

Hands Free Drinks Mixer

By

Dawith Ha

Eric Mysliwiec

Matthew Gross

Final Report for ECE 445, Senior Design, Spring 2019

TA: Channing Philbrick

01 May 2019

Project No. 40

ii

Abstract

The purpose of this project is to design, build and test an automatic drink maker. A user interface was

utilized to allow the user to select a drink. Once selected, a NodeMCU microcontroller will rotate a cup

and place it under the appropriate nozzle. The microcontroller will then trigger the corresponding pump

allowing liquid to flow. Aside from the microcontroller, pumps and stepper motor, everything was

designed by the team and put on either custom printed circuit boards or perfboards. In the final product

implementation everything worked as planned apart from the custom stepper motor driver. It was

replaced with a prebuilt chip due to the unreliability of the custom design.

iii

Table of Contents

1. Introduction .. 1

1.1 Purpose ... 1

1.2 Functionality ... 1

1.3 Subsystem Overview ... 1

2 Design ... 3

2.1 Physical Design .. 3

2.2 Power Circuitry .. 3

2.2.1 120V AC to 24V DC Transformer .. 3

2.2.2 24V DC to 12V DC Converter .. 4

2.2.3 24V DC to 5V DC Converter .. 4

2.3 Motors ... 4

2.3.1 Pumps... 4

2.3.2 Disk Stepper Motor .. 4

2.4 Sensors .. 4

2.4.1 Flow Meters ... 4

2.4.2 Photocell and Laser .. 5

2.4.3 Weight Sensors .. 5

2.5.1 ESP8266 Microcontroller ... 5

2.5.2 Motor Drivers ... 6

2.5.3 Refill Indication Control ... 6

2.6 User Interface ... 6

2.6.1 RFID .. 6

2.6.2 Push Buttons .. 6

2.6.3 LCD ... 6

2.7 Server .. 6

2.8 Supporting Tables and Figures .. 7

3 Cost and Schedule .. 9

3.1 Cost Analysis ... 9

3.2 Schedule .. 10

iv

4.1 Power Circuitry .. 11

4.1.1 120 V AC to 24 V DC Transformer .. 11

4.1.2 DC to DC Converters .. 11

4.2 Motors ... 12

4.2.1 Pumps... 12

4.2.2 Disk Stepper Motor .. 12

4.3 Sensors .. 12

4.3.1 Flow Meters ... 12

4.3.2 Photocell and Laser .. 12

4.3.3 Weight Sensors .. 13

4.4.1 ESP8266 Microcontroller ... 13

4.4.2 Motor Drivers ... 13

4.4.3 Refill Indication Control ... 13

4.5 Supporting Tables and Figures .. 14

5.1 Accomplishments .. 18

5.2 Uncertainties ... 18

5.3 Ethical considerations ... 18

5.4 Future work ... 19

Appendix A Requirement and Verification Table ... 20

Appendix B System Code .. 24

Appendic C Schematics & Designs ... 38

References .. 41

1

1. Introduction

1.1 Purpose
Waiting in lines is something that most people cannot avoid on a day to day basis. In fact, people wait in

lines so often that Richard Larson, an MIT professor, estimates “some people spend a year or two of

their lives waiting in line.” [1] A great way to minimize this waste of time is to decrease the wait time to

get a drink at the bar. For bartenders, trying to serve every customer and finding the right tab behind

the bars can be challenging. Adding more staff to speed up the process is neither space nor cost

effective, especially since bars have limited space behind the counter. Smaller lines and faster

processing at bars is necessary to increase their productivity, as well as reduce the amount of stress for

both the bartenders and the customers.

Building an automated drink mixer will ensure that there are fewer tasks for bartenders, so the waiting

time could be cut significantly. This machine will assist bartenders by serving customers who want

preselected drink specials for the day. Having this system in place will cause a significant increase in the

amount of drinks served in a given amount of time by reducing the workload for bartenders. In the

upcoming chapters, the physical components of the system, as well as its design process and decisions

will be discussed to see how it came to fruition.

1.2 Functionality
The proposed solution differs from systems used in bars commercially in that it is smaller in size and is

personalized, whilst having the ability to transmit sales data via Wi-Fi. This will assist bartenders when

lines get long by functioning as a self-serve device. The increased rate in drinks being made will keep

customers happy and streamline sales during more extreme times such as rush hours. The core of the

functionality is the automated drink making process, in which the system accepts user input from a

simple user interface consisting of an LCD and four buttons. The user will be able to choose which drink

to make and place the cup on a disk. The disk will rotate, and the pumps above the disk will dispense

liquid as required by the recipe of the chosen drink. Then, the drink will be served by moving the cup to

the user.

Additionally, through having an RFID scanner for cards, the system will remove the need for the

bartenders to look for the right tab among many cards. Places such as Pour Bros have incorporated RFID

cards to track customers’ drinks and allowing the customers to pour their drinks themselves. [2] This

project is more advanced in that it combines Wi-Fi transmission with RFID drink tracking. To make the

drinks, all that the bartender would need to do is scoop some ice into the cup and put it in the machine.

All that the customer needs to do is to place their RFID tag on the scanner and select their drink.

1.3 Subsystem Overview
The project consists of various subsystems to make it work smoothly. The block diagram in Figure 1

contains five main modules: the power circuitry module, motors module, sensors module, logic module

and user interface module. The power circuitry ensures that the standard 120 Volt AC wall outlet gets

2

properly converted to usable voltages – 5V DC for the microcontroller and sensors, 12V DC for the

weight sensors and the stepper driver, and 24V DC for the pump drivers. The motors module controls

the core of the system. This includes rotating the disk with the stepper motor and pumping/dispensing

the liquids. The sensors module is used for the fine tuning of the system. The tasks of measuring the

flow of liquids, calibrating the position of the cup, and warning operators of when an ingredient is low

are all done with the sensors module. The logic module is the brains of the system, this module uses

data in two different ways. Firstly, the microcontroller reads various inputs and displays the menu on

the LCD for proper drink selection. Secondly, the refill indication control uses input logic from the weight

sensors beneath each liquid tank to identify empty bottles. Finally, the user interface module allows the

user to interact with the system. Any request for a drink or information being delivered to the user is

done here. Independent from the system, a server or a network-connected computer is necessary to

receive the tab log file from the machine in real-time as each drink is made.

Figure 1. Block Diagram

3

2 Design
It is important to understand how and why this project works before going into the specifics of each

component. The main objective is to use a microcontroller to get fluid from their respective bottles into

a cup to serve. Pumps are utilized to accomplish this task by pulling fluid out of a bottle and into tubing

when triggered by the controller. However, this is useless unless a cup can be positioned under the

pump that is currently active. This is done by using a stepper motor to rotate a disk with an attached cup

under the appropriate pump. While a stepper motor allows for accurate movement of the disk to

different positions, it does not provide the starting position of the disk. A laser and photocell calibration

technique is used to provide this information. A laser is placed under the rotating disk and a photocell is

placed directly above the laser. The bottom disk will obstruct the line of sight from the laser to the

photocell until a small hole in the disk passes this line of sight. The laser will then shine through the hole

and hit the photocell alerting the controller the exact orientation of the disk. From this the stepper

motor can place the cup within .9 degrees of any given nozzle. Now that the project can pump fluid and

place a cup in the proper position there are still user interface problems to overcome. The first is

allowing a user to navigate a menu and select a drink they would like to be made. This is done by placing

an LCD screen and four push buttons in a location that is easy to access. Next, it needs to be able to both

track users’ drinks and verify that the user can get a drink. An RFID reader is employed to require a

registered RFID card to be scanned before the project can function. As and added feature, this project

also contains an indication LED to alert when a supply is getting low. The specific implementation and

design details of each component, including supplying power, are described in the following sections.

2.1 Physical Design

The implementation of our physical design changed slightly from our original design to the design shown

in Figure 2. The main frame was built from aluminum railings and attached to a wooden base. The disks

were cut from thin aluminum sheets using a CNC router. This allowed for precise cuts required by our

sensors and nozzle placement. The bottom disk is attached to the stepper motor and contains a hole for

the cup and laser calibration. The top disk contains holes for each nozzle and photocell placement. By

using a wooden base we were able to add a section for the containers to rest on top of our weight

sensors.

2.2 Power Circuitry
Distributing power to components is essential to the success of this project. Undervoltage will cause the

components to stop running, while overvoltage or overcurrent could destroy components or potentially

the entire system. This subsystem will also be responsible for successfully isolating noise from travelling

between different subsystems through the power lines.

