

VARIABLE SPEED SUMP PUMP

 By

Carolyn Petersen

Edward Villasenor

Final Report for ECE 445, Senior Design, Spring 2019

TA: Amr Martini

01 May 2019

Project No. 35

1

Abstract

Current sump pumps can only run at one speed regardless of how much water is currently in or
entering the sump. This paper outlines the design and testing of a variable speed sump pump which would
change the pumping speed based the needs of the sump. The speed of the motor that powers the pump is
controlled by changing the voltage input to the motor. Voltage control is obtained through a motor
controller that uses a PWM signal from a microcontroller to change the voltage based on the duty cycle of
the PWM. The PWM signal sent by the microcontroller is based on water level data received from
capacitive sensors that are inside the pump.

2

Table of Contents

Abstract 1

Table of Contents 2

1. Introduction 3
1.1 Purpose 3
1.2 Functionality 3
1.3 Subsystem Overview 4

2. Design 5
2.1 Physical Design 5
2.2 Power 8
2.3 Water Pump 10
2.4 Capacitive Water Sensors 10
2.5 Printed Circuit Board 11
2.6 Brushless DC Motor Controller 11

3. Cost & Schedule 12
3.1 Cost 12

3.1.1 Parts 12
3.1.2 Labor 12
3.1.3 Total Costs 13

3.2 Schedule 14

4. Requirements & Verification 15
4.1 Power System 15
4.2 Capacitive Water Sensors 16
4.3 Printed Circuit Board (Microcontroller) 17
4.4 Water Pump 17

5. Conclusion 18
5.1 Accomplishments 18
5.2 Uncertainties 18
5.3 Future Work / Alternatives 18
5.4 Ethical Considerations 19

References 20

Appendix A Microcontroller Source Code 20

3

1. Introduction

1.1 Purpose

Currently, a one-third horsepower sump pump uses an average of 650 watts per hour [1] and can

be prone to flooding unnecessarily. Sump pumps on the market function by having a float switch at the

top of a sump which turns a motor on a single speed once the water level in the sump reaches the float

switch. As a result, sump pumps often turn on and off loudly during the night. It also creates a flooding

scenario where the pump doesn’t turn on until the water level is too high in the sump because it can’t

sense the water rising until it is too late. This projects aims to save energy, detect water rising faster and

reduce the loud noise of the pump by making a variable speed sump pump. Instead of turning the engine

on and off many times, energy can be saved by varying the speed and running the motor more

continuously at a lower speed. There is less noise is this configuration due to the motor running at lower

speeds at times instead of only running at high speed. The sump pump would also flood less in situations

of high water flow because instead of only turning on once the sump is full, it would detect the high rising

water sooner and turn on to its highest setting quicker than a current sump pump could. Building a 250 W

sump pump in just one semester is dangerous, so the sump pump that this project is built is smaller than a

home sump pump, using only 6 Watts. The end product was a proof of concept, not a ready-to-market

device.

1.2 Functionality

The high level requirements for this project that were used in the project proposal were based on

the assumption that the motor would use more energy than it ended up using when we rescoped the

project. The first high level requirement was that the water intake would increase as the power increased,

up to 36 W. While the water intake didn’t change, and the entire project ended up using around 6 W, the

purpose of the high level requirement was as a way to indicate that water flow rate increased as voltage

increased, which did happen. Details on the relationship between power and flow rate are in section 2.2.

The second high level requirement was that the sensors could detect water before the water had risen

halfway up the sump. This was to test one of the flooding conditions mentioned in the section 1.1 where

the variable sump pump could stop certain flooding scenarios by detecting water before it reaches the top

4

of the sump. This requirement was met as the sensors were placed deeper into the sump as seen in the

physical design in section 2.1. The third high level requirement was for the pump to pump a reasonable

amount of water, which was calculated to be 80 ounces per minute. The 80 ounces per minute was based

on the previous assumption mentioned where the project uses 36 W. Since our project used one sixth of

that, our flow rate was much lower, at 15.33 ounces per minute, which is about one fifth of the original

requirement. The purpose of this requirement was to ensure that the sump pump could actually function as

a useful water pump.

1.3 Subsystem Overview

Figure 1: Block Diagram

5

Figure 1 above is the block diagram for our project. There are 5 major subsystems. They are our

power systems, our capacitive water sensors, our motor controller and our water pump.The power systems

send 12 V to the motor controller, which sends 5 V to a PCB board with the microcontroller on it. The

microcontroller sends a PWM signal to the motor controller, which changes how much voltage the motor

controller sends to the water pump. The capacitive water sensors are physically in the sump and send data

and get power to and from the PCB board with the microcontroller. The final project did not end up using

the encoder as shown on the proposal, as the signal sent from the encoder was noisy and ultimately wasn’t

necessary due to the linear nature of the voltage control system.

