
AUTOMATED BOBA STATION

By

Hunter Huynh

Timothy Ko

Jordan Wu

Final Report for ECE 445, Senior Design, Spring 2019

TA: John Kan

1 May 2019

Project No. 49

1 Introduction 1

1.1 Background 1

1.2 Objectives 1

1.3 High-level Requirements 1

2 Design 2

2.1 Block Diagram 3

2.2 Physical Design 4

2.3 Liquid Dispensing Module 4

2.3.1 Design Procedure 4

2.3.2 Design Details 5

2.3.2.1 Calculations 6

2.4 Solid Dispensing Module 6

2.4.1 Design Process 7

2.4.2 Design Details 7

2.4.2.1 Calculations 7

2.5 Weight Sensing Module 8

2.5.1 Design Procedure 8

2.5.2 Design Details 8

2.5.2.1 Load Cell 8

2.5.2.2 Load Cell Amplifier/ADC 9

2.5.2.3 Weight Sensing Software 9

2.6 Microcontroller Module 9

2.6.1 Design Process 10

2.6.2 Design Details 10

2.6.2.1 Software 10

2.7 Web App / Server 11

2.7.1 Software Design Procedure 11

2.6.2 Software Design Details 12

2.6.2.1 High Level Architecture 12

3 Verification 15

3.1 Liquid Dispenser Module 15

3.2 Solid Dispenser Module 15

3.3 Weight Sensing Module 15

4 Costs and Schedule 16

4.1 Cost Analysis 16

4.1.1 Labor 16

4.1.2 Parts 16

5 Conclusions 17

5.1 Accomplishments 18

5.3 Ethical Concerns 18

5.4 Acknowledgements 18

References 18

Appendix A 21

Appendix B 25

1

1 Introduction

Boba, a popular drink among millennials, is still largely made manually, thus shops still require

many employees to keep up with demand. As such, the prices are still largely dictated by the

manual labor. In addition, with the large variety of recipes, human workers are prone to make

mistakes. Finally, taste consistency is hard to achieve leaving drinks sometimes oversweet.

Unlike coffee, the Boba making process is hard to automate as it requires handling and

dispensing of both solid and liquid ingredients.

1.1 Background

Boba drinks come in a multitude of configurations. However, it generally consists of just solids

and liquids. In general, the process of creating a Boba drink consists of first adding the toppings

(solids) in a cup, pouring in tea and milk (milk tea may already be mixed together with a specific

concentration of milk and tea), then adding a user specified amount of sugar and ice (such as 0%,

25%, 50%, 75%, or 100% of the normal amount) [1] [2].

Because the creation of Boba drinks is currently all manual and based off percentages, there is no

unified concentration of each component of the drink. For example, 25% sugar level varies

employee to employee as it is up to them to gauge the amounts. The concentration of milk and

tea varies as well as the amount of toppings is in a drink. If done automatically, drinks will

follow the recipe every single time, increasing taste consistency and customer satisfaction.

1.2 Objectives

Our goal is to develop an automated Boba station having multiple modular dispensers. The

dispenser mechanism must be accurate to ensure taste consistency. The modular design would

allow the customer (shop owner) to customize the number and type of dispensers themselves,

permitting a wide permutation of drinks and leading to a lower cost in the long run. Finally, the

system will be controlled through an easy to use web interface that allows for recipe

customization. In addition, this web interface can also keep track of ingredients used, thereby

reducing food waste caused by overbuying ingredients

1.3 High-level Requirements

● (MET) Have at least two dispensers, one for tapioca pearls and one for the milk tea.

● (MET) The station must be able to dispense a user-specified amount of milk tea and

tapioca pearls with no more than ±10% error in mass.

○ In our final performance, our liquid dispensing is accurate to 1 gram. In typical

scenarios, this would be less than 1% error in mass. Our solid dispensing

controlled by serving counts rather than by gram due to design of dispenser.