2.2.1 120V AC to 24V DC Transformer
This project will take power in from a standard 120V AC wall outlet. Most components in the project will

not be able to handle nor use the 120V supplied by the wall outlet. This transformer will lower the

voltage to a usable 24V. Originally a 120V AC to 12V DC transformer was used, however, this was

changed to 24V to increase the voltage to the pumps to obtain a higher flow rate.

4

2.2.2 24V DC to 12V DC Converter
The stepper motor as well as the weight sensor circuitry is built to run off a 12V power supply to provide

the necessary potential gradient for precise motor control and weight sensing respectively. A switching

voltage regulator is used to step down the voltage instead of a linear regulator to avoid needing a

heatsink and fan. [3]

2.2.3 24V DC to 5V DC Converter
Like the 24V DC to 12V DC converter, the project will also require a step down to 5V DC. Many

components in this project can only withstand 5V, and most logic circuitry will begin failing outside of

the 4.5 to 6.5 Volt range. A switching voltage regulator is used as above to step down the voltage

instead of a linear regulator to avoid needing a heatsink and fan. [3]

2.3 Motors
The motors carry out the mechanical tasks of the machine such as moving liquid from the tanks to the

cup. Furthermore, it moves the cup such that it accurately rests below dispensers for the duration of the

dispensing process for each ingredient.

2.3.1 Pumps
The pumps will require high flow rates for every type of liquid being dispensed to be able to keep up

with demand and improve upon the efficiency of a human bartender. Fluids containing alcohol will be

less dense than water and thus for testing purposes water will be considered enough for testing speed

of the pumps. Peristaltic pumps are used due to their accurate method of pumping fluid. This allows for

precise estimations of how much liquid is dispensed.

2.3.2 Disk Stepper Motor
The stepper motor will allow us to position the cup under whatever nozzle is about to be dispensing. It

will have a one way control loop communicating with the microcontroller and can be re-centered when

necessary. [5] The stepper motor will give 28 N of force at 20 mm from the center of the axle which

translates to 5.6 N of force at the center of the cup when placed 100 mm out. [6] Putting the stepper

motor in the half step mode will be used to allow for consistent and accurate positioning of the cup as

opposed to full, quarter, and eighth steps.

2.4 Sensors
This project’s sensors will be purposed to re-calibrate the position of the cup, measure the amount of

fluid dispensed, and detect when the weight of an ingredient is below an arbitrary threshold.

2.4.1 Flow Meters
The flow meters will increase accuracy in dispensing of the liquids. Attached to the tubing, it will collect

the flow data in real-time and send it to the microcontroller to calculate how much fluid is being

dispensed. The standard liquid volume of a full red solo cup is 12 fl.oz (355 mL) [7] so the dispensed

volume must be accurate for all volumes less than 355 mL. This component will not be used due to the

inconsistencies in readings, discussed in more detail in Chapter 4. Using time instead of the flow meters

is much more accurate.

5

2.4.2 Photocell and Laser
The photocell and laser will allow us to calibrate the stepper motor positioning of the cup using the

microcontroller. This is necessary to do at startup as well as during use to avoid error in the stepper

motor positioning stemming from inevitable drift. It was proposed that a hall effect sensor would

provide a better calibration. However, this will not be used because the laser system has been tested

and verified to be extremely accurate and provides the project with a more appealing look.

2.4.3 Weight Sensors
The weight sensors will be used to detect when an ingredient is getting low. It will then notify the user

by lighting up an LED. To know the proper weight at which the system notifies the user, custom bottles

of uniform weight made from empty 2L bottles will be used, which weigh 45 g empty and 2042 g full. [8]

[9] We alternatively could have used load cells which are essentially the same thing but instead of

directly measuring the weight, they measure the strain on a metal bar. The weight of an item placed on

the bar correlates directly with the strain on the bar, and it is ultimately more accurate for measuring

items of different weight. For this specific project however we only needed to know if we are above or

below one specific weight, so the load cell was unnecessary.

2.5 Logic
The logic unit serves as a central processing unit for all the data collected through the sensor, giving

orders to specific modules or devices as needed. It will get the RFID input and store it in a log of tabs, as

well as sending the data to the server or an email inbox. It will control the selection of drinks through

push buttons, as well as displaying different drinks to the LCD. Furthermore, it will make sure that the

cups rotate the right amount of steps to correctly position beneath the required nozzle for the drink

recipe.

2.5.1 ESP8266 Microcontroller
The microcontroller, powered by 5V DC, will run the written program to interface all data and make

decisions accordingly. ESP8266 NodeMCU microcontroller fits the needs for this project, since it includes

WiFi capabilities along with data serialization, along with a few GPIOS for sending signals at a low cost.

The ESP8266 NodeMCU contains flash memory to store and run programs. For this project, the program

can be divided into seven parts below, as seen in Figure 3:

1. Establish connections with all sensors and modules, and initialize all signals and data structures.

2. Wait for customer interaction through an RFID sensor, and show selection menu on the LCD

screen upon successfully scanning a user’s RFID tag.

3. Interact with user choices through button signals: navigating through the menu, and selecting or

cancelling order.

4. Updating the data structure with proper key-pair value of user ID and number of drinks bought.

5. Sending rotation signals to the step motor, and liquid dispensing signal to the peristaltic pump

to make the mix according to the recipe stored in the program.

6

6. Reset and align the disk to its zero position, indicating that the drink is done. Return to step 2.

7. Upon holding the cancel button for 3 seconds, initiate the shutdown sequence; send the log file

to an email or server, and power off the motor. Indicate on LCD that the machine is ready to be

unplugged.

2.5.2 Motor Drivers
To prevent damaging the microcontroller, a separate system of transistors is needed to control the

pumps and stepper motors due to their large power consumption. The microcontroller will send a 3.3 V

signal to the driver to turn on a Bipolar Junction Transistor. The BJT will then allow the 24V DC from the

power supply to drive the motors. The motor circuitry will also be protected using diodes to handle any

sudden spikes in voltage occurring throughout the motor operation cycle.

2.5.3 Refill Indication Control
This is a custom built PCB utilizing a voltage divider and the large gain of an N-channel MOSFET. This

drives an LED when the weight drops to near 10% of the maximum weight of fluid in a tank. [7][11][9]

2.6 User Interface
The user interface provides a means for the user to interact with the system. Through the RFID sensor,

the user can let the system know who is buying the drink, and append the relevant information on their

tab. Through the buttons, the user can select drinks, and cancel the order during the selection stage.

The LCD will display relevant information as the user progresses through the order placement process.

Furthermore, the refill LED will light up when a liquid tank runs low.

The design includes four buttons and an LCD screen, to minimize the logic.

2.6.1 RFID
The RFID sensor correctly reads the unique value stored in an RFID tag. Furthermore, it communicates

with the ESP8266 microcontroller and sends the data over to be processed, through SPI connection.

2.6.2 Push Buttons
Push buttons, powered by the 5V DC converter, correctly send the push signals to the ESP8266

microcontroller upon being pressed and released. There are four buttons: left, right, select and

exit/shutdown. Left and right buttons help the user select, and select and back button enables selection

and cancellation of drink making.

2.6.3 LCD
The LCD, powered by 3.3 VDC from the voltage regulator on the microcontroller, display the value

formed by the Logic module through getting the input from the microcontroller. The LCD displays drink

names during selection, and the ID upon scanning the RFID.

2.7 Server
The server receives the log of bar tabs upon the shutdown sequence from the microcontroller. Through

the Wi-Fi module, the microcontroller successfully sends a text file of entries, which consist of key-value

pair from user ID to number of drinks purchased. Since having a server is outside the scope of this class

and project, data has been simply received through email transmission using SMTP.

7

2.8 Supporting Tables and Figures

Figure 2. Realized Physical Design

8

Figure 3. Software Diagram

9

3 Cost and Schedule

3.1 Cost Analysis
The overall cost of development includes both the time each project member put into working on the

prototype as well as the price of all the parts used for the prototype. To calculate the labor cost, it is

assumed that each of the three members is making around 40 dollars an hour, working 10 hours a week

and will do this for 16 weeks. The total labor cost is calculated as shown in Equation 1.

