

Internet Connected Chessboard

__

By

Jeffrey Ito

Joel Mathews

Ritish Raje

Final Report for ECE 445, Senior Design, Spring 2019

TA: Thomas Furlong

1 May, 2019

Project No. 61

ii

Abstract

The Internet Connected Chessboard aims to combine the capabilities of an online chess

application with the physical interface of a traditional chessboard. Pieces on the chessboard are

detected using reed switches. Data from the chessboard is sent to a chess application using a

WiFi module. The opponent makes a move on the chess application and this data is sent back to

the chessboard. LEDs light up to indicate to the chessboard user what move was made by the

opponent. We were able to successfully make a move on the chessboard, send this data to the

chess application, make a move on the chess application, and send this data back to the

chessboard.

iii

Contents

1. Introduction ... 1

2. Design ... 3

2.1 Sensing/Game Board Module ... 3

2.1.1 Reed Switches .. 3

2.1.2 Shift Registers .. 4

2.2 Control Module ... 5

2.2.1 Microcontroller .. 5

2.2.2 WiFi Module .. 6

2.3 Power Module ... 7

2.3 PC Module .. 7

3. Design Verification ... 9

3.1 Sensing/Game Board Module ... 9

3.1.1 Reed Switches .. 9

3.1.2 WiFi Module .. 11

3.2 Power Module ... 11

3.2 PC Module .. 12

4. Costs .. 13

4.1 Parts... 13

4.2 Labor ... 13

5. Conclusion .. 14

5.1 Accomplishments .. 14

5.2 Uncertainties ... 14

5.3 Ethical Considerations .. 14

5.4 Future Work .. 15

References ... 16

Appendix A - Requirement and Verification Tables .. 17

1

1. Introduction

Chess is a board game that is centuries old. In the modern age of computers, there have been

many online applications created to allow players to compete against one another despite being

in different parts of the world. All of these implementations, however, involve a screen of some

sort. Looking at a computer screen for extended periods of time can cause fatigue in the eyes

and mind, both of which are essential tools for any chess player.

To solve these problems, we plan to create a chessboard that maintains the ability to play

opponents over long distances while eliminating the need for a computer screen to play the

game. We plan to create an internet-connected chessboard. This chessboard would connect to a

computer, but remove the need to look at a screen, as the moves would be registered on the

physical board itself. Our goal is to allow players to regain the physical interface of a chessboard

to reduce strain on their eyes. The chessboard will have the same functionality as online chess

applications but will remove the need of the screen for the player.

Figure 1 shows the high-level block diagram from our original design. The final implemented

design remains true to the original design. The only change that is made is our communication

protocol between the shift registers (SRs) and the microcontroller. Instead of using an SPI

interface, we use GPIO pins to control the signals to and from the SRs.

The system is split up into four main modules. The power module provides power to the whole

system. The sensing/game board module contains anything that pertains to components on the

physical chessboard. This includes the reed switches and LEDs which were used to detect pieces

and display information on the board respectively. The control module is used to determine

where data is routed. The PC module manipulates and determines what happens with the data as

well as interfacing with the opponent.

Our physical design was meant to mimic the feel of a traditional chessboard while still

containing all the underlying electronics. The original design can be seen in figure 2 while the

final, tested design is pictured in figure 3.

2

Figure 1. High-level block diagram of original design

Figure 2. Original physical design of chessboard

Figure 3. Final design of chessboard

3

2. Design

2.1 Sensing/Game Board Module

2.1.1 Reed Switches

Reed switches are magnetically activated switches [1]. This means they are like any other switch

with an on/off state. However, reed switches differ because they can be activated using a magnet

rather than physically flipping the switch. We decided to use reed switches to detect where

pieces are on the board because of their simplicity and low cost. By handling the majority of

game state tracking in the chess application, we only need a way to determine if there is a piece

on a spot or not. One alternative we considered was hall-effect sensors. These are like reed

switches because they change based on the presence of a magnetic field. However, these require

at least 3 wires to gather data while the reed switches only require 2. Furthermore, hall-effect

sensors provide more information about the magnetic field (intensity and direction) than is

needed for our purposes. Another alternative we discussed was infrared sensors. These would not

have required any extra hardware to be placed on the chess pieces. However, infrared sensors

would also require at least 3 wires to gather data and can suffer from a lot of noise based on

external lighting.