2. Design

2.1 Physical Design

The physical design for this project changed significantly from the proposal. The original design
is in Figure 2 below with the table of contents for Figure 2 in Table 1.

Figure 2: Original Physical Design

6

Number Name

1 DC motor

2 Axel

3 Sensors

4 Impeller

5 Output Pipe

6 Input Pipe

7 Battery Pack

8 Motor Controller

9 Microcontroller

Table 1: Table of Contents for the Original Physical Design

The major improvement to the design came by making the project a closed system. There are two

reservoirs, one which is elevated and the other which has the motor at the top and impeller system on the

bottom. The impeller system pumps water from the bottom of the lower water reservoir to the top of the

higher reservoir. Water can be put back into the sump with a spigot at the bottom of the higher reservoir.

The way the sensors were connected in the sump also had to be modified due to the fact that the sensors

were not as waterproof as was assumed in the design document. In order to use the sensors, they were put

in a slit at the end of a closed off pipe and sealed. Figure 3 below is a diagram of our final physical design

and Table 2 is the table of contents for the new physical design.

7

Figure 3: Final Physical Design

Number Name

1 5 Gallon Bucket

2 Spigot

3 Motor

4 Axel

5 Sensor

Table 2.1: Table of Contents for the Final Physical Design

8

Number Name

6 Impeller

7 Output Pipe

8 Intake Pipe

9 Hose

10 Battery Pack

11 Motor Controller

12 PCB Board with Microcontroller

Table 2.2: Table of Contents for the Final Physical Design

In figure 3, only one sensor is shown in the diagram, but in the actual set up there are a total of
four sensors in the bucket.

2.2 Power

One of the goals of this project was to save power by running the motor at lower speeds when
reasonable. In order to test how much power was used by the water pump at flow rates, the flow rate at
each voltage was calculated by timing how long it took the motor to pump water a certain distance of
pipe. The volume of water could be calculated from equation 1 below where the diameter of the pipe is
.375 inches. L is the length of the pipe that the water moved at the measured time.

 1 (D/2)V = 2

* π * L

The flow rate, Q, can then be calculated from equation 2 below. [2]

 2Q V /t =

At each half volt from the start up voltage at 2.5 V, the flow rate for the water pump was
measured. Figure 4 below is the voltage and flow rate data graphed.

9

Figure 4: Voltage v Flow Rate

The linear relationship between flow rate and voltage makes it simple to use the voltage control

system to find a specific flow rate. This is why, as mentioned in section 1, an encoder was ultimately not
necessary as a desired flow rate could be easily obtained. However, in order to find the relationship
between power and flow rate, equation 3 below can be used to calculate using the voltage and current.

 3 VP = * I

In order to measure the current into the motor at each voltage, an oscilloscope was used because

the current has a sinusoidal curve. So in order to find the power, the current was averaged at each voltage,
and equation 3 was used to create figure 5 below.

10

Figure 5: Power v Flow Rate

The relationship in between power and flow rate is also linear. Unfortunately, this indicates that

the pump does not save energy. If the pump saved energy, figure 5 would level off horizontally for a
range of voltages.

2.3 Water Pump

The water pump is made from a 12 V brushless DC motor whose shaft is connected to an impeller
chamber taken from a 1 GPH diaphragm pump. The primary reason why the project does not save energy
is likely due to the design of the pump. When the pump is running, the water moves in discrete intervals
instead of flowing which indicates that friction is having too strong of an effect on the flowrate to be able
to save energy. The motor that is connected to the pump has a maximum of 600 RPM which only
translates to .119 GPM. At lower voltages, the motor spins even slower and has a lower pumping rate.
This is far lower than the diaphragm pump, so the water pump should have had a motor that rotated
significantly faster. The motor in that was originally used in the diaphragm pump spun at 6000 RPM at 12
V which should have been the range that was aimed for when buying the motor to use with this project.

2.4 Capacitive Water Sensors

The way capacitive water level sensors work is that there are at least two “parallel fingers” of a
conductive material that has a different dielectric constant than air that is used as the level sensor. You

11

would also have an environmental sensor and a reference sensor. The environmental sensor would
represent the capacitance when there is no water near the sensor. The reference sensor represents the
capacitance when the water level is completely above a.k.a. covering the sensor. These 3 sensors can be
seen in the figure 5 below which shows how the magnetic field interacts with the water level, and picks
up a change in the dielectric constant which then corresponds to a change in the capacitance of the sensor.

