors respectively. An
alternative option would have been manually designing two H-bridge PCBs or
perfboard based circuits to interact with the motors, but as the main focus initially
was to facilitate the interactions between the software and the microcontroller, we
believed that relying on the use of a pre-made motor control module could save
us time and effort since the full project required all three major components to
successfully operate in tandem (software, interface, and hardware). Had we
succeeded much earlier in our endeavors, we could have had time to further
increase the hardware complexity. Below is a labeled diagram of this IC:

Figure 9: L298N

Motors:

Two ROB-13302 SparkFun brushless motors were used for the purposes of this
project as they were readily available to us and possessed an acceptable DC
motor voltage of 4.5V. These specific DC motors were available to us from the
beginning as they were a part of a SparkFun hobby kit that we used in ECE110.
Incidentally, the hobby kit cart also served as the chassis for our robot, in order to
mitigate the potential difficulties that could result from needing to design our own.

11

Figure 10: Motors

2.2 Design Details
Hand Gestures, Web Camera and Camera Driver:

We discuss these three modules together because they do not involve a major
hardware or software design. The hand gesture and web camera design do not
require anything. The camera driver is used to open and close the camera and
set the size and frame rate of the images. These functions can be achieved by
built-in functions of OpenCV. The size of the images would be discussed in the
classifier module.

Image Preprocessing Module:

Due to the decisions made previously, the most important part of this module is
to detect the skin color under harsh light conditions. We use an RGB color
threshold to mask the image and only keep the skin-color part while removing the
background. Based on a large number of tests, we find that the key to detecting
skin color is to set the blue color threshold relatively low and keep the other two
colors high because human skins barely contain blue color. The final color
threshold is R: 0-255, G: 50-240, B:100-150. The final result works in a wide
range of skin colors and in real time test, the hand gestures of all of our
teammates and our TA’s hand could be detected.

Classifier Module:

The CNN we use 8-node soft-max layer and use sparse categorical as the loss
function. These designs are used because we have 8 classes and all the classes
are exclusive, or in another word, one image can only be classified to be in one
class. Since the light conditions have great influences on the performance, we
collect the images of all hand gestures under different light conditions. There are
totally 19,180 images in the training dataset. As shown in the figure below, there
are some samples from the “stop” class, and the shape and contour of hand
gestures can very much under different light conditions. We include the gestures
under many different cases such that the CNN could make correct predictions
based on the input images.

12

In addition, the CNN use rotated images or symmetrical images from the training
dataset as aggregated dataset to train itself, so the classifier can recognize the
hand gestures made by either left or right hand. However, two of the classes use
both hands but the CNN can also recognize symmetrical gestures.

Figure 11: Stop Gesture Examples

Microcontroller:

As mentioned in the previous section, in order to interface with the Bluetooth
module and the motor control module, the PIC requires one of the ports to be set
as an output (Port B, in this case) in order to set voltages on the L298N H-bridge
inputs (RB0-RB4, Pins 33 to 36), Tx and Rx connections between the HC-06 and
the corresponding PIC pins (25 and 26) and CCP register outputs (16 and 17 to
set the PWM enable pins on L298N. Additionally, the MCLR pin requires a
pull-up resistor to set it high during operation in order to disable external
resetting. Moreover, the PIC16F877A required an external crystal oscillator in
order to operate. 16 MHz crystals were available in the lab, that possessed a
rated load capacitance of ~18 pF. The parallel resonance condition must be met
in order for the crystal to actually run at the intended operating frequency, which
requires the use of load capacitors at each crystal terminal connected to ground
such that the oscillation is stabilized. The value for the load capacitances are

CL = C C1 2
C + C1 2

+ Cs (Eq. 1)

where and refer to the load capacitances, refers to the strayC1 C2 Cs
capacitance (usually around 2-5 pF), and refers to the crystal’s rated loadCL
capacitance. We decided to use 22 pF capacitors, since in the context of the
formula above, they result a ~16 pF rated load, which while not exactly 18 pF,
isn’t quite close and these capacitors were readily available for us in the lab. Our
initial proposed schematic can be found in the Appendix, labeled as Figure 12.
This decision was made to save space on the report.