Figure 4 shows the circuit diagram we use with the reed switches to detect if a piece is on a spot.

The circuit is a simple switching circuit with a pull-up resistor. The output of the circuit reads a

high voltage until the reed switch is activated when it would detect a low voltage. The output of

the circuit is connected to the input of the parallel-in serial-out SRs discussed in section 2.1.2.

4

Figure 4. Circuit schematic for reed switches

2.1.2 Shift Registers

Shift registers are used to facilitate communication between the microcontroller (MCU) and the

reed switches as well as facilitate communication between the MCU and the LEDs. We decided

to use SRs because we had 64 reed switches and 64 LEDs. We did not have enough available

pins on the MCU to connect to each one individually. Using 8 8-bit SRs for the reed switches

and 8 more for the LEDs, we were able to successfully reduce the number of pins greatly.

Two different types of SRs are used for our project. Parallel-in serial-out (PISO) SRs take in

parallel data and output serial data [2]. These are used to communicate with the reed switches.

The output from the reed switch circuit found in figure 4 is connected to one of the inputs of the

SR. When we want to gather the data from the board, a shift-in is performed on our MCU which

reads the serial data from these SRs. Serial-in parallel-out (SIPO) SRs take in serial data and

output parallel data [3]. These are used to communicate with the LEDs. When we want to

activate an LED, we perform a shift-out on the MCU which serially transmits data to the SRs.

The LEDs are connected to the outputs of the SRs and, based on if the output is high or low, the

LED is activated or not. Figures 5 and 6 show how the SRs were connected in series to reduce

the total number of pins required by the MCU to only 7.

5

Figure 5. Parallel-in serial-out SRs connected in series

Figure 6. Serial-in parallel-out SRs connected in series

2.2 Control Module

2.2.1 Microcontroller

The MCU is used to help control the flow of data between the WiFi module and components in

the sensing/game board module. We decided to go with the ATmega328P because of its UART

and SPI communication capabilities, 32 kB of flash programmable memory, and ability to

operate at 5 V. Furthermore, the ATmega328P is a commonly used and very well documented

microcontroller. One other MCU considered was the ATmega2560 but we decided that this

6

provided more capabilities than was necessary by our system. Another MCU considered was the

PIC18F25K22. We decided that this microcontroller did not contain enough documentation and

tutorials to help guide us through the project given the time frame as we were not as familiar

with this MCU.

Figure 7 gives a high-level block diagram of the programming implemented on our MCU. This

represents the main game loop of the player on the chessboard making a move, reflecting this

move on the chess application, the opponent on the chess application making a move, and this

move being reflected on the chessboard. To get the board state, we had to implement a shift-in

function that updated the data on the PISO SRs from the reed switches then performed 8 shifts

that shifted in 1-byte (8-bits) at a time. A similar function was implemented for shifting data out

to the SIPO SRs to update the LEDs.

Figure 7. Block diagram of program implemented on MCU

2.2.2 WiFi Module

After researching methods of transferring data to the Chess Application, we decided the WiFi

module was optimal for our project. Our top alternatives were USB and Bluetooth. However,

both of those options would require an additional computer to be attached/connected to the chess

board. The computer would then be responsible for relaying information across the internet.

With the WiFi module, the board is self-contained, it can communicate across the globe without

the need of peripheral connections.

The WiFi module was used to control the flow of data between the MCU and the online Chess

Application. We decided to use the ESP8266-01s chip because it was relatively cheap ($6.99)

and it had 4 Input/Output pins which suited our needs well. The MCU and the WiFi module

communicated through Serial communication. The WiFi module communicated with the online

Chess Application in 2 ways, when the WiFi module needed to send data, it makes a POST

7

request to the endpoint on the Chess Application. Likewise, the WiFi module had its own server

to receive data made by a POST request from the Chess Application.

2.3 Power Module

The power module provides power to our whole system. We decided to use a 9 V, rechargeable

battery to provide power to our system because we did not want any external wires on the

chessboard. To change this voltage to one that is useable by the rest of our system, we use a 5 V,

fixed-voltage regulator. One alternative considered for our power module was to have our system

connected to a wall outlet, but this would have required an external wire connected to the

chessboard.