● (MET) Have a web interface to control the amount of liquids/solids dispensed in each

dispenser.

https://paperpile.com/c/Y4Ebmk/HhCB
https://paperpile.com/c/Y4Ebmk/zjfx

2

2 Design

This automated Boba station will have two dispensers: one for tapioca pearls and one for milk

tea. We will be using a “revolving door” to dispense the tapioca pearls and a solenoid valve to

dispense the milk tea. An employee can manually refill the containers holding the milk tea and

tapioca pearls. In a commercial setting, there will then be a sloped gutter the dispensers will

dispense to, which direct the ingredients into a cup placed at the bottom. The cup will be on a

small raised platform with a load sensor underneath, which is connected to its own

microcontroller.

Each dispenser and sensor module will be powered by its own AC-DC transformer and

controlled by its own microcontroller module. All microcontrollers will have a Wi-Fi capability

and host a simple web server listening for instructions. A web server will be controlling the

microcontrollers via HTTP and serve a web user interface to control the amount of liquid/solid

dispensed and when to begin the Boba making process.

The modular and wireless design also allows for the customer to place dispensers wherever

convenient without needing to run data cables. The wireless nature also supports automatic over-

the-air software updates for updating or adding new features such as making dispensing more

efficient. (Similar to how Tesla can update their cars software functionalities automatically)

3

2.1 Block Diagram

Figure 1. Block Diagram

4

2.2 Physical Design

Figure 2. Physical Design of the machine

2.3 Liquid Dispensing Module

The liquid dispensing module is a core part of our automated Boba station since it dispenses the

necessary liquids (milk and tea) to make a Boba drink. It consists of a solenoid valve and the

circuitry required to open and close the valve given a GPIO pin voltage. As it relates to the rest

of the components, the liquid dispensing module will be directly connected to a microcontroller

module, which provides the aforementioned GPIO voltage.

2.3.1 Design Procedure

The first step was to decide between using a pump or a valve. Since we wanted high accuracy, a

pump was the best option as it could be opened and closed with much less latency than a pump.

Since pressurizing the liquid would introduce additional components and complexities, we also

narrowed our search for valves to those that are gravity fed.

There were two paths to create a circuit for driving our 12V 3A solenoid valve. One was to use

transistors, and the other was to use an electromechanical relay. We decided against a relay since

it introduces additional latency due to its mechanical design and would still need transistor

circuitry for control.

We initially followed the solenoid valve datasheet in our design by using a single TIP120

Darlington NPN transistor, and during breadboard testing the components operated as expected.

However, we forgot to verify operation over a longer period. It is only after PCB assembly and

5

testing, we noticed the abnormally high power dissipation being asked of the transistor due to the

high VCE characteristics of the TIP120[3]. We then re-designed the circuit using two

RFP30N06LE N-channel MOSFETs, shown in Figure 3, due their low VDS characteristics,

which alleviated the power dissipation problem. The reason we needed two was that the 3.3V

GPIO signal was unable to saturate the RFP30N06LE, so another was used as a gate driver.

We used the following equations in determining required voltages and power dissipation:

2.3.2 Design Details

Figure 3. Liquid Dispenser Driver

Due to the undefined characteristics of a floating MOSFET gate, a pulldown resistor is required

on the gate of the MOSFET labeled DRIVER in Figure 3. As the gate of the MOSFET also acts

as a capacitor, there needs to be a resistor between the GPIO pin and the gate to limit

instantaneous current flow and prevent damage to the microcontroller. In addition, a resistor is

needed to prevent a short when the DriverFET is opened. This resistor also needs to keep

ValveFET above saturation voltage while DriverFET is closed. Finally, a flyback diode was

added across the solenoid terminals to eliminate inductive flyback from the solenoid.

https://paperpile.com/c/Y4Ebmk/gHcs

6

2.3.2.1 Calculations

Microcontroller Specifications [4] :

RFP30N06LE N-Channel MOSFET Specifications [5] :

Solenoid Valve Specifications [6] :

Calculations:

For , we just plugged in various resistors to satisfy the following equation:

We found to work well.

From Table 1 in the verification section, we can calculate the power dissipation across the

MOSFETs and ensure safe operations.