Figure 6: Liquid Level Sensing

2.5 Printed Circuit Board

The PCB (printed circuit board) handles all of the logic for our project. The most significant component
of the PCB is the ATmega328P microcontroller which runs software that decides how our project
behaves. The microcontroller uses 4 pins to take analog input from the 4 sensors, and uses 1 pin to output
a PWM (pulse width modulation) signal to the motor-controller. A secondary function of the
microcontroller, is to send the Serial Monitor output back to a computer using the FTDI programmer.
This is not necessary though, and is just a feature that eases debugging. The remaining components on the
PCB are simple components to support the functioning of the microcontroller. There is a reset button, a
pull-up resistor, and a 16 MHz clock among other things.

2.6 Brushless DC Motor Controller

Our brushless DC Motor Controller serves many functions. Its main feature is that it can take a PWM
(pulse width modulation) signal and output a voltage between 0 Volts and whatever the maximum

12

regulated voltage is (which should be a little less than the input voltage due to drop out) based on the duty
cycle of the PWM signal. But, it can also provide regulated 5 volts to all of the components we need that
for, which is the microcontroller and the sensors on the PCB board.

3. Cost & Schedule

3.1 Cost

3.1.1 Parts

Table 3 below contains the part costs for the project.

Part Manufacturer Retail Cost ($) Number Actual Cost ($)

12 V 600 RPM
DC Motor

Uxell $18.84 1 $18.84

L298N H-bridge
Motor Controller

DROK $7.88 1 $7.88

Diaphragm Pump Everflo $33.49 1 $33.49

6V Battery Rayovac $5.99 2 $11.98

⅜ inch hose Eastman $6.18 1 $6.18

Water droplet
depth detector

WINGONEER $1.60 4 $6.40

ATmega328P Texas Instruments $1.50 1 $1.50

Custom PCB PCBway $8 10 $80

Table 3: Parts Cost

3.1.2 Labor

The average UIUC EE BS graduate earns $68,000 according to the UIUC ECE website
and the average CE BS graduate earns $84,000. [3] Given an average work year of 45
hours/week and 50 weeks/year, the average salary of an EE graduate is $30/hour and the

13

average salary of a CE graduate is $37/hour. When these two are averaged together, the
average ECE graduate makes $33.5/hour. The following formula can be used to determine the
total labor costs given the length of production time.

0 hours/week 33.5/hour 2 people .5 6 weeks $26, 001 * $ * * 2 * 1 = 8

Parts of the pump were also constructed by the machine shop. The machine shop has
an hourly rate of $50 and it took 8 hours to complete. Therefore, our machine shop cost was
$400. Added to the salary cost, the total labor costs are $27,200.

3.1.3 Total Costs

The total cost can be calculated by adding the parts cost to the labor cost.

otal Cost Labor Cost arts Cost 7, 00 166.27 $27366.27 T = + P = 2 2 + =

14

3.2 Schedule

Week Carolyn Petersen Edward Villaseñor

1/14 Brainstorm Ideas, find teammate Brainstorm Ideas, find teammate

1/21 Research and familiarize myself
with sump pumps

Research and familiarize myself
with sump pumps

1/28 Search for parts to be used in
our design and weigh the
benefits and costs of each

Search for parts to be used in
our design and weigh the
benefits and costs of each

2/4 Write and submit proposal Write and submit proposal

2/11 Research how the sensors work.
Edit design based on feedback.

Research how the sensors work.
Edit design based on feedback.

2/18 Complete Design Document
Check. Research how much
energy it takes to pump a certain
amount of water.

Complete Design Document
Check. Research how to
program the arduino.

2/25 Complete First Design Review Complete First Design Review

3/4 Rescope the project and prepare
for second design review. Work
on a pump design with the
machine shop.

Rescope the project and prepare
for second design review.

3/11 Research how to pump water.
Buy motor and motor controller.
Test motor speed relationship
with voltage.

Research how to pump water.
Buy parts for water-proofing the
sensors

3/18 Work on individual progress
report

(Spring Break) Unit test the
sensors. Start programming the
Arduino.

3/25 Test motor controller and
arduino with test motor. Test
with different duty cycles.

Research, design and construct
water-proof sensor apparatus.
Order all remaining parts.