13

The general program flow for this design is relatively simple. Regardless of the
microcontroller used, it involves first initializing the necessary ports as
inputs/outputs and set up the UART-based serial communication protocol with
the Bluetooth module. Then, if the Bluetooth connection is established, set the
port B outputs and the PWM registers to the necessary values for each input
code corresponding to each gesture.

Motor Control Module and Motors:
Below is the block diagram for the H-bridge circuit in the L298N:

Figure 13: L298N Block Diagram

IN1 and IN2, as well as ENA control one motor and IN3, IN4, and ENB control
the other. From the schematic, we can see that each adjacent input controlling
each motor must be set to opposite values in order to facilitate forward and
backward motion and both must be set to 0 for the motors to stop. ENA and B
adjust motor speed since they are ANDed with the input signals to lower the
average gate voltage based on the duty cycle. The L298N also consists of a
voltage reference that provides a constant 5V output. We initially were planning
on using this 5V output to power the PIC; however, the switch to Arduino proved
that to be unnecessary. The L298N also requires a 5-12V source voltage in order
to operate. We determined that at full speed (i.e. 100% duty cycle) there was a
consistent voltage drop of ~4V between the input voltage and the motor voltage.
Thus, we decided that a 9V input would be optimal for our design since the rated
DC voltage of our motors was 4.5V.

14

2.3 Design Verification:
Machine Learning

Explanation:
Since the image input module, image analysis module and the classifier work
together to make predictions, so if the accuracy of the classifier is high enough
(over 70%), then it would prove that each submodule is fully functioning because
the whole machine learning program could not work if any of the submodules
breaks down.

Accuracy in the training process:
We use the software to select some samples from the training dataset and test
the samples with the CNN to get the accuracy in the training steps. The picture
below shows a small number of test results and the diagram of the accuracy and
loss show how the tendency changes during the training. The final accuracy after
all the training processes is 97.67%.

Figure 14 Accuracy in training
 Accuracy in real time:

We use the same method proposed in the design document to verify the results
of the classifier. One of our group members would hold his hand and pose one of
the seven designed hand gestures before the camera for 5s to get 150 test
images. We require at least 105 of them should be classified correctly, i.e. the
predicted results should match the gesture shown. The test is repeated for 6
times for each classes. Then we get the real-time results as shown below.

15

Figure 15: Real Time Results

As shown in the table above, the average accuracy of the real-time tests is close
to the accuracy in training processes. Two of the classes are very special. The
RB and LB stand for turning right while moving backward and turning left while
moving backward. The two gestures are made by two hands and they make the
classifier confused sometime in the real-time tests so some of the test results fall
out of range like the 110 in the RB line. Despite the two cases, the average
accuracy matches the accuracy in the training so the overall accuracy is more
than 90%. The worst case data still has 73.3% accuracy which satisfies the
high-level requirements. In general, we successfully implement machine learning
software with OpenCV, Keras, and Tensorflow libraries.

Hardware
PIC Issues:
Prior to to the week before the demo, we were able to verify that the PIC was
outputting the correct values from the Port B and CCP registers, although we had
trouble using them to control the L298N. However, during the week before the
demo, the PIC was not even able to be recognized. For reference, we were using
the PICKIT3 for our programmer/debugger, as they were readily available in the
lab and were compatible with the PIC16F877A. While earlier the outputs were
verified to be correct on the multimeter, we were suddenly receiving the following
error:

Figure 16: MPLABX IDE Error

16

As the programmer was unable to detect the device anymore, we went through
all the necessary debugging steps, including ensuring that the configuration bits
were set to the correct values, making sure the wire connections between the
PICKIT3 and the MCU were functional, replacing our microcontrollers, sometimes
even with other PIC models, replacing other components like the crystal oscillator
and load capacitors, using other PICKIT3s, and verifying that the signals being
sent from the PICKIT3 were correct. Specifically, we followed the steps
associated with the Microchip Developer documentation, namely the section titled
“Troubleshooting Invalid Device ID Errors.” The documentation mentioned that
the common causes were a bad connection between the debugger and the MCU,
the presence of external components on the programming pins, and missing
connections between the pins. We verified that there was no problem with the
PICKIT3 by probing the clock, data, and MCLR pins and ensuring that they were
set to the proper voltages once the PICKIT3 firmware was initialized in MPLABX,
in addition to repeatedly verifying that all the connections were correct, especially
since we were using the same connections as when it was working before. We
even tried seeking help from other TAs, but we came to a point where we
decided that it wasn’t worth trying to make further progress and that it was best to
downgrade our microcontroller to the Arduino Mini such that we can have a
working project by the demo date, greatly reducing our hardware complexity.

Had we been given more time to work on this project, we would have attempted
to further debug the PIC issues by using a PIC development board. We were
initially reluctant about buying a PIC development board because they were
somewhat expensive and we wanted to have a physical circuit for reference
when designing the MCU PCB. In this case, however, a PIC development board
would have mitigated the effort in continually replacing components on the
breadboard, since most of the external components including the crystal
oscillator and the power sources are integrated onto the board. In addition, the
PICKIT3 can directly be plugged into the board without the need to wire each of
its pins to the corresponding pin on the microcontroller. This would save us a lot
of time with debugging and once the PIC is sufficiently programmed, we could
then recreate the original circuit with the program still uploaded and continue
from there.

Arduino
The Arduino setup was similar to the PIC setup, albeit much easier, with pins 7,
6, 5, and 4 functioning as IN1 to IN4 and pins 10 and 11 acting as digital PWM
outputs to ENA and ENB. Pins 12 and 13 were connected to the Tx and Rx of the
HC-06. The program flow was the same as we had mentioned in the

17

microcontroller design details. When testing the complete circuit, we found that
the left wheel was more susceptible to friction effects than the right wheel,
causing the vehicle to turn left when going forward. In order to program the PWM
outputs, the analogWrite function was used in order to set the duty cycle of the
motors accordingly, in which the acceptable range of values was between 0 (0%)
and 256 (100%). Below are the PWM values used for each direction to
compensate for friction while ensuring that the vehicle runs at the desired speed
of 10 cm/s. For no motion, the IN pins were set to 0.

Direction Left PWM Right PWM

Forward/Reverse 160 192

Left/Reverse Left 120 255

Right/Reverse Right 255 120

Figure 17: PWM Values

The final schematic is also added to the Appendix.

3. Costs
The cost calculations are added to the appendix. For now, our cost calculation
will only consist of the hardware component we’ve used. We did not encounter
situations where we have to pay for the software libraries in the development of
our project. However, this may not be the case for commercial uses. The labor
cost will be calculated based on the average worker salary of the United States
and the time to assemble the robot.

 Manufacturer Quantity Part Price

Arduino Board Sparkfun(Arduino Uno) 1 $16

Bluetooth Chip DST-TECH(HC-06) 1 $8

Power Source 9V Battery 2 $0.7 each

Motor Control Qunqi(L298N) 1 $7 or below

Motors Hobby Gearmotor
(ROB-13302)

2 $4.95 per pair

Robot Frame Sparkfun(Shadow
Chassis)

1 $12.95

18

Total Hardware
cost

 $50.3

Labor Cost(per hour) 24.57

Time 60 Hours per person

People worked on the project 3

Total Labor Cost $24.57*3*60 = $4422.6

Total Cost $4422.6+$50.3=$4452.9

4.Conclusion
4.1. Accomplishments
Generally speaking, our project did work in the sense that it met all the High level
requirements. The operating speed is satisfactory after modifications on the
power supply for L298N and PWM setting in the arduino code. The response of
the robot is prompt, in most cases it response to a change in gesture input within
a second, transmission range is met as we have tested operating the robot in the
445 lab and have the laptop transmitting signals in another room. We’ve also
cleared ways for running our application on both Mac and Windows with a few
lines of code change.