2.4 Solid Dispensing Module

The solid dispensing module is responsible for dispensing solid toppings. We chose to build

around dispensing tapioca pearls as it is the most popular topping. However, the system can be

adapted to dispense other types of toppings with modification to the mechanical portion.

https://paperpile.com/c/Y4Ebmk/J6Uh
https://paperpile.com/c/Y4Ebmk/Fya7
https://paperpile.com/c/Y4Ebmk/TFf2

7

2.4.1 Design Process

We originally thought about using an Archimedes screw mechanism in moving and dispensing

the pearls. However, we were unable to find a pre-made mechanical solution that was viable in

terms of cost and building one from scratch would be too difficult as it requires advanced 3D

modeling techniques that none of us were capable of.

Our final design was inspired by cereal dispensers in the school cafeterias, which allows for

dispensing of solids via a rotating-door mechanism.

2.4.2 Design Details

The final design calls for a rotating tube with a hole sitting inside a block. In the “closed” state,

the toppings drop into hole in the tube, which is facing up at 0 degree. To dispense, a PWM

signal is sent to the servo, and the servo rotates 180-degree so the hole faces down, and the

toppings fall out into the cup. After a few seconds, another PWM signal is sent to the servo to

rotate back to 0 degree.

Figure 4. Solid Dispensing Mechanism Parts

The size of the mechanism was crucial as every gram of material affects the final cost for 3D

printing. The small size of the final mechanism also helped simplify the circuitry. The lower

torque required by the smaller size allows for use of a 5V servo, which it turns allows for control

by a 3.3V PWM signals directly from the microcontroller [7].

2.4.2.1 Calculations

To calculate the required PWM duty cycle for 180-degree rotation, we followed Figure 5.

https://paperpile.com/c/Y4Ebmk/HG5T

8

Figure 5. PWM signal vs position [8]

Given a 50Hz signal, as recommended by various sources, and a duty cycle out of 1024.

2.5 Weight Sensing Module

2.5.1 Design Procedure

The purpose of this module is to measure the weight of liquids and solids already dispensed in

the cup. We chose the TAL221 mini load cell (500g, straight bar) as the weight sensor for its

ability to accurately measure weight up to 500 g.

Since the load cell alone outputs a tiny (< 8 mV) voltage, it would be nice if we could amplify it

and convert it into a digital signal. Thus, we have an Amplifier/ADC board that does exactly

that. The board uses an HX711 chip since it is a precise 24-bit ADC designed for use in

applications such as weight sensing [9]. The design of the board schematic, based on the block

diagram on the first page of the HX711 datasheet [9], provides a simplified interface to the

HX711.

2.5.2 Design Details

2.5.2.1 Load Cell

We mounted the load cell under the platform the cup sits on. As verified, when a constant

voltage is applied to its red/black input wires, the load cell outputs a small voltage that increases

as the weight on the load cell increases. From the verification Figure 12, the linear model of the

load cell is:

where weight is assumed to be no more than 500 g. Thus, the output voltage is no more than

0.00715 V. We found that the Pearson correlation coefficient is 1.0, so a linear model is an

extremely good fit.

https://paperpile.com/c/Y4Ebmk/7q9v
https://paperpile.com/c/Y4Ebmk/Z8Tz
https://paperpile.com/c/Y4Ebmk/Z8Tz

9

2.5.2.2 Load Cell Amplifier/ADC

In the schematic of the Amplifier/ADC board in Figure 6, the RED, BLK, WHT, and GREEN

pins are connected directly to the load cell. The VDD, VCC, and GND pins are connected to 3.3

V, 5.0 V, and ground respectively. Finally, the CLK and DATA pins are connected to the

microcontroller’s GPIO pins.

Figure 6. Load Cell Amplifier/ADC Schematic

2.5.2.3 Weight Sensing Software

The HX711 has a digital value corresponding to weight, but how does the microcontroller obtain

it? The microcontroller must be programmed to follow the HX711’s serial interface, which is as

follows. The HX711 can be powered down by changing CLK from low to high and having it be

high for > 60 us. It can be powered up by returning CLK to low. To read a digital value, wait

until DATA is low. Then, apply 25 pulses to CLK where each pulse is high for < 50 us. Each

pulse shifts out one bit from DATA, starting with the most significant bit, until all bits are shifted

out. The 25th pulse causes DATA to go back to high until another digital value is ready to be

read.