4/1 Rough PCB draft in Eagle. Construct PCB circuit on
breadboard. Make revisions to
the system with machine shop

15

Week Carolyn Petersen Edward Villaseñor

4/8 Finalize PCB design in eagle
and order it through PCBway.

Finalize PCB design and Order
it

4/15

Assemble whole system. Solder and assemble PCB.
Assemble whole system.

(4/15 continued) Test system. Plan how you will
Demo. Get and test batteries for
a 12 V power source.

Test system. Plan how you will
Demo.Integration test the
sensors.

4/22 Create final presentation and
practice delivery

Create final presentation and
practice delivery

4/29 Write final paper Write final paper

4. Requirements & Verification

4.1 Power System

● Power

○ Two 6 Volt batteries in series were used to power the motor controller, the

sensors and the microcontroller. One regulator was used to regulate the voltage

sent to the motor and the other was used to send 5 Volts of regulated power to the

microcontroller and sensors

16

Requirements Verification Result

Battery must be able to

provide 12 Volts of power to

the voltage regulator and the

motor controller within a ±

10% margin.

1) This can be verified by

using a voltmeter to check the

voltage of the battery.

COMPLETED. Our two

batteries in series provided

within ± 10% of 12 Volts at

all times to the motor

controller.

The motor controller must

provide 5 V to the sensors

and to the microcontroller

within a ± 10% margin.

2) This can be verified by

using a voltmeter to check the

voltage to the microcontroller

and to the sensors.

COMPLETED. The motor

controller was used to send

regulated power to all

components requiring 5

Volts, including the

microcontroller and the

sensors.

The motor controller should

give the motor (1) a

maximum voltage of 12 V

and (2) a minimum voltage of

2=0 V depending on different

PWM signals from the

microcontroller.

3) This can be verified by

using a voltmeter to check the

voltage is 12 V to the motor

when the microcontroller

sends a signal for maximum

voltage and 0 V for minimum

voltage.

(1)Incomplete: ~10.4

Volts is the max we could get

to the motor because motor

controller steps down from 12

Volts, but negligible on

performance of pump.

(2)Complete.

4.2 Capacitive Water Sensors

17

Requirements Verification Result

Water level sensor needs to be
accurate within at least 1.5
inches.

Test the readings sent to the
microcontroller against viewing
the water level with a ruler and
the naked eye.

COMPLETED. Since the height
of the exposed pad of each
sensor was ~0.75 inches, and the
sensor was able to be more
accurate than a binary reading,
the sensor was accurate by a
smaller margin than 0.375
inches.

4.3 Printed Circuit Board (Microcontroller)

Requirements Verification Result

Microcontroller is able to send
PWM signal to the motor
controller.

PWM signals can be checked by
measuring the voltage output
with an oscilloscope.

COMPLETED.

Microcontroller needs to be able
to estimate the water level and
rate of change of the water level
based on analog signals output
by the sensor(s).

a)The analog output can be
made human readable through a
connection from the
microcontroller to the serial com
port of a pc. b)This can be
compared to a ruler in the
bucket.

COMPLETED. But, accuracy
could still be improved due to
the sensors behaving in a
non-linear fashion

4.4 Water Pump

Water Pump
○ Motor: The electrical motor would be an DC motor. Its rated voltage is 12V and
rated current is 3 Amps. This is a motor for a RC boat, with a rpm ratio of 3800
rpm/V. This means that at maximum speed can run ideally at 45,600 rpm, but this
number is unloaded. As our motor will be pumping water, this means that it will
have a considerable load, so its maximum speed would be much lower.
○ Impeller: An impeller is a rotating component of a centrifugal pump which
transfers energy from the motor that drives the pump to the fluid being pumped
by accelerating the fluid outwards the center of rotation. An impeller is a short
cylinder with an open inlet (called eye) to accept incoming fluid, vanes to push

18

the fluid radially, and a splined, keyed or threaded bore to accept a drive shaft.
○ The motor is connected to the impeller by an axel and the impeller is funneled
into an output pipe.

19

Requirements Verification Result

When water reaches the top of
the bucket, which will be 1 foot
high, the motor should get 12
Volts from the motor controller.

a) This is a DC motor, so the
motor runs at
its highest speed at its highest
rated voltage.
The motor that is going to be
used for this
project is rated at 12 V. [4]
b) A voltage probe can be used
to check that the voltage to the
motor is 12 V when water
reaches the top of the bucket.