2.3 PC Module

The PC module is the brains of the whole project. It consists of solely a chess application

running on the web through a python script. Our chess application does a significant part of our

data processing. We could have distributed processing between the application and the

microcontroller but decided not to for various reasons. Our microcontroller does almost no data

processing, it continuously sends the state of the chess board. The chess application then receives

data for LEDs to light up, but all the decision making is made on the python application. It is

much easier to debug code on a python script than a microcontroller, for that reason, we decided

to put as little code as possible on our microcontroller. Also, there is a python chess library built

into python, this saved us from excessive coding, as most of the move validation was already

implemented for us through this library.

The chess application functions as a state machine. It communicates with the physical chess

board and serves as the interface to make moves for an opponent player. The chess application

receives data through the Wifi module through a global server, called ngrok. Once it processes

the data, the chess application connects to the Wifi modules server to send data back (if a move

is detected), in the form of LEDs to light up. If a wrong move is detected, the applications sends

a flag to the physical chess board, which signals the chess board to light up all of its LEDs

8

Figure 8: Chess application interface

Figure 9: State diagram of our python application

9

3. Design Verification

3.1 Sensing/Game Board Module

The sensing/game board module was mostly verified through integration testing with the MCU.

Two PISO and two SIPO SRs were used to verify the functionality of connecting SRs in series.

For testing purposes, the inputs of the PISO SRs were either connected to power or ground to

ensure that if there was a problem, it was due to the SRs and not the reed switches. LEDs were

connected to the SIPO SRs as they would have been in our final product. The appropriate

connections were made between our MCU and the SRs. Then, the MCU was programmed to

perform a loop of shifting in data from the PISO SRs then shifting this data out to the SIPO SRs,

so whatever data was input to the PISO SRs was immediately visible on the LEDs. Figure 10

shows the setup on a breadboard. Outlined in yellow is the first PISO SR connected to an input

sequence of 01001010. Outlined in blue is the first SIPO SR and associated LEDs which show

the same bit sequence by looking at the right side going from bottom to top then looking at the

left side going from bottom to top. Similarly, outlined in red is the second PISO SR connected to

an input sequence of 01101100 with the associated SIPO SR and LEDs outlined in green.

The SRs were verified to be able to take parallel and serial input data and output serial and

parallel data. SRs were verified to be able to convert 16-bits of input into data that can be read by

the MCU, but this was easily extended out to 64-bits of input. The MCU was verified to be able

to send and receive data to and from the SR. This verified all the requirements for the SRs and all

but 1 of the requirements for the MCU from our original design (see Appendix A).

3.1.1 Reed Switches

The reed switches are required to activate from a distance that is far enough that the layer of

acrylic is not too thick to prevent them from activating. The reed switches must also not activate

from the effects of a magnet on an adjacent square. To verify that this was true, several test cases

were taken. Figure 11 shows various configurations as well as angles which were tested to

activate the reed switch. Table 1 shows the distance at which the reed switch was activated for

the various test cases. The distance was measured from the center of the reed switch to the

closest edge of the magnet. As can be seen by the test results, the orientation, and angle that the

reed switch approaches both affect the activation distance. We decided to go with orientation 2

because it provided a good range of activation distances that was larger than the thickness of our

acrylic (0.64 cm) but smaller than the distance to the edge of a square (2.93 cm).

10

Figure 10. Setup used to verify SRs, MCU, and LEDs

Figure 11. Test orientations and angle of approach for magnets with reed switches

Table 1. Activation distance of reed switch based on orientation and angle of approach

Orientation Angle of Approach Activation Distance (cm)

Orientation 1 1 0.74

2 2.54

3 0.71

Orientation 2 1 0.65

11

2 2.13

3 0.69

Orientation 3 1 2.78

2 0.24

3 1.12

3.1.2 WiFi Module

It was essential for our Wifi module to successfully send and receive data. To verify sending

information, we connected our module to the server made by our python script. If the python

script could print out the correct message sent by the module, we knew the message was sent

correctly. Verifying received data was done in a similar way. Our python application connected

to the server made by the ESP, and sent a message, we used Serial write to determine whether

the sent message was correct.