With this, we can get a digital value from the microcontroller corresponding to the weight. From

verification, a linear fit of the digital value vs. the weight is:

where the weight is in grams. Therefore, to have the weight sensing software output the weight

in grams, we divide the digital value by 2966.

2.6 Microcontroller Module

The microcontroller module handles communication with the main server and control of the

previously mentioned modules through GPIO. As most microcontrollers run at 3.3V, we will

need some voltage regulator to step down from the 12V or 5V power from the power supply. In

addition, the microcontroller module will also need the passive components required for

controlling and programming the microcontroller chip.

10

2.6.1 Design Process

We first needed to decide on which microcontroller chip to use. We needed Wi-Fi capabilities to

allow the main server can contact each individual microcontroller through HTTP requests.

Initially, we looked at using the ATmega328 chip as the main microcontroller running the logic

along with a slave Wi-Fi module. However, it seemed quite pointless as the ESP8266 WIFI

module was much more powerful in terms of functionality than the ATmega chip.

For power delivery, we decided to go with the TSR 1-2433 as building our own buck converter

would not have been more cost effective.

2.6.2 Design Details

Figure 7. Microcontroller Module Schematic

In our microcontroller module, we also needed various passive components for programming

and control of the ESP chip. For example, there is a step-down circuitry at the top of Figure 7

near the pins labeled SERIAL. This is used for stepping down to 3.3V the 5V logic level from a

USB to Serial chip in an Arduino Uno board. To the right, near the GPIO pins, is a DPDT slide

switch, to disconnect the GPIO pins. This is used to prevent undefined logic levels in the other

modules from preventing the ESP chip from booting correctly, as the GPIO pins also serve to put

the ESP chip into bootloader mode.

2.6.2.1 Software

We flashed the MicroPython firmware on our microcontrollers [10]. This allows for

programming over WIFI as well, which eliminated the need for serial programming after

flashing.

To further simplify programming, all the microcontrollers, regardless of what module they are

connected to, run the same code. They are then configured to do certain tasks by the main server.

This modularity also allows us to swap the microcontrollers onto different modules, in the case

one break, without having to load new software.

https://paperpile.com/c/Y4Ebmk/cHUF

11

Figure 8. Microcontroller State Diagram

2.7 Web App / Server

The software routes information between the main server, the microcontrollers controlling the

dispensers, and the web interface. All routing and information of transfer will be done via HTTP

and thus TCP to ensure accurate retrieval of information and instructions.

2.7.1 Software Design Procedure

The software logic for the main server evolved as we continually tested with the entire

dispensing procedure and finding ways to improve its efficiency. This was what put all the

modules together and ran the entire dispensing sequence. Thus, we had to do this last, after all

the modules and microcontroller software were usable. We were all familiar with Python, which

is why we used it along with the Flask Web Framework.

We first manually found all the IPs of each individual microcontroller and then tested each

module by sending http requests from our web server. We then were able to accurately measure

the rate of liquid flowing through the solenoid valve when it was open. Thus, through trial and

error we were able to find that opening the valve for 0.1 seconds was around 10g or 10mL. For

solid dispensing, we tried out different waiting times for the tapioca pearls to drop down into the

hole in the tube. Throughout this process, we also realized the microcontroller wasn’t powerful

enough for the main server to constantly send http requests to the one controlling the load sensor,

since it crashed once we did. Thus, this changed how we interfaced with microcontrollers such

that we would make as little requests as possible, which required updates to the microcontroller

software. Specific examples included sending the liquid dispenser a time of how long to open

12

instead of separate commands of “open” and “close” and the use of “ticks” which were rounds in

the main server logic that occurred every second, so we wouldn’t overload the microcontrollers.