Partially Complete: ~10.4 Volts
instead of our target of 12 Volts
but correct 100% duty cycle.
Again, having the max motor
voltage be 10.4 Volts instead of
12 Volts did not stop the system
from completing its high level
goals.

5. Conclusion

5.1 Accomplishments

We were able to successfully create a water pump which varied the speed it pumped water at based on the
water level inside the pump. So, overall, our project was a success. Unfortunately, we learned that due to
our the parts that were chosen for the pump, no energy was being saved. The reason for this was that the
speed at which the pump took in water and the friction and pressure it would have to overcome, cancelled
out any potential power savings we could have realized by running the motor at a different speed. We also
learned a lot along the way. We learned about microcontrollers, motor-controllers, brushless DC motors,
PCB design, manufacturing, and assembly, and water pumps.

5.2 Uncertainties

One of the major issues that we ran into was the uncertainty involved in measuring the water level. The
problem was that water would stick to the sensors. This would happen when the sensors would first be
submerged, then if the water level drops, sometimes some water droplets would stay behind on the sensor,
causing it to mistakenly send the signal corresponding to a higher water level than the actual water level
was.

20

5.3 Future Work / Alternatives

In the future, we would use a different sensor to measure the water level. There is a capacitive water level
sensor created by Texas Instruments [4] that uses the same technology as our sensors but seems to report
a more accurate measurement. The way in which it avoids the setbacks our sensor had is that it never
actually comes in contact with water. The way it works is that it is mounted on the outside of the
container whose water level we are measuring. The only caveat is that the sides of the container cannot be
too thick, otherwise it will interfere with the magnetic field’s ability to pick up differences in the
dielectric ratio of the sensor to that of when it is fully submerged and that of when it is not near water at
all.

We would also use a more powerful motor that spins faster with a bigger water intake system for the
impeller so that the water flows instead of stuttering and can save energy.

5.4 Ethical Considerations

As far as our project is concerned, since it closely resembles the sump pumps currently in use around the
world, it has essentially the same ethical and safety issues as current sump pumps. Sump pumps are a
critical defense for homeowners in protecting their property from water damage. Flooding costs the
United States 3 billions dollars a year. [5] Therefore it is critical that the variable speed sump pump is
reliable as failure in the pump could costs thousands or hundreds of thousands in dollars to homeowners.
Unreliable pumps or incorrectly installed pumps could cause millions in litigation. [6]

In line 1 of the IEEE Code of Ethics, we are to “to hold paramount the safety, health, and welfare of the
public, to strive to comply with ethical design and sustainable development practices, and to disclose
promptly factors that might endanger the public or the environment”. The way this applies to us is to
properly control the safety of the moving parts and to manipulate the water in a safe way. Some safety
precautions include things like never allowing children to use it or get too close without adult supervision.
Our sump is equally safe as any high-performance home device with a moving part of high rpm (rotations
per minute). Caution should be used to ensure that whenever moving parts (impeller, axis, and motor) are
exposed or interacted with, particularly for maintenance or replacement, the entire device must be fully
powered off and you must wait until all parts stop moving before interacting with it.

21

References

[1] “Appliance Energy Costs Operating Costs for Major Household Appliances.” Madison

Gas and Electric Company, 2015,

www.mge.com/images/PDF/Brochures/residential/ApplianceEnergyCosts.pdf.

[2] Hall, Nancy. “Mass Flow Rate.” NASA, NASA, 2015

[3] ece.illinois.edu, “Salary Averages,” Salary Averages :: ECE ILLINOIS. [Online].

Available: https://ece.illinois.edu/admissions/why-ece/salary-averages.asp. [Accessed:

21-Feb-2019].

[4] “United States Flood Loss Report – Water Year 2014.” National Weather Service,

www.nws.noaa.gov/om/water/Flood%20Loss%20Reports/WY14%20Flood%20Loss%

20Summary.pdf.

[5] ASHLEY NERBOVIG. “Jury Awards Woman $1.75 Million in Lawsuit against Home

Builder, Plumbing Company.” The Billings Gazette, Billings Gazette, 21 Aug. 2015,

billingsgazette.com/news/state-and-regional/crime-and-courts/jury-awards-woman-mill

ion-in-lawsuit-against-home-builder-plumbing/article_9e947ab0-e917-5b11-8006-2c00

543515ad.html.

[6] “Capacitive-Based Liquid Level Sensing Sensor Reference Design.” Texas Instruments,

Mar. 2015, www.ti.com/lit/ug/tidu736a/tidu736a.pdf.