𝑻𝒐𝒕𝒂𝒍 𝑳𝒂𝒃𝒐𝒓 𝑪𝒐𝒔𝒕 = 𝟑 (𝒎𝒆𝒎𝒃𝒆𝒓𝒔) ∗
$𝟒𝟎

𝒉𝒓
∗

𝟏𝟎 𝒉𝒓

𝒘𝒌
∗ 𝟏𝟔 (𝒘𝒆𝒆𝒌𝒔) ∗ 𝟐. 𝟓 = $𝟒𝟖, 𝟎𝟎𝟎 (1)

With a labor cost of $48,000 and a prototype cost as shown in Table 1 of $270.17, the total cost of the

project will be about $48,270.

Part Cost (prototype) Cost (bulk ~100)

RFID reader (Amazon) $6.99 $5.59

Push Button x4 (DigiKey) $.96 $0.80

Mini LCD (DigiKey) $10.25 $8.10

LED x5 $0.75 $0.60

DC to DC Converter(Amazon) x2 $6.99 $6.99

AC to DC Transformer(Amazon) $11.99 $11.99

High Flow Rate pumps x5 (Amazon) $129.00 $60.75

Stepper motor (Amazon) $13.99 $11.19

NodeMCU (Amazon) $8.39 $2.00

MCP23017 Expander chip (DigiKey) $1.24 $0.94

Shields (PCBWay) $8.00 $0.60

Refill Control Circuit (PCBWay) $4.00 $0.10

Photocell (DigiKey) $0.95 $0.90

Weight sensor x5 (DigiKey) $60.72 $36.70

Laser diode (DigiKey) $5.95 $4.76

Total $270.17 $151.94

Table 1. Cost Analysis Table

https://www.amazon.com/IZOKEE-RFID-RC522-13-56MHz-Arduino-Raspberry/dp/B076HTH56Q/ref=asc_df_B076HTH56Q/?tag=hyprod-20&linkCode=df0&hvadid=309750549985&hvpos=1o1&hvnetw=g&hvrand=5312541650850672802&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9022196&hvtargid=pla-564122493348&psc=1
https://www.digikey.com/product-detail/en/schurter-inc/1301.9314/486-3465-ND/2643951&?gclid=CjwKCAiAqaTjBRAdEiwAOdx9xj1JjFzph9CCSeYH0XzIpsnXhVDoJGoiyoWBiR0uqyw6xaZadm06qBoCSwAQAvD_BwE
https://www.digikey.com/product-detail/en/newhaven-display-intl/NHD-C0216CIZ-FSW-FBW-3V3/NHD-C0216CIZ-FSW-FBW-3V3-ND/2165872
https://www.amazon.com/gp/product/B06XRN7NFQ/ref=ppx_yo_dt_b_asin_title_o05_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B00VE6OJM4/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/dp/B07MTBV5RR/ref=sspa_dk_detail_2?th=1
https://www.amazon.com/Stepper-Bipolar-Connector-compatible-Printer/dp/B00PNEQKC0/ref=pd_day0_hl_328_1/140-8126469-6885438?_encoding=UTF8&pd_rd_i=B00PNEQKC0&pd_rd_r=4919582a-32f3-11e9-8982-5df37f3e6971&pd_rd_w=gKc7a&pd_rd_wg=tXF7e&pf_rd_p=ad07871c-e646-4161-82c7-5ed0d4c85b07&pf_rd_r=23QJA9M27G8BAXAQGQHY&psc=1&refRID=23QJA9M27G8BAXAQGQHY
https://www.amazon.com/HiLetgo-Internet-Development-Wireless-Micropython/dp/B010O1G1ES/ref=sr_1_3?crid=2XG8C71SD2M4M&keywords=nodemcu%2Besp8266&qid=1550445355&s=pc&sprefix=nodemcu%2Besp%2Ccomputers%2C134&sr=1-3&th=1
https://www.digikey.com/product-detail/en/microchip-technology/MCP23017-E-SP/MCP23017-E-SP-ND/894272
https://www.digikey.com/product-detail/en/adafruit-industries-llc/161/1528-2141-ND/7244927&?gclid=EAIaIQobChMInO-o7vTD4AIVFJ7ACh15KgAAEAYYAiABEgJSW_D_BwE
https://www.digikey.com/product-detail/en/interlink-electronics/30-73258/1027-1002-ND/2476470
https://www.digikey.com/product-detail/en/adafruit-industries-llc/1054/1528-1391-ND/5629439

10

3.2 Schedule

Week Eric:
Flow Meters, Photocell/
Laser Sensor, & Refill
Indication System

Matthew
Motor Driver & Motors, Power
Circuit, Breakout Logic

Dave
ESP, LCD, RFID, pushbuttons

2/25 1. Schematic
2. Simulations
3. Datasheets
4. Order Parts
5. Build Prototypes of
Breakout Logic, Power
Circuit

1. Schematics
2. Simulations
3. Datasheets
4. Order Parts
5. Build Prototypes of Breakout
Logic, Power Circuit

1. Plan out entire overview of
system logic, including pin
assignments
2. Plan out recipes and
positions of ingredients,
create data structures
3. Find libraries and tutorials
for all sensors and devices
4. Order Parts

3/4 1. Finalize physical design
with Machine Shop
2. Build Prototypes
3. Design, get approved
and order PCBs

1. Test Prototype Circuits
2. Adjust schematics as
necessary

1. Prototype all logic on the
microcontroller:

a. connect to Wi-Fi
network with proper
credentials

b. connect MCP23107
expansion chip

c. connect and verify
RFID, LCD, Buttons

d. verify signals sent to
stepper motor,
flowmeters, peristaltic
pumps, pinhole laser
and Wi-Fi indicator
LED

e. connect and set
thresholds for pinhole
photocell reading

3/11 1. Test and prototype all
circuits

1. Test Motor Driver
2. Test Power Circuit

1. Test Wi-Fi file transmission
through email

3/18 SPRING BREAK SPRING BREAK SPRING BREAK

3/25 1. Integrate Sensors with
breakout logic

1. Integrate Power Circuit with
motor driver, breakout logic

1. Integrate physical container
and disc system with
microcontroller
2. Integrate the PCB together
with all the parts
3. Test make a drink

11

4/1 Debug and Pray Debug and Pray Debug and Pray

4/8 Debug and Pray Debug and Pray Debug and Pray

4/15 Mock Demo Mock Demo Mock Demo

4/22 Real Demo and Mock
Presentation
Prepare Final Report

Real Demo and Mock
Presentation
Prepare Final Report

Real Demo and Mock
Presentation
Prepare Final Report

Table 2. Proposed Schedule

4. Requirements & Verification

4.1 Power Circuitry

4.1.1 120 V AC to 24 V DC Transformer
It was decided that a voltage tolerance of 20% is tolerable because the DC to DC converters are variable

and thus can be powered by anything over their highest voltage necessary, which for this project is 12V

DC. The only other system relying upon our 24V DC supply directly is the pump motors. These motors

originally would operate at 12V DC but were running too slow to meet the two minute time frame for

making a full mixed drink. Now these motors can be driven with around 19V which translates to just

over 20% tolerance. The transformer was tested by plugging the unit into a standard US wall outlet and

using an oscilloscope to measure the voltage output. This method also provided a way to visually

determine the voltage ripples as the power supply rectified the sine wave into a DC signal. The results of

these tests provided a maximum voltage ripple of 0.3 Volts which can be seen in Figure 4. The voltage

across the terminals of our power source was 24.3V DC which was measured with a Digital Multimeter.

4.1.2 DC to DC Converters
The DC to DC converters were given a strict and a relaxed tolerance respectively. The 5V DC source

powers sensitive logic circuitry. The logic circuitry would only operate if consistently fed between 4.5

and 6.5V so from a high level point of view, the requirements for this source are that the average

voltage output give or take the voltage ripple must always be between 4.5 and 6.5 V. This was tested

using a Digital Multimeter capable of taking samples over time as well as functions to average the values

while also give the maximum and minimum deviation for the duration of the test. The converters were

connected to the circuitry in their final PCB and measured with the DMM to give the measurements

recorded. The results of these tests were that the 5V DC converter gave 5.023 with less than one

millivolt of deviation which met the requirements and can be seen in Figure 5. The 12V DC converter

had significantly greater allowed tolerance because the stepper motor could be driven on a wide range

of voltages. The voltage was measured to be 12.03V DC with a basic DMM and no visible change in

voltage was measured over the range of a 30 second test. Given this information, the ripple voltage for

the 12V DC source must logically be less than 10 mV which meets the requirements laid out.