2.6.2 Software Design Details

2.6.2.1 High Level Architecture

A main web server, running on a personal computer, will serve the user-friendly web User

interface, which will receive user input in the configuring the amount of liquids and solids to

dispense. A web interface will interact with the main server through its REST API endpoints,

which provides an easy interface to controlling the different modules including a mobile app for

the future.

When the main server boots up, it will automatically search through the entire network to find

the IPs of the given microcontrollers and then configure them for their respective modules

through setting their `mode`, which was described in the microcontroller section. The user can

automatically do this again, in cases including when one of the microcontrollers wasn’t on at the

time the main server booted up or the user needed to reboot one of the microcontrollers.

Figure 9. Software High Level Architecture

2.7.2.3 Routing and Dispensing Logic

Figure 10 describes the network transfer logic when a user starts the boba making process,

beginning from the main server receiving that request (which includes the amount of milk tea

and boba to dispense). Based on the configurations, it begins to give instructions to the

respective microcontroller, starting with the solid dispenser module. This order - dispensing

solids before liquids - prevents splashing.

13

For the solid dispensing, the configuration the user passes in is the number of “ticks” or rounds

the solid dispenser will turn. As shown in the microcontroller section, there is an on or off state

which determines the servo’s rotation. It will wait 8 seconds for the pearls to slide into the holder

before turning 180 degrees drop the pearls into the cup. It then waits for another 6 seconds. That

is one “tick” or round. The default number of ticks is 3. We purposely wait because the pearls

take a while to slide into the dispenser and to fall out of it (our video shows how slow it is).

Figure 10. Routing and Dispensing Logic

The liquid dispensing logic is more complex. For every tick, we first send a request for the load.

Based on the current load and the desired load, we find a proportional rate to which the valve

opens for. Initially, the rate is at 0.05 for the first 5 ticks to start off slow, which prevents the cup

from being knocked around. It then goes to the default rate of 0.1 seconds. And once the load

crosses the threshold load (we set to 20mL below the desired load), the proportional rate is the

following equation, where target is the desired load set by the user, current is the current load,

threshold as the threshold load in which the rate should slow down is:

14

If the user wants 10mL, it would still work. Figure 11 shows the total open time of the valve and

load for a desire load of 200mL or 200g. Each dot represents a tick. You can then see a smaller

rate (smaller open time) at the beginning and when the load reaches 180g (the threshold load),

the rate slows down based on the equation above. Appendix B has the raw data table.

Figure 11. Liquid Dispensing: total open valve time vs load

To combat the deficiencies of networking (server crashing, network packet loss, etc), there is an

upper-bound of 30 ticks (any cup bigger than the normal medium sized cup with 500mL doesn’t

require more than 30 ticks) on how long the liquid dispenser dispenses for and the

microcontroller must return an acknowledge response back to the main server whenever it

receives an instruction from it. If the request to the microcontroller times out, which usually

means the microcontroller died, the entire process will stop through a python exception as a

safety precaution. In addition, there is a STOP button on the interface that overrides and stops all

actions.

15

3 Verification

3.1 Liquid Dispenser Module

These readings correspond to the final schematic in Figure 2. The voltage is

applied using a lab bench, and the solenoid valve is connected across the ports Solenoid1 and

Solenoid2. As stated in the datasheet [6], any will open the valve.

Table 1. Multimeter Readings for Liquid Dispensing Driver Circuitry

0V ~5.8V ~1V ~11V

3.3V 0V 12V 0V

3.2 Solid Dispenser Module

Since there was no need to implement a level shifter in our final design, we did not need to verify

the servo control circuitry. We connected the servo’s control line directly to the microcontroller

GPIO and applied the PWM signal calculated 2.4.2.1. However, this did not allow the servo to

rotate a full 180 degree. Below is the final duty cycle values that allowed for full 180 degree

rotation.

3.3 Weight Sensing Module

The load cell output increases as weight increases, as required. Further, the output increases

linearly as weight increases.