4.2. Setbacks
The major setback for our project would be our failure to program the PIC, this
directly let to our failure to design a PCB board. This setback
Forced us to use a perfboard and leaving most of the wiring exposed outside,
making our cart extremely vulnerable during operation, when debugging we
encountered many time the case where two wires accidently touch each other
and cause a short and shut off the HC-06 chip. The lack of PCB also drastically
decreased the complexity of our project, leaving the complexity of the hardware
portion unfitting to a senior design. In general, our main issue was a lack of
efficacious parallelization of modules.

4.3. Ethics
During the design of our project we carefully abide the IEEE ethical codes. We
made sure that everything we used in our project that is from an external source

19

are clearly cities, following the IEEE code of ethic 9(9). To ensure the safety of
our project, following IEEE code of ethic 1(9), we carefully followed the specs of
every hardware component used in our project, making sure that no voltage
exceeding component recommendation is provided. However due to our lack of
PCB, many wires are exposed for our robot, this could be a safety issue since
we’ve observed shorting effects on our cart.Another possible safety issue lies
with the voltage divider During the demo we also noticed a high power
consumption for the voltage divider we’ve built, which is most likely cause by the
2k and 1k ohms resistors we used to built the voltage divider. This has caused
the wire used for powering the HC-06 chip to get quite hot. If we had time, we
would have used a level shifter or a voltage regulator.

4.4 Future development
If given more time to develop on our project, we would like to fix the issues with
the PIC, make a PCB to replace the exposed wiring we currently have, and to
replace the Arduino board and L298N with PIC, two on board H-Bridge and a
voltage divider. This will greatly reduce the cost of production of our robot and
clear away the safety issues we have right now.

5. Citations

[1] “Touchless User Interface Utilizing Several Types of Sensing Technology,” PDF. [Online].
Available:
http://docplayer.net/70705266-Touchless-user-interface-utilizing-several-types-of-sensing-technol
ogy.html. [Accessed: 28-Feb-2019].

[2] S. Chen, H. Ma, C. Yang, and M. Fu, “Hand Gesture Based Robot Control System Using Leap
Motion,” SpringerLink, 24-Aug-2015. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-319-22879-2_53. [Accessed: 28-Feb-2019].

[3] N. T. Thinh, N. T. V. Tuyen, and D. T. Son, “Gait of Quadruped Robot and Interaction Based
on Gesture Recognition,” Journal of Automation and Control Engineering, vol. 3, no. 6, pp.
53–58, 2015.

[4] M. Wang, W.-Y. Chen, and X. D. Li, “Hand gesture recognition using valley circle feature and
Hu’s moments technique for robot movement control,” Measurement, vol. 94, pp. 734–744, 2016.

[5] B. Iscimen, H. Atasoy, Y. Kutlu, S. Yildirim, and E. Yildirim, “Smart Robot Arm Motion
Using Computer Vision,” Elektronika ir Elektrotechnika, vol. 21, no. 6, 2015.

[6]“3.2. Communicating with RFCOMM,” Communicating with RFCOMM. [Online]. Available:
https://people.csail.mit.edu/albert/bluez-intro/x232.html. [Accessed: 01-May-2019].

20

[7] S. User, “Home,” OSEPP. [Online]. Available:
https://www.osepp.com/electronic-modules/breakout-boards/91-bluetooth-module#. [Accessed:
01-May-2019].

[8] “Developer Help,” Troubleshooting Invalid Device ID Errors - Developer Help. [Online].
Available: http://microchipdeveloper.com/dtda:invalid-device-id. [Accessed: 02-May-2019].

[9] “ROB-13302 by SparkFun Electronics | Brushless DC Motors,” Arrow.com. [Online].
Available:https://www.arrow.com/en/products/rob-13302/sparkfun-electronics?gclid=Cj0KCQjwh
6XmBRDRARIsAKNInDHyy2w4QpElFIyWmZGB5NM9ShnVJJmUYxFLRzuaZt141QHO3do2
IvAaAlSMEALw_wcB. [Accessed: 02-May-2019].

Appendix

Figure 3: Ideal Cases

Figure 4: Real-Time cases

21

Figure 12: Proposed Hardware Schematic

22

Figure 19: Final Hardware Schematic

23

24