3.2 Power Module

The power module was only required to provide 5 V for our system to utilize. To ensure this was

accomplished, the battery needed to output a voltage greater than 5 V and the voltage regulator

needed to output a voltage at 5 V ± 5%. This was verified by fully charging our 9 V battery and

measuring the output voltage by connecting it to a multimeter. The output observed on the

multimeter was at 8.3 V which was more than enough. The output on the voltage regulator was

also measured with the multimeter and verified to be at 5 V ± 5%. It should be noted that

batteries are known to output less voltage as the power is depleted. While we were unable to test

our batteries due to time constraints, similar batteries are known to output above 5 V even after

many hours of use as seen in Figure 12.

Another power analysis we were unable to perform in the given time frame was how long our

battery would last given the power consumption of our system. However, through observation

and estimation we can determine an approximate time. The component that draws most of the

current for our system is the WiFi module, which draws approximately 80 mA while active.

Taking all the other components into account, the total current draw of our system may be

approximately 100 mA. Our battery is rated at 600 mAh meaning we can estimate about 6 hours

of operation for our system from a fully charged battery.

12

Figure 12. Voltage output of Energizer 9 V battery for usage in clock radio [4]

3.2 PC Module

The PC module needed to correctly detect and validate moves on the chess board. We decided to

verify move validation manually instead of coding our own test cases. It would be much faster to

manually test out if every piece moved correctly. Our test cases did not have to be very

comprehensive as the python chess library already took care of move validation. We basically

tested whether each piece moves the correct way and if turns alternate, but this testing was done

with two players locally playing on the chess application (i.e. the physical chess board wasn’t

connected). The full unit tests for each type of piece are given in the appendix r and v table for

chess application.

Our chess application needed to get and receive the correct information. To test receiving

information, we unit tested each reed sensor and checked the output our MCU sent us.

Fortunately, all the reed sensors which were working properly sent the application the right data.

We experienced a few bugs sending data and could not properly unit test it. The chess

application sent the MCU which LEDs to light up whenever it needed to send data. Sometimes

this worked and sometimes this didn’t. We could not figure out whether this was a bug in the

python script, or the code running on the MCU. Although, we do think that it was a bug in the

MCU code, as we could print out data right before it was sent by the python application, and it

appeared to be right.

13

4. Costs

4.1 Parts

Table 2. Parts cost

Part Manufacturer Retail

Cost ($)

Bulk Purchase

Cost($)

Actual

Cost ($)

2x 9 V Li-ion rechargeable

batteries + charger

EBL 16.99 N/A 16.99

ESP8266-01 WiFi Module Espressif Systems 6.99 N/A 6.99

64x reed switches Cylewet 48.93 N/A 48.93

32x neodymium magnets McMaster-Carr 37.44 27.84 27.84

64x RGB LEDs EDGELEC 8.99 N/A 8.99

8x PISO SRs Texas Instruments 3.76 3.18 3.18

8x SIPO SRs Texas Instruments 3.52 2.86 2.86

ATmega328P Atmel 2.14 N/A 2.14

2x Buttons E-Switch 1.85 N/A 1.85

PCB PCB Way 4.00 N/A 4.00

Total 123.77

4.2 Labor

Labor costs contributed to most of the cost of the project. Assuming an ideal wage of $40/hr,

working 10 hrs/week, and 16 weeks in the course we get a total labor cost of $48,000 for 3

partners as shown in equation (1).

3 ∗ $40/ℎ𝑟 ∗ 10 ℎ𝑟𝑠/𝑤𝑒𝑒𝑘 ∗ 16 𝑤𝑒𝑒𝑘𝑠 ∗ 2.5 = $48000 (1)

14

5. Conclusion

5.1 Accomplishments

We were successfully able to make a move on our chessboard, send this data to the chess

application, and display the move on the chess application. We were also successfully able to

make a move on the chess application, send this data back to the chessboard, and display the

information on the chessboard.

5.2 Uncertainties

One of the biggest uncertainties with our current implementation is the latency. It takes

approximately 5-10 seconds for a move made on the chessboard to be reflected on the chess

application and a similar time to send the data back to the chessboard. This is not conducive for

any chess game that needs to be played at a particular pace. Latency also causes our chess

application to sometimes miss a detection of moves made on the chessboard.