Figure 12. Multimeter Readings for Load Cell

https://paperpile.com/c/Y4Ebmk/TFf2

16

4 Costs and Schedule

4.1 Cost Analysis

4.1.1 Labor

We assume a reasonable salary of $50 / hour. Further, we estimate that each group member will

work an average of 12 hours a week for 15 weeks. Therefore, the estimated labor cost is

$50

ℎ𝑟
∗ 2.5 ∗ (

12 ℎ𝑟𝑠

1 𝑤𝑒𝑒𝑘
∗ 15 𝑤𝑒𝑒𝑘𝑠) ∗ (3 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠) = $67,500

We also estimate a salary of $50 / hour for the machine shop, who worked for 5 weeks.

Therefore, the machine shop labor cost is

$50

ℎ𝑟
∗ 2.5 ∗ (

12 ℎ𝑟𝑠

1 𝑤𝑒𝑒𝑘
∗ 5 𝑤𝑒𝑒𝑘𝑠) ∗ (1 𝑤𝑜𝑟𝑘𝑒𝑟) = $7,500

4.1.2 Parts

Part Cost

Liquid Dispensing Mechanism $42.58

Brass Liquid Solenoid Valve - 12V (Digikey; 1528-1280-ND) $24.95

RFP30N06LE N-Channel MOSFET (Amazon) $0.99

DCJ0202 Barrel Jack (Addicore) $0.65

1N4004 Diode (Addicore) $0.15

Chanzon 12V 5A 60W AC DC Power Supply $15.84

Solid Dispensing Mechanism $162.91

Towerpro SG92 Servo (Digikey; 1528-1076-ND) $5.95

BSS138 - SMD (Digikey; BSS138CT-ND) $0.31

DCJ0202 Barrel Jack (Addicore) $0.65

120VAC to 5V 2A DC Power Converter (Amazon) $6.00

3D Printed Solid Dispenser $150

17

Weight Sensing Mechanism $27.85

Load Cell - 500g (Digikey; 1568-1899-ND) $11.25

Load Cell Amplifier HX711 (Digikey; 1568-1436-ND) $9.95

DCJ0202 Barrel Jack (Addicore) $0.65

120VAC to 5V 2A DC Power Converter (Amazon) $6.00

Microcontroller x 3 $32.10

ESP8266 ver. ESP-01 (Addicore) $3.95

Traco Power TSR 1-2433 (Digikey; 1951-2742-ND) $6.14

6x6x5mm Pushbuttons (Addicore) $0.10

DPDT DIP Slide Switches (Ebay) $0.40

10uF Electrolytic Capacitors (Addicore) $0.11

Non-Electrical Components $30.00

General Structure $30.00

Total $265.44

4.2.3 Grand Total

𝐺𝑟𝑎𝑛𝑑 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝑙𝑎𝑏𝑜𝑟 + 𝑝𝑎𝑟𝑡𝑠 =$75,265.44

18

5 Conclusions

5.1 Accomplishments

We were successful in satisfying all our high-level requirements and requirements & verification

for all of our modules. We had two dispensers, one for liquid and one for the solids (tapioca

pearls) and had a web interface to allow the user to customize the desired amount of liquid/solid

to dispense. In addition, we were able to dispense the liquid within ±1mL, which surpassed our

requirement of ±10% error in mass tremendously and were able to get within 1mL when trying

to just dispense 10mL. We were also able to have a modular design, with the same

microcontroller software and board for the liquid, solid, and load modules, proving the easy

extensibility. Finally, we were able to fully dispense a milk tea with tapioca pearl drink, from

plugging in the machine, to starting the server, to starting the sequence through the web

dashboard, to the finished drink.

The design of the solid dispenser could be better though. Some issues we encountered were the

high cost, leaks due to loose tolerances, tapioca pearls clumping up, and pearls blocking each

other. These issues could be alleviated through better mechanical design, which was not our

forte.

5.3 Ethical Concerns

While working on this project, we abided by the IEEE Code of Ethics and the ACM Code of

Ethics in their entirety. For this project, it is important to commit ourselves to #1 of the IEEE

Code of Ethics: “to hold paramount the safety, health, and welfare of the public, to strive to

comply with ethical design and sustainable development practices, and to disclose promptly

factors that might endanger the public or the environment”[11].