Appendix A Microcontroller Source Code

Main_By_Level.ino:

/*

 ||

 ||

22

 || MAIN

 ||

 ||

*/

unsigned long prevTime = 1;
volatile unsigned long curTime = 2;

int ledPin = 9;
//int encoderInputPin = A5;

const int sensorArrN = 3;
int sensorArr[] = {0, 0, 0};
int oldSensorArr[] = {0, 0, 0};
float waterLevelRateChange[] = {0.0, 0.0, 0.0};

char buffer[1023];

int motorSpeedN = 10; //MUST BE (sensorArrN*boundsN)+1
//int motorSpeed[] = {0, 120, 144, 165, 180, 210, 230/*, 255*/};

int motorSpeed[] = {
 0,
 120,
 135,
 150,
 165,
 180,
 195,
 210,
 225,
 240
 };

int boundsN = 3;
int bounds[] = {35, 142, 250};//180, 160,

void setup() {
 Serial.begin(9600);
}

void loop() {

23

 // unsigned long timeHigh = pulseIn(encoderInputPin, HIGH);
 // unsigned long timeLow = pulseIn(encoderInputPin, LOW);
 // unsigned long encoderFreq = timeHigh + timeLow;
 // // float dutyCycle = (float)timeHigh / float(encoderFreq);

 int bufN = 0;
 if (curTime > prevTime) {
 prevTime = curTime;

 // Serial.println("prevTime");
 // Serial.println(prevTime);
 // Serial.println("HIT");
 }

 // prevTime = curTime;
 curTime = millis();

 oldSensorArr[0] = sensorArr[0];
 oldSensorArr[1] = sensorArr[1];
 oldSensorArr[2] = sensorArr[2];
 sensorArr[0] = analogRead(A0);
 sensorArr[1] = analogRead(A1);
 sensorArr[2] = analogRead(A2);
 int emergencySensor = analogRead(A3);

 waterLevelRateChange[0] = (float)((float)((float)sensorArr[0]) -
((float)oldSensorArr[0])) / ((float)((float)curTime) - ((float)prevTime));
 waterLevelRateChange[1] = (float)((float)((float)sensorArr[1]) -
((float)oldSensorArr[1])) / ((float)((float)curTime) - ((float)prevTime));
 waterLevelRateChange[2] = (float)((float)((float)sensorArr[2]) -
((float)oldSensorArr[2])) / ((float)((float)curTime) - ((float)prevTime));

 int motorLevel = 0; //0 to motorSpeedN-1

 if (emergencySensor < 100) {
 for (int i = 0; i < sensorArrN; i++) {
 for (int j = 0; j < boundsN; j++) {
 if (sensorArr[i] > bounds[j]) motorLevel++;
 }

 }

 analogWrite(ledPin, motorSpeed[motorLevel]);

 bufN = sprintf(buffer, "sensorArr[0] %d\tsensorArr[1] %d\tsensorArr[2]

24

%d\temergencySensor %d\tmotor %d\t", sensorArr[0], sensorArr[1],
sensorArr[2], emergencySensor, motorSpeed[motorLevel]);
 Serial.print(buffer);

 // bufN = sprintf(buffer, "sensorArr[0] %d\toldSensorArr[0]
%d\tcurTime %d\tprevTime %d\twaterLevelRateChange[0] %f\tmotor %d",

sensorArr[0], oldSensorArr[0], curTime, prevTime, waterLevelRateChange[0],

motorSpeed[motorLevel]);

 //// Serial.println(buffer);

 } else {
 analogWrite(ledPin, 255);
 bufN = sprintf(buffer, "sensorArr[0] %d\tsensorArr[1] %d\tsensorArr[2]
%d\temergencySensor %d\tmotor %d\t"/*\tencoderFreq %d"*/, sensorArr[0],
sensorArr[1], sensorArr[2], emergencySensor, 255/*, encoderFreq*/);
 Serial.print(buffer);

 }

 Serial.print("waterLevelRateChange[0] ");
 Serial.print(waterLevelRateChange[0]);
 Serial.print("\t");
 Serial.print("waterLevelRateChange[1] ");
 Serial.print(waterLevelRateChange[1]);
 Serial.print("\t");
 Serial.print("waterLevelRateChange[2] ");
 Serial.print(waterLevelRateChange[2]);
 Serial.print("\t");

 Serial.println();

 delay(1);
}

/*

 <200, 200-250, >250,

 <200, <200, <200, 200-250, >250

 0 120 165 210 255

25

*/