12

4.2 Motors

4.2.1 Pumps
The rate at which the pumps should flow was determined by setting a goal for how long a customer

should wait for their drink and dividing the total volume that would have to be filled in order for an

order to be completed to find the rate in milliliters per minute as in Equation 2. The pumps would thus

need to be able to flow at any rate greater than the calculated rate.

(𝑉𝑜𝑙𝑢𝑚𝑒 / 𝑇𝑖𝑚𝑒) = 375 𝑚𝐿 / 1.5 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 = 250 𝑚𝐿 𝑝𝑒𝑟 𝑚𝑖𝑛 (2)

The pumps were tested by first filling the pump and all connected tubing with water. Then the pump

was supplied with 24V DC for 30 seconds and the tubing was aimed into an empty measuring cup so as

to measure the fluid that was output. Multiplying this value by 2 would give the correct rate of flow per

minute. The results of this test are pictured in Figure 6 that at 24V DC our pumps would output 780 mL

of fluid in one minute, which met our design specifications.

4.2.2 Disk Stepper Motor
It was determined that the rim of the cup must be .25 inches past the stream of liquid from the nozzle.

The top rim of the solo cup is four inches in diameter and the calibration allows for .5 inch of error in

each direction. This means, given a worse case scenario, the stepper must place the solo cup within 1

inch of the nozzle. Code was made to test this by first calibrating, then going to a given position. Every

time the stepper was finished there was an unmeasurable offset from the nozzle. This proved that not

only is the calibration more than enough but also the stepper motor would be able to consistently

position the cup in the exact position needed.

4.3 Sensors

4.3.1 Flow Meters
The flow meters were originally set to fill a solo cup filled with ice, which cut the estimated volume to fill

to complete an order at 178mL. This meant that the flowmeters would have to collectively measure

178mL, and using the arbitrary standard that % error should be around 5% then that gave the value of

10 mL either way for tolerance. This was tested by flowing water through our peristaltic pumps, through

the flowmeter, and then outputting the water into a measuring cup. The flowmeter gives a pulse train

output so the amount of pulses was counted with the microcontroller and compared against the

amount of fluid measure by the measuring cup. The results of this test are shown in Figure 7 and show

that the flowmeters begin with a relatively inconsistent measurement and then stabilizes around 200

mL. For this project design which is intended to dispense an accurate shot of 1.5 oz (44 mL) then this

was unacceptable. The measurement of time by the microcontroller was enough and more accurate

than using the flow meters due to the inherent consistent flow rate of the peristaltic pumps used in our

design.

4.3.2 Photocell and Laser
A simple Arduino program was written to print the data received at the analog to digital pin. A photocell

from the 3.3V power supply was connected to the analog-to-digital pin and a resistor was connected

from this pin to ground. Finally, a laser was shined onto the photocell, giving the output shown in Table

3. The zeros represent no laser and the 1023 represents the laser being shined. This test not only proved

13

this system would work but also showed that the system is not sensitive to nearby lighting and a pinhole

is not needed for the photocell. Each loop had a delay of a millisecond, which was precise enough for

our calibration system waves of 15 milliseconds to catch.

4.3.3 Weight Sensors
When a bottle is at about 9 oz it will need to be refilled to make another drink. 270 grams of water

equates to about 9 oz of water. Different amounts of water were put in a cup and placed on a weight

sensor. The resistance of the weight sensor was then measured. Figure 8 shown at the end of Chapter 4

shows the data collected during this test. It is obvious that 270 grams is distinguishable from 195 grams

and 345 grams.

4.4 Logic

4.4.1 ESP8266 Microcontroller
The microcontroller was able to communicate with each of its submodular devices. MFRC-522 RFID

sensor was able to read different unique RFID cards and their UID’s within 5ms time, as shown in Figure

9. The code can be referenced from Appendix B.

The stepper motor received pulses with width of 20ms as shown in Appendix B, being much more

precise and accurate than the required 50ms. Flowmeter signals were read through the GPIO’s as shown

in Table 4. Furthermore, the pumps operated with intended signals as shown in the code function

pump(). The laser values were read through GPIO’s as shown in Table 3. The code function calibrate()

shows how the laser was turned on and off. WiFi connection success was indicated through setting the

right GPIO values high and low, as indicated by wifiProcess(). Furthermore, drink order data was

transmitted over SMTP within 91ms, as indicated in sendEmail() function, with times shown in Table 5.

4.4.2 Motor Drivers
The motor drivers for both the pumps and the stepper motor were built and tested to be able to handle

0.8 Amperes of current flow at 12V. After testing the flow rate for the pumps and increasing the voltage

supplied to the pumps then it would follow that the pumps would be using more current, however when

tested the pumps only used as much current as was shown in Figure 10. The motor drivers were tested

by connecting the pump motor to a 24V DC source and placing the driver between the motor and the

negative terminal of the 24V DC source. The final part was to turn the driver on and measure the current

through the pump.

The result is that the designed motor drivers were more than enough to drive their respective loads.

This is due to the inherently massive amount of gain in the TIP100 transistors, totaling in at a gain of

2500 which will allow 2.5 Amperes through when supplied with 1 mA. Since the motors only used

around 350 mA then the pump drivers functioned flawlessly, and no additional heat dissipation

hardware was necessary for operation.

4.4.3 Refill Indication Control
The refill indication control requirement was determined by using the spec sheet of the used LED. It was

rated to operate in a comfortable range of 30mA to 70mA and only available voltage available was 12V.

This was tested by altering the weight on the weight sensor and determining the voltage drop across the

14

LED. The MOSFET required a voltage less than 2 to trigger the LED and the measured voltage drop across

the LED was 1.698V.

4.5 Supporting Tables and Figures

Figure 4. Power Supply Ripple Study

Figure 5. Recorded 5V DC converter DMM output

15

Figure 6. Pump output measurement

Figure 7. Flow Sensor

Loop # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Value 0 0 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 0 0 0

Table 3. Photocell/Laser System Output

16

Figure 8. Weight Sensor Characterization Graph

Time (s) Volume Dispensed (mL) Ticks Measured

5.00 90 2474

11.10 200 5014

16.66 300 7635

22.22 400 10140

27.77 500 12666

Table 4. Flowmeter Collected Data

17

Figure 9. RFID Reading Test

Figure 10. Motor Driver Current Test

18

Time Spent(ms) Order Data

2317 BB5B530D

2317 BB5B530D

Table 5. SMTP Data Transfer Time

5. Conclusion

5.1 Accomplishments
In the end the project was a great success with every subsystem working flawlessly. All modules were

able to communicate to the microcontroller and behave with proper signals, with each signal amplified

and cut to different voltage and amperage levels as intended within tolerance ranges. These values were

in accordance with the requirements set in the tables in Appendix A. The project also solved the original

problem, which was to produce a drink within a single process that streamline and minimize the effort

involved in making a drink. The test runs were able to produce a mixed drink with each user selection.

This project contained many difficult tasks to properly function. The hardest was getting the custom-

built stepper motor driver to work. After many burnt out components and altered designs, the custom-

built stepper motor was a success. Despite this success, it was opted to use a premade stepper drive

because of its increased accuracy and reliability.

5.2 Uncertainties
The project has several areas of uncertainty spanning from the seemingly random LCD changes to the

noisy stepper motor fluctuations. These can only be being caused by the noise from the pump motors

running because these unsatisfactory results only show up when the pumps are running. A possible

solution to this issue would be to further isolate the power systems by rectifying the power signals for

the pumps separately from the rest of the system. This would provide galvanic isolation which would in

theory eliminate the issue. The stepper motor fluctuation issue is currently patched by rewiring the

direction control to the enable pin, so the motor only moves one direction but turns off when the

pumps are in use.

5.3 Ethical considerations
There are two main issues that the project could potentially involve. The first is the potential to over-

serve customers by having an automated drink system put into place. This is a conflict with IEEE Code of

Ethics 7.8.1 which states that engineers must hold in high value the “health, and welfare of the public.”