The other major uncertainty of our current implementation is we were not able to completely

connect all the reed switches and LEDs to test a complete game. We were able to make one

successful round of moves as described in section 5.1. However, due to the wiring complexity

that was associated with the current implementation, there was too much clutter that could be

reasonably organized in the given time frame. In addition, many wires were openly exposed

which caused them to short out against one another.

One final uncertainty of our project was the power consumption. As mentioned in section 3.2, we

were not able to perform an exact analysis on the power consumption of our system. Making

exact measurements of the current draw from all the components of our system then testing our

battery at that current draw would give us an exact amount of time that the battery would last. A

more in-depth power analysis would also give insight into the exact voltage that the battery

would drop down to when it is not fully charged, which would tell us when we need to indicate

that the battery needs to be charged.

5.3 Ethical Considerations

Our internet connected chess board is limited by the sensors on board. For this reason, there are

not many ethical concerns for our project. If we were to continue our project we would want to

make a dedicated website for our users. This website might be prone to attacks by hackers, which

would violate section 1.6 of ACM’s code of ethics to respect privacy. We would also have to

worry people cheating through the manipulation of software. This would violate section 1.4 of

the ACM code of ethics, to be fair and take action not to discriminate [5].

15

5.4 Future Work

One thing that can be done to build upon our project is to redesign the wiring system. The

current wiring complexity cost too much time to put together and organize. In addition, there

were many open wires that would short each other out. A ground plate could be attached to the

acrylic so fewer wires need to be run from the reed switches and LEDs all the way to PCBs.

Furthermore, a ribbon cable could be used to run wires from the reed switches and LEDs to the

PCB which would make the wiring much more organized as well as reducing the number of

openly exposed wires.

Another thing that could be done to improve on our project would be to reduce latency and fine-

tune software algorithms. As mentioned in section 5.2 the latency of our system can cause

several issues. We believe the main cause of latency is the way we implemented our WiFi

endpoint in software. Looking into better solutions could reduce latency significantly as well as

ensure a more reliable transfer of data. Fine tuning our software algorithms could also help with

latency. Currently, both our software algorithms implemented on the MCU and in Python both

utilize delays during data transfer. Eliminating these delays could help improve the latency issue

and improve the reliability of data.

One final thing that could be done to improve our project would be to reduce the power

consumption. The WiFi module was the component that was drawing the largest amount of

power from our system. Currently, it is always active. Utilizing the built-in sleep modes for the

WiFi module while it is not in use could help to reduce the power consumption and increase the

battery life of our system.

16

References

[1] HSI Sensing, "Reed Switch Basics," [Online]. Available: https://www.hsisensing.com/wp-

content/uploads/2016/03/HSI_Sensing_-_Reed_Switch_Basics_v100512.pdf. [Accessed 28

April 2019].

[2] Texas Instruments, "SNx4HC165 8-Bit Parallel-Load Shift Registers," December 2015.

[Online]. Available: http://www.ti.com/lit/ds/symlink/sn74hc165.pdf. [Accessed 29 April

2019].

[3] Texas Instruments, "SNx4HC164 8-Bit Parallel-Out Serial Shift Registers," September

2015. [Online]. Available: http://www.ti.com/lit/ds/symlink/sn74hc164.pdf. [Accessed 29

April 2019].

[4] Energizer, "ENERGIZER 522," [Online]. Available: http://data.energizer.com/pdfs/522.pdf.

[Accessed 26 Apri 2019].

[5] ACM, "ACM Code of Ethics and Professional Conduct," 2018. [Online]. Available:

https://www.acm.org/code-of-ethics. [Accessed 29 April 2019].

17

Appendix A - Requirement and Verification Tables

MCU

Table 3. MCU R&V

Requirements Verification Verification

Status

1. Can transmit data to

PC through USB

2. Can receive data

over SPI from shift

registers

3. Can send data over

SPI to shift

registers

1.

A. Form a packet of data that

contains the bits 10010011.

B. Transmit this packet to the PC

and ensure that the received

packet matches the sent

packet.