[14] To solve this, a drink limiter logic will be implemented, where everyone’s account will hold the

number of drinks bought. After a predetermined limit is reached, the customer will need approval to

place his/her order. The second issue is the potential to serve customers who are underage. Allowing

19

this with the project, especially on a college campus, would be a clear conflict with the pledge to “to

strive to comply with ethical design” [14] In order to prevent this, bars would have a system to register

an RFID only to customers who provide proper identification. This project does not deal with batteries or

any other potential safety issues and uses no voltages above a normal household outlet. Given that the

outlet is following IEEE standards, it should have its own circuit protection. In addition to this, and to

protect the people and technology in use within and around this product, power source was chosen

carefully -- that contains short-circuit protection, over-voltage shutdown, and an internal fuse to ensure

the protection of the community’s health. Another possible safety issue is a faulty stepper motor. If by

some Act of God or through some mechanical problem the stepper motor malfunctioned, it could spin

out of control and send parts of this project and drinks flying. To solve this problem, an exit sequence is

implemented to manually force a shutdown on motors sub-system upon hitting exit button over 3

seconds in the main menu.

5.4 Future work
If this project were to continue there are many things that could be improved or added. The first is

making a product the looks nicer and has permanent wiring. Next, it could incorporate Alexa to be able

to make drinks based on mood, time of year, or even voice recognition. The final alteration that could be

made would be to allow users to custom make recipes via the user interface rather than reprogramming

the microcontroller.

20

Appendix A Requirement and Verification Table

Requirement Verification Verificatio
n status
(Y or N)

1. Power supply must supply 24VDC
+/- 20% and 2A +/- .25A from a
120V AC source.

1. To verify:
a. Use a multimeter to

measure the voltage
supplied by the converter.

b. Then use an oscilloscope to
verify stability.

Y

2. DC to DC converter must supply 5V
+/- 10% with at least 0.5
Amperes.[4]

2. To verify:
a. Use a multimeter to

measure voltage across
transformer

b. Use an oscilloscope to verify
stability.

c. Then use a 10 Ohm resistor
and multimeter to verify
amperage output.

Y

3. Pumps must provide at least 250
ml of fluid per minute.

3. To verify:
a. Turn on the pump until

water is being dispensed.
b. Then turn the pump off, wait

one minute and measure
how much fluid was
dispensed.

Y

4. Stepper motor must be able to
consistently align a given nozzle
within 1 inch from the center of
the solo cup. This translates to
being within around +/- 11.46
degrees of the target.

4. With the disk connected to the
stepper motor and the stepper
motor connected to a cutoff switch:

a. Engage cutoff switch.
b. Mark how far the disk

continues to rotate after
cutoff switch has been
pressed.

Y

5. Flow meters must be able to
calculate a total dispensed volume
of 178ml +/- 10 ml.

5. To verify complete the following 3
times:

a. Run a premeasured amount
of fluid through the meter.

b. Compare the the meter
value to the actual value.

Y

6. Photocell must be able to detect
the laser going through a 1/8”
radius hole upon light contact in
under a second to limit the disk

6. Write a simple program that does
the following:

a. Read the photocell data.
b. Print this data along with

time stamps.

Y

21

from rotating too far past the
calibration point.

c. Shine a laser at the
photocell and see how
quickly it detects this
change.

7. Weight Sensors must be able to
differentiate 270 g from 270 g + 75
g.

7. To verify:
a. Measure 270 g on a precise

scale and compare value to
the sensor’s value.

b. Then measure another 75 g
and add it to the sensor.

Y

8. Microcontroller must be able to
send and receive data to/from
RFID sensor through SPI
connection.

8. After initializing the RFID module,
read the value through
mfrc522.PICC_ReadCardSerial() and
print values inside
mfrc522.uid.uidByte buffer onto
terminal. Exact steps in section
2.7.1.

Y

9. Microcontroller must be able to
send pulses of 50 +- 5 ms(to
account for programming
constructs), of 3.3V onto the
stepper motor driver through
digital I/O pin.

9. Connect the motor driver circuit to
pin 3, and run the following sketch
code:

a. inside setup(), call
pinmode(3, OUTPUT);

b. inside loop(), call
digitalWrite(3,HIGH);

c. call digitalWrite(3,LOW);
d. delay(50); to let the motor

catch the pulse
e. visually confirm that motor

rotated half a step.

Y

10. Microcontroller must be able to
send 3.3V signal to any selected
flow meter & peristaltic pump
driver, and read the output pulse
from the flow meter through the
digital I/O pin.

10. Connect the flow meter driver input
to pin 3, flowmeter output to pin 2
to be read, and peristaltic pump
driver input to pin 4 of ESP8266.
Pump pipe must be fully immersed in
any liquid. Then run the following
sketch code:

a. inside setup(), call
pinmode(3, OUTPUT);

b. call pinmode(2, INPUT); to
control the flowmeter.

c. call pinmode(4, OUTPUT); to
control the pump.

d. inside loop(), call
digitalWrite(3,HIGH); and
digitalWrite(4,HIGH); to
power the pump and
flowmeter

Y

22

e. serial.print(digitalRead(2));
to see the flowmeter value.

f. visually confirm that motor,
and flowmeter are
operational.

11. Microcontroller must be able to set
the pinhole laser high through
digital I/O, thereby sending 3.3V,
and read the photocell value
between zero and non-zero values
between on/off

11. Connect the laser to pin 3 and
photocell to pin 4, and run the
following:

a. inside setup(), call
pinmode(3,OUTPUT);

b. pinmode(4,INPUT);
c. inside loop(), call

serial.print(digitalRead(4))
and verify the read value is
0.

d. call digitalWrite(3,High);
and verify the laser
shooting.

e. serial.print(digitalRead(4))
and verify that the read
value is non-zero.

f. call digitalWrite(3,Low);
g. visually confirm that the

laser turned off.

Y

12. Microcontroller must be able to set
the LED through digital I/O pin to
indicate successful WiFi
connection.

12. Connect LED to pin 3, and run the
following sketch:

a. #include “ESP8266WiFi.h”
and set const char* ssid and
const char * password to
right values

b. in setup(), call
Wifi.begin(ssid,password);
pinmode(3,OUTPUT);

c. ifi(WiFi.status() ==
WL_CONNECTED)
digitalWrite(3,High);

d. Visually verify that the LED
was lit.

Y

13. Microcontroller must be able to
send a file smaller than 1MB in size
in 91 ms, on a 802.11 a/b/g/n
network (802.11b network has
speeds up to 11 Mbps, whereas
others go up to 600 Mbps. Across
different networks of a/b/g/n, the
speed should average higher). Due
to speed of additional

13. Call the following sketch code:
a. get time before sending

email through time = millis()
b. Send email through

gsender->Send(to,
message);

c. get time afterwards, and
subtract time to see if it
meets requirements by

Y

23

programming constructs, the
upper bound for acceptable speed
will be 1s.

running Serial.print(millis() -
time). Thoroughly discussed
in section 2.8

14. Pump drivers must provide 12VDC
+/- 1V to all motors.

14. To verify:
a. Connect voltmeter in

parallel with motor to
measure the voltage across
it

b. Apply power to the 12V
supply for the motor driver

c. Apply a 3.3V Logic signal to
the input of the logical
control for the motor driver

d. Report the voltage from the
voltmeter

Y

15. Pump drivers must provide at least
0.8 +/- 0.05 A to drive the high
flow pump motors. [10]

15. To verify:
a. with motor to measure the

current through it
b. Apply power to the 12V

supply for the motor driver
c. Apply a 3.3V Logic signal to

the input of the logical
control for the motor driver

d. Report the current from the
ammeter

Y

16. Refill indication control must drive
an LED at 12V +/- 2V with 50 mA
+/- 20 mA.

16. To verify:
a. Place weight matching 10%

of the maximum weight of
the tank on a powered
weight sensor

b. Measure the resistance
across the weight sensor

c. Match the resistance of the
weight sensor with one
potentiometer in a voltage
divider made up of two
potentiometers

d. Adjust the other
potentiometer until 50mA is
found to be passing through
the LED

Y

17. RFID module must be able to read
at least 3 different RFID tags
through SPI, each within 0~3
seconds(clock speed on ESP8266 is
80 MHz, and on SPI, half. With
slowest rates of 8bit/writes, a 32-

17. Run the following:
a. time = millis()
b. read in the RFID card

through
mfrc522.PICC_ReadCardSeri
al()

Y

24

byte string should take 32 *
40MHz = 0.8ms. Adding time for
other programming constructs
such as loops, should be less than
1s)[12].

c. check time difference by
serial.print(millis() - time);

d. Do it three times for
different cards, and see if
the content in the buffer
differs. Repeat, and see if
the content matches that of
earlier iteration.

18. LCD module must display the value
set by the logic module(ESP8266)
through I2C; since 2 rows of 16
characters are transferred at most,
32 bytes of data are transferred;
these need to be transferred
within 50ms(since clock speed of
ESP8266 is 80MHz, and 32*80MHz
= 0.4ms, but accounting for other
programming constructs, upper
bounded to 50ms) .

18. run the following:
a. #include <LiquidCrystal.h>
b. set button constants for

different digital i/o inputs,
as following: RS=D2, EN=D3,
d4=D5, d5=D6, d6=D7,
d7=D8;

c. in setup(), set row, col by
lcd.begin(16,2)

d. time = millis();
e. print message by

lcd.print(time-millis());
f. visually confirm message on

lcd, and see time spent

Y

Appendix B System Code

/*

 Automated Drink Mixer

 Dave Ha, Eric Mysliwiec, Matt Gross

*/

/* MFRC522: RFID */

#include <SPI.h>

#include <MFRC522.h>

/* MCP23017: 2->16 Expansion Chipset */

#include <Wire.h>

#include "Adafruit_MCP23017.h"

/* WIFI Connection*/

#include <ESP8266WiFi.h>

#include "Gsender.h"

/* LCD */

25

#include <LiquidTWI2.h>

/******** Configurations and pin definitions **********/

// MFRC522 RFID

constexpr uint8_t RST_PIN = 3; // GPIO# 5->3; configurable

constexpr uint8_t SS_PIN = 2; // GPIO# 4->2; configurable

MFRC522 rfid(SS_PIN, RST_PIN); // Instance of the class

MFRC522::MIFARE_Key key;

// MCP23017 Expansion

Adafruit_MCP23017 mcp0;

Adafruit_MCP23017 mcp1;

// WiFi Config

const char* ssid = "--------"; // WIFI network name

const char* password = "---------"; // WIFI network password

uint8_t connection_state = 0; // Connected to WIFI or not

uint16_t reconnect_interval = 5000; // If not connected wait time

to try again

uint8_t WIFI_LED_PIN = 8; // Physical pin 1 on MCP1

// LCD Config

LiquidTWI2 lcd (0x20);

// Buttons Config (MCP0)

enum ButtonPress {

 LEFT,

 RIGHT,

 SELECT,

 BACK,

 UNDEFINED

};

uint8_t BUTTON_LEFT_PIN = 7;

uint8_t BUTTON_RIGHT_PIN = 6;

uint8_t BUTTON_BACK_PIN = 5;

uint8_t BUTTON_SELECT_PIN = 4;

// Inventory and Recipes

char * INVENTORY[] = {"Red", "Green", "Blue", "Yellow", "Water"}; // drink

ingredients/supplies

int POSITIONS[] = {0, 78, 158, 240, 318}; // each position is number of

clockwise ticks, each of 0.9 degrees

26

int NUM_RECIPES = 3;

int NUM_INGREDIENTS = 5;

char * RECIPE_NAME[] = {" Purple", " Green", " Water"}; // change

NUM_RECIPES if adding more

int RECIPE[3][5] = {

 {5000, 0, 5000, 0, 5000}, // Purple

 {0, 0, 5000, 5000, 5000}, // Green

 {0, 0, 0, 0, 10000} // Water

};

volatile int CURRENT_DRINK_IDX = 0;

// Stepmotor, cup positioning

volatile int CUP_POSITION = 0;

// MOTOR/FLOWMETER PINS

uint8_t STEPPER_SIGNAL_PIN = 9;

uint8_t STEPPER_DIRECTION_PIN = 10;

uint8_t FLOWMETER_5_PIN = 11;

uint8_t FLOWMETER_4_PIN = 12;

uint8_t FLOWMETER_3_PIN = 13;

uint8_t FLOWMETER_2_PIN = 14;

uint8_t FLOWMETER_1_PIN = 15;

uint8_t PUMP_1_SIGNAL_PIN = 0; // connected to PUMP_1_GND on PCB

uint8_t PUMP_2_SIGNAL_PIN = 1; // PUMP_2_GND

uint8_t PUMP_3_SIGNAL_PIN = 2; // PUMP_3_GND ...

uint8_t PUMP_4_SIGNAL_PIN = 3;

uint8_t PUMP_5_SIGNAL_PIN = 4;

uint8_t LASER_SIGNAL_PIN = 6;

uint8_t PHOTOCELL_PIN = 7;

void setup() {

 Serial.begin(115200);

 Serial.println(F("..System Booting........"));

 // RFID Module Initialization

 SPI.begin(); // Init SPI bus

 rfid.PCD_Init(); // Init MFRC522

 for (byte i = 0; i < 6; i++) {

 key.keyByte[i] = 0xFF;

 }

 Serial.println(F("...RFID Module Initialized."));

 Serial.print(F("Using the following key:"));

27

 printHex(key.keyByte, MFRC522::MF_KEY_SIZE);

 Serial.println();

 // MCP23017 Expansion Module Initialization

 mcp0.begin(0);

 mcp1.begin(1);

 mcp0.pinMode(BUTTON_LEFT_PIN, INPUT);

 mcp0.pinMode(BUTTON_RIGHT_PIN, INPUT);

 mcp0.pinMode(BUTTON_BACK_PIN, INPUT);

 mcp0.pinMode(BUTTON_SELECT_PIN, INPUT);

 mcp1.pinMode(WIFI_LED_PIN, OUTPUT);

 mcp1.pinMode(STEPPER_SIGNAL_PIN, OUTPUT);

 mcp1.pinMode(STEPPER_DIRECTION_PIN, OUTPUT);

 mcp1.pinMode(FLOWMETER_1_PIN, INPUT);

 mcp1.pinMode(FLOWMETER_2_PIN, INPUT);

 mcp1.pinMode(FLOWMETER_3_PIN, INPUT);

 mcp1.pinMode(FLOWMETER_4_PIN, INPUT);

 mcp1.pinMode(FLOWMETER_5_PIN, INPUT);

 mcp1.pinMode(PUMP_1_SIGNAL_PIN, OUTPUT);

 mcp1.pinMode(PUMP_2_SIGNAL_PIN, OUTPUT);

 mcp1.pinMode(PUMP_3_SIGNAL_PIN, OUTPUT);

 mcp1.pinMode(PUMP_4_SIGNAL_PIN, OUTPUT);

 mcp1.pinMode(PUMP_5_SIGNAL_PIN, OUTPUT);

 mcp1.pinMode(LASER_SIGNAL_PIN, OUTPUT);

 mcp1.pinMode(PHOTOCELL_PIN, INPUT);

 Serial.println(F("...MCP23017 Expansion Module Initialized."));

 Serial.println();

 // Enable WIFI and Light LED

 //wifiProcess();

 // LCD Initialization

 lcd.setMCPType (LTI_TYPE_MCP23017);

 lcd.begin (16, 2); // dimension

 lcd.clear();

 displayWelcomeScreen();

 // Keep all Pumps Low (although they should be by default)

 mcp1.digitalWrite(PUMP_1_SIGNAL_PIN, LOW);

 mcp1.digitalWrite(PUMP_2_SIGNAL_PIN, LOW);

 mcp1.digitalWrite(PUMP_3_SIGNAL_PIN, LOW);

28

 mcp1.digitalWrite(PUMP_4_SIGNAL_PIN, LOW);

 mcp1.digitalWrite(PUMP_5_SIGNAL_PIN, LOW);

 mcp1.digitalWrite(STEPPER_DIRECTION_PIN, LOW); // ENABLES STEPPER

 recalibrate();

 while(1){

 delay(50);

 if(mcp0.digitalRead(BUTTON_SELECT_PIN) == HIGH) break;

 }

 fillPipes();

 recalibrate();

 delay(100);

}

void loop() {

 //manualMode(); // must have everything else commented out within loop()

 // STEP 1: SCAN RFID

 if (! rfid.PICC_IsNewCardPresent()) return; // Look for new cards

 if (! rfid.PICC_ReadCardSerial()) return; // Verify if the NUID has

been read

 Serial.println();

 Serial.println(F("**Card Detected:**"));

 Serial.print(F("NUID tag #:"));

 String UID = byteToString(rfid.uid.uidByte, rfid.uid.size);

 Serial.println(UID);

 rfid.PICC_HaltA();

 rfid.PCD_StopCrypto1();

 Serial.println("Select your drink: (*display first recipe name)");

 lcd.setCursor(0, 0);

 lcd.print(" Select Drink: ");