2.

A. Load the shift registers with

the bit sequence 10010011.

B. Perform a shift-in on the

MCU and ensure the received

data is correct

3.

A. Perform a shift-out on the

MCU with the bit sequence

10010011.

B. With a DMM, probe each

parallel-out pin to ensure that

the bit sequence is correct.

Y

Y

Y

WiFi Module

Table 4. WiFi Module R&V

Requirements Verification Verification

Status

1. Can facilitate data

transmission

between the MCU

and the connected

PC

1.

A. Form a packet of data that

contains the bits 10010011.

B. Transmit this packet to the PC

and ensure that the received

packet matches the sent

packet.

Y

18

Reed Switches

Table 5. Reed Switches R&V

Requirements Verification Verification

Status

Activate from the effects

of a magnet that is 0-3 cm

away.

A. Connect read switch to test

circuit, placing the switch at the

0 cm mark on a ruler.

B. Slowly move a magnet closer to

the switch, starting at the 10 cm

mark.

C. Make note of the voltage across

the switch every .5 cm.

D. Ensure that the measured

voltage is 5 V ± 5% until the

magnet is 3 cm away, at which

point the voltage should drop to

0 V.

Y

Shift Registers

Table 6. Shift Registers R&V

Requirements Verification Verification

Status

1. Allows for

parallel input,

serial output.

2. Allows for serial

input, and parallel

output.

3. Convert 64 reed

switch readings to

digital data for

the MCU to

process.

1.

A. Connect each parallel input pin

to a GPIO pin on the

microcontroller, setting each pin

so the bit sequence is 10010011.

B. Connect the serial output pin to

the serial input of the

microcontroller.

C. Send a load signal from the

MCU to the shift register.

D. Perform a serial shift in on the

MCU ensuring that the bit

sequence read was 10010011.

2.

A. Connect the serial output pin of

the MCU to the serial input pin

of the register.

Y

Y

19

B. Perform a serial shift out on the

MCU with the bit sequence

10010011.

C. Probe each of the parallel output

pins with a DMM ensuring that

the final bit sequence is

10010011.

3.

A. Connect reed switch outputs to

parallel input pins on SRs.

B. Send a load signal to the SRs.

C. Perform serial shifts in on the

MCU ensuring that the bit

sequence read matches which

switches were activated when

the load signal was sent.

Y

Voltage Regulator

Table 7. Voltage Regulator R&V

Requirements Verification Verification

Status

Converts DC input to 5 V

± 5% output.

A. Connect input of voltage

regulator to a power supply.

B. Power on the supply and adjust

it to provide 12 V ± 5%.

C. Measure output with DMM to

ensure it remains steady at 5 V

± 5%.

Y

Battery

Table 8. Battery R&V

Requirements Verification Verification

Status

Outputs greater than 5 V

DC.

A. Recharge battery to full.

B. Connect terminals to DMM and

measure the output voltage

ensuring it is greater than 5 V.

Y

Chess Application

Table 9. Chess Application R&V

Requirements Verification Verification Status

20

1. Chess application

receives the correct

information

regarding the game

state every time it is

changed.

2. Chess application

sends the correct

data over the cloud

1. Change the game state. Print

out the packet of information

right before it is sent to the

cloud

2. Connect a second computer

to the cloud. Print out the

data it receives from the

sender.

-All pieces are able to move

the way they are defined to

move, invalid moves are not

possible

 -list of all possible checks

are not written out because

they are too extensive, but a

summary is given below on

everything checked: -horse

moves correctly -queen

moves correctly -rook moves

correctly -pawn moves

correctly -pawn promoted to

queen correctly -white and

black alternate turns -

checkmate is detected -

stalemate is detected

Y

N – data displayed on the

chessboard does not

always match up with data

being sent by application

3. Chess Application

only allows valid moves

-All pieces are able to move the way

they are defined to move, invalid

moves are not possible

-list of all possible checks are not

written out because they are too

extensive, but a summary is given

below on everything checked:

 -horse moves correctly

 -queen moves correctly

 -rook moves correctly

 -pawn moves correctly

 -pawn promoted to queen

correctly

 -checkmate is detected

 -stalemate is detected

 -white and black turn alternate

Y