 CURRENT_DRINK_IDX = 0;

 displayDrink(CURRENT_DRINK_IDX);

 // STEP 2: SHOW MENU, HAVE THE USER SELECT W/ BUTTONPRESS

 delay(1000);

 while (1) {

 delay(100);

 // LEFT BUTTON PRESSED

29

 if (mcp0.digitalRead(BUTTON_LEFT_PIN) == HIGH) {

 Serial.println("Left Pressed : Show prev recipe");

 Serial.println(CURRENT_DRINK_IDX);

 CURRENT_DRINK_IDX = (CURRENT_DRINK_IDX == 0)? NUM_RECIPES-1 : --

CURRENT_DRINK_IDX;

 displayDrink(CURRENT_DRINK_IDX);

 continue;

 }

 // RIGHT BUTTON PRESSED

 if (mcp0.digitalRead(BUTTON_RIGHT_PIN) == HIGH) {

 Serial.println("Right Pressed : Show next recipe");

 Serial.println(CURRENT_DRINK_IDX);

 CURRENT_DRINK_IDX = (++CURRENT_DRINK_IDX) % NUM_RECIPES;

 displayDrink(CURRENT_DRINK_IDX);

 continue;

 }

 // SELECT BUTTON PRESSED

 if (mcp0.digitalRead(BUTTON_SELECT_PIN) == HIGH) {

 Serial.println("Select Pressed : Make selected recipe");

 break;

 }

 // BACK BUTTON PRESSED

 if (mcp0.digitalRead(BUTTON_BACK_PIN) == HIGH) {

 //manualMode();

 Serial.println("Back Pressed : Order canceled, back to main menu");

 displayWelcomeScreen();

 lcd.setCursor(0, 0);

 lcd.print("Order Cancelled!");

 CURRENT_DRINK_IDX = 0;

 return;

 }

 delay(100);

 }

 // STEP 3: MAKE DRINKS

 Serial.println("Making Selected Drink...");

 /*

 lcd.setMCPType (LTI_TYPE_MCP23017);

 lcd.begin (16, 2); // dimension

 lcd.clear();

30

 */

 lcd.setCursor(0,0);

 lcd.print(" Making Drink ");

 displayDrink(CURRENT_DRINK_IDX);

 delay(100);

 makeDrink(CURRENT_DRINK_IDX);

 /*

 lcd.setMCPType (LTI_TYPE_MCP23017);

 lcd.begin (16, 2); // dimension

 lcd.clear();

 */

 lcd.setCursor(0,0);

 lcd.print("Drink Finished! ");

 displayDrink(CURRENT_DRINK_IDX);

 delay(1000);

 // STEP 4: RESET POSITION

 lcd.setCursor(0,1);

 lcd.print(" calibrating...");

 delay(1000);

 recalibrate();

 // STEP 5: SEND EMAIL

 //sendEmail(UID);

 // STEP 6: RESET SCREEN

 /*

 lcd.setMCPType (LTI_TYPE_MCP23017);

 lcd.begin (16, 2); // dimension

 lcd.clear();

 */

 displayWelcomeScreen();

}

// HELPER FUNCTIONS BELOW**

void manualMode(){

 // MANUAL MODE: choose pumps and pour

31

 delay(1000);

 while (1) {

 delay(100);

 // LEFT BUTTON PRESSED

 if (mcp0.digitalRead(BUTTON_LEFT_PIN) == HIGH) {

 Serial.println("Left Pressed : Show prev position");

 Serial.println(CURRENT_DRINK_IDX);

 CURRENT_DRINK_IDX = (CURRENT_DRINK_IDX == 0)? NUM_RECIPES-1 : --

CURRENT_DRINK_IDX;

 moveCupTo(POSITIONS[CURRENT_DRINK_IDX]);

 continue;

 }

 // RIGHT BUTTON PRESSED

 if (mcp0.digitalRead(BUTTON_RIGHT_PIN) == HIGH) {

 Serial.println("Right Pressed : Show next recipe");

 Serial.println(CURRENT_DRINK_IDX);

 CURRENT_DRINK_IDX = (++CURRENT_DRINK_IDX) % NUM_RECIPES;

 moveCupTo(POSITIONS[CURRENT_DRINK_IDX]);

 continue;

 }

 // SELECT BUTTON PRESSED

 if (mcp0.digitalRead(BUTTON_SELECT_PIN) == HIGH) {

 Serial.println("Select Pressed : Pour selected pump");

 // turn pump on

 mcp1.digitalWrite(STEPPER_DIRECTION_PIN, HIGH); // disable stepper

 delay(100);

 mcp1.digitalWrite(PUMP_1_SIGNAL_PIN + CURRENT_DRINK_IDX, HIGH);

 while(mcp0.digitalRead(BUTTON_SELECT_PIN) == HIGH){delay(20);}

 // turn pump off

 mcp1.digitalWrite(PUMP_1_SIGNAL_PIN + CURRENT_DRINK_IDX, LOW);

 }

 // BACK BUTTON PRESSED

 if (mcp0.digitalRead(BUTTON_BACK_PIN) == HIGH) {

 lcd.setCursor(0,1);

 lcd.print(" calibrating...");

 delay(100);

 recalibrate();

 return;

 }

 delay(100);

 }

}

32

void fillPipes(){

 moveCupTo(POSITIONS[0]);

 pour(0,3000);

 moveCupTo(POSITIONS[1]);

 pour(1,3000);

 moveCupTo(POSITIONS[2]);

 pour(2,3000);

 moveCupTo(POSITIONS[3]);

 pour(3,3000);

 moveCupTo(POSITIONS[4]);

 pour(4,3000);

}

void pour(int pump_idx, int volume){

 mcp1.digitalWrite(STEPPER_DIRECTION_PIN, HIGH); // disable stepper

 mcp1.digitalWrite(PUMP_1_SIGNAL_PIN + pump_idx, HIGH);

 delay(volume);

 mcp1.digitalWrite(PUMP_1_SIGNAL_PIN + pump_idx, LOW);

 delay(1000);

 mcp1.digitalWrite(STEPPER_DIRECTION_PIN, LOW); // re-enable stepper

}

// STEPPER MOTOR HELPER FUNCTIONS(MAKING DRINKS)

void moveCupTo(int target_pos){

 //mcp1.digitalWrite(STEPPER_DIRECTION_PIN, LOW); // enable stepper

 delay(500);

 if(CUP_POSITION == target_pos) return;

 int distance = target_pos - CUP_POSITION; // clockwise distance

 if(distance < 0) distance += 400;

 delay(500);

 for(int i=0;i<distance;++i){

 mcp1.digitalWrite(STEPPER_SIGNAL_PIN, HIGH);

 delay(20);

 mcp1.digitalWrite(STEPPER_SIGNAL_PIN, LOW);

 delay(20);

 }

 CUP_POSITION = target_pos;

}

33

void makeDrink(int CURRENT_DRINK_IDX){

 for(int i=0;i<NUM_INGREDIENTS;++i){

 if(RECIPE[CURRENT_DRINK_IDX][i] == 0) continue; // skip if 0 amount is

to be poured

 delay(100);

 moveCupTo(POSITIONS[i]);

 // note: pump pin #'s are increments of each other; pump_1 = 0, pump_2

= 1, pump_3 = 2, etc

 delay(100);

 pour(i, RECIPE[CURRENT_DRINK_IDX][i]); // pump idx(0~4),amount)

 delay(100);

 }

}

void recalibrate(){

 // turn laser on

 mcp1.digitalWrite(LASER_SIGNAL_PIN, HIGH);

 // move until laser value 0

 while(mcp1.digitalRead(PHOTOCELL_PIN) == 1){

 mcp1.digitalWrite(STEPPER_SIGNAL_PIN, HIGH);

 delay(30);

 mcp1.digitalWrite(STEPPER_SIGNAL_PIN, LOW);

 delay(30);

 }

 mcp1.digitalWrite(LASER_SIGNAL_PIN, LOW);

 // turn the cup to front

 for(int i=0;i<200;++i){

 mcp1.digitalWrite(STEPPER_SIGNAL_PIN, HIGH);

 delay(30);

 mcp1.digitalWrite(STEPPER_SIGNAL_PIN, LOW);

 delay(30);

 }

 CUP_POSITION = 200;

}

// LCD HELPER FUNCTIONS

void displaySetupScreen(){

34

 lcd.setCursor(0, 0);

 lcd.print(" Setting Up.. ");

 lcd.setCursor(0, 1);

 lcd.print(" ");

}

void displayWelcomeScreen() {

 lcd.setCursor(0, 0);

 lcd.print(" Welcome! ");

 lcd.setCursor(0, 1);

 lcd.print(" Scan your RFID ");

 Serial.println(" Welcome! Please Scan your RFID ");

}

void displayDrink(int idx){ // display drink on the bottom row of the lcd

 if(idx >= NUM_RECIPES) Serial.println(F("drink idx invalid"));

 lcd.setCursor(0, 1);

 lcd.print(" ");

 lcd.setCursor(0, 1);

 lcd.print(RECIPE_NAME[idx]);

}

// WIFI HELPER FUNCTIONS *********************************

uint8_t WiFiConnect(const char* nSSID = nullptr, const char* nPassword =

nullptr)

{

 static uint16_t attempt = 0;

 Serial.print("Connecting to ");

 if (nSSID) {

 WiFi.begin(nSSID, nPassword);

 Serial.println(nSSID);

 } else {

 WiFi.begin(ssid, password);

 Serial.println(ssid);

 }

 uint8_t i = 0;

 while (WiFi.status() != WL_CONNECTED && i++ < 50)

 {

 delay(200);

 Serial.print(".");

 }

35

 ++attempt;

 Serial.println("");

 if (i == 51) {

 Serial.print("Connection: TIMEOUT on attempt: ");

 Serial.println(attempt);

 if (attempt % 2 == 0)

 Serial.println("Check if access point available or SSID and

Password\r\n");

 return false;

 }

 Serial.println("Connection: ESTABLISHED");

 Serial.print("Got IP address: ");

 Serial.println(WiFi.localIP());

 return true;

}

void Awaits()

{

 uint32_t ts = millis();

 while (!connection_state)

 {

 delay(50);

 if (millis() > (ts + reconnect_interval) && !connection_state) {

 connection_state = WiFiConnect();

 ts = millis();

 }

 }

}

void wifiProcess(){

 Serial.print(F("Connecting to "));

 WiFi.begin(ssid, password);

 Serial.println(ssid);

 uint8_t i = 0;

 while(WiFi.status()!= WL_CONNECTED && i++ < 50)

 {

 delay(200);

 Serial.print(F("."));

 }

 if(WiFi.status() == WL_CONNECTED){ // if connected to WIFI

 mcp1.digitalWrite(WIFI_LED_PIN,HIGH);

 Serial.println(F("...WiFi connection: ESTABLISHED"));

36

 Serial.print(F("Got IP address: "));

 Serial.println(WiFi.localIP());

 }else{

 Serial.println(F("ERROR: WiFi could not connect, check ssid and

password."));

 }

 Serial.println();

}

void sendEmail(String UID){

 Serial.println(F("Sending Order to the Server..."));

 Gsender *gsender = Gsender::Instance(); // Getting pointer to class

instance

 if(gsender->Subject(UID)->Send("handsfreemixer445@gmail.com",

RECIPE_NAME[CURRENT_DRINK_IDX])) {

 Serial.println("Message sent.");

 } else {

 Serial.print("Error sending message: ");

 //Serial.println(gsender->getError());

 }

 Serial.println();

}

// RFID HELPER FUNCTIONS ***

String byteToString(byte *buffer, byte bufferSize) {

 String UID;

 for (byte i = 0; i < bufferSize; i++) {

 UID += String(buffer[i] < 0x10 ? "0" : "");

 UID += String(buffer[i], HEX);

 }

 UID.toUpperCase();

 return UID;

}

/**

 Helper routine to dump a byte array as hex values to Serial.

*/

void printHex(byte *buffer, byte bufferSize) {

 for (byte i = 0; i < bufferSize; i++) {

 Serial.print(buffer[i] < 0x10 ? " 0" : " ");

 Serial.print(buffer[i], HEX);

 }

37

}

/**

 Helper routine to dump a byte array as dec values to Serial.

*/

void printDec(byte *buffer, byte bufferSize) {

 for (byte i = 0; i < bufferSize; i++) {

 Serial.print(buffer[i] < 0x10 ? " 0" : " ");

 Serial.print(buffer[i], DEC);

 }

}

38

Appendic C Schematics & Designs

Figure 11. Stepper Motor Driver Schematics

Figure 12. Stepper Motor Driver Printed Circuit Board Design

39

Figure 13. Pump Motor Driver Idealized Schematics

Figure 14. Refill Indication Control Schematic

40

Figure 15. Photocell Sensor Schematic

Figure 16. Main Board PCB

41

References

[1] A. Swanson, “What really drives you crazy about waiting in line (it actually isn't the wait at all),” The
Washington Post, 27-Nov-2015. [Online]. Available:
https://www.washingtonpost.com/news/wonk/wp/2015/11/27/what-you-hate-about-waiting-
in-line-isnt-the-wait-at-all/?utm_term=.d60c8abdd1ef. [Accessed: 22-Feb-2019].

[2] "Pour Bros. Craft Taproom", Pour Bros. Craft Taproom, 2019. [Online]. Available:
https://www.pourbrostaproom.com/. [Accessed: 22- Feb- 2019].

[3] “A beginner's guide to switching regulators,” Dimension Engineering. [Online]. Available:
https://www.dimensionengineering.com/info/switching-regulators. [Accessed: 22-Feb-2019].

[4]“3W 5V 0.6A DIP-16 Isolated DC-DC Regulated Converter 12 Volt In,” How It Works: Xbox Kinect.
[Online]. Available: https://www.jameco.com/z/SLC03A-05-MEAN-WELL-3W-5V-0-6A-DIP-16-
Isolated-DC-DC-Regulated-Converter-12-Volt-In_2261815.html. [Accessed: 22-Feb-2019].

[5] B. H., Phil, J. A., and Anthony, “Dart Solo P16R 16 oz. Red Plastic Cup - 1000/Case,” WebstaurantStore,
12-Jun-2018. [Online]. Available: https://www.webstaurantstore.com/dart-solo-p16r-16-oz-red-
plastic-cup-case/760P16R.html. [Accessed: 22-Feb-2019].

[6] Adafruit Industries, “Stepper motor - NEMA-17 size - 200 steps/rev, 12V 350mA,” adafruit industries
blog RSS. [Online]. Available: https://www.adafruit.com/product/324. [Accessed: 22-Feb-2019].

[7] DNews, “Did You Know the Solo Cup is also a Measuring Cup (for Booze)?,” Seeker, 13-Jun-2012.
[Online]. Available: https://www.seeker.com/did-you-know-the-solo-cup-is-also-a-measuring-
cup-for-booze-1765829437.html. [Accessed: 08-Feb-2019].

[8] “DID YOU KNOW?,” About PET | PETRA: Information on the Use, Benefits & Safety of PET Plastic.,
2016. [Online]. Available: http://www.petresin.org/news_didyouknow.asp. [Accessed: 08-Feb-
2019].

[9]“Questions from andrew, a student,” Math Central Quandaries and Queries, Oct-2017. [Online].
Available: http://mathcentral.uregina.ca/QQ/database/QQ.09.06/s/andrew1.html. [Accessed:
08-Feb-2019].

[10] “INTLLAB DIY Peristaltic Pump Dosing Pump 12V DC, High Flowrate for Aquarium Lab Analytical,
170~460 mL/min,” Amazon. [Online]. Available:
https://www.amazon.com/dp/B07MTBV5RR/ref=sspa_dk_detail_2?th=1. [Accessed: 22-Feb-
2019].

[11] “FSR 400 Series Data Sheet,” Adafruit CDN Shop. [Online]. Available: https://cdn-
shop.adafruit.com/datasheets/FSR400Series_PD.pdf. [Accessed: 07-Feb-2019].

[12] “EEVblog Electronics Community Forum,” OVP & OCP - Page 1. [Online]. Available:
https://www.eevblog.com/forum/microcontrollers/esp8266-native-spi-hardware-driver/.
[Accessed: 22-Feb-2019].

[13] “Load Testing an ESP8266,” arunoda.me. [Online]. Available: https://arunoda.me/blog/load-testing-
an-esp8266. [Accessed: 22-Feb-2019].

42

[14] Ieee.org, "IEEE IEEE Code of Ethics", 2016. [Online]. Available:
http://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 7- Feb- 2019].