Throughout the process, we have followed the safety precautions mentioned in our Design

Document. For instance, we will use certified transformers to convert 120 V AC to 5 V DC and

12 V DC. In addition, tapioca pearls, are made of tapioca starch and can be safety kept at room

temperature for 10 hours[12]. Boba may be coated with honey, which is itself antibacterial

because of its high osmolarity (concentration), high acidity, and presence of hydrogen

peroxide[13]. On the other hand, room temperature milk tea can only be safety kept at room

temperature for 2 hours[14]. We were careful to let any person drink any drink dispensed by this

dispenser, even if it the pearls or milk tea weren’t expired, just as a safety precaution. [Citation

error]

5.4 Acknowledgements

Our team would like to thank our teaching assistant John Kan for his continuous guidance on this

project throughout the semester. In addition, we would like to thank the ECE445 Professors for

organizing this course. We hope to continue the project and commercialize if the opportunities

arise.

https://paperpile.com/c/Y4Ebmk/5sJ4
https://paperpile.com/c/Y4Ebmk/nDJj
https://paperpile.com/c/Y4Ebmk/tjZY
https://paperpile.com/c/Y4Ebmk/U1J6
http://127.0.0.1:8080/c/error
http://127.0.0.1:8080/c/error

19

References

[1] “Everything You Need to Know About Bubble Tea,” Sous Chef. [Online]. Available:

https://www.souschef.co.uk/blogs/the-bureau-of-taste/everything-you-need-to-know-about-

bubble-tea. [Accessed: 01-May-2019].

[2] “Milk Tea& Iced Tea,” Sunny’s BoBa. [Online]. Available: http://sunnysboba.com/milk-tea-

-iced-tea.html. [Accessed: 01-May-2019].

[3] “TIP120 Datasheet.” [Online]. Available: https://cdn-

shop.adafruit.com/datasheets/TIP120.pdf. [Accessed: 01-May-2019].

[4] P. Pieter, “A Beginner’s Guide to the ESP8266.” [Online]. Available:

https://tttapa.github.io/ESP8266/Chap04%20-%20Microcontroller.html. [Accessed: 01-

May-2019].

[5] “RFP30N06LE Datasheet.” [Online]. Available:

https://www.sparkfun.com/datasheets/Components/General/RFP30N06LE.pdf. [Accessed:

01-May-2019].

[6] “Brass Liquid Solenoid Valve - 12V - 1/2 NPS.” [Online]. Available:

https://media.digikey.com/pdf/Data%20Sheets/Adafruit%20PDFs/996_Web.pdf. [Accessed:

01-May-2019].

[7] “HS-311 Servo.” [Online]. Available: https://www.servocity.com/hs-311-servo. [Accessed:

01-May-2019].

[8] “How Does a Servo Work?” [Online]. Available: https://www.servocity.com/how-does-a-

servo-work. [Accessed: 01-May-2019].

[9] “24-Bit Analog-to-Digital Converter (ADC) for Weigh Scales.” [Online]. Available:

https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/hx711_english.pdf. [Accessed: 01-

May-2019].

[10] “MicroPython tutorial for ESP8266 — MicroPython 1.10 documentation.” [Online].

Available: https://docs.micropython.org/en/latest/esp8266/tutorial/. [Accessed: 01-May-

2019].

[11] “IEEE Code of Ethics.” [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 01-May-2019].

[12] “FAQ.” [Online]. Available: https://www.bubbleteasupply.com/faq/. [Accessed: 01-May-

2019].

[13] S. M. Manisha Deb Mandal, “Honey: its medicinal property and antibacterial activity,”

Asian Pac. J. Trop. Biomed., vol. 1, no. 2, p. 154, Apr. 2011.

http://paperpile.com/b/Y4Ebmk/HhCB
http://paperpile.com/b/Y4Ebmk/HhCB
http://paperpile.com/b/Y4Ebmk/HhCB
http://paperpile.com/b/Y4Ebmk/HhCB
https://www.souschef.co.uk/blogs/the-bureau-of-taste/everything-you-need-to-know-about-bubble-tea
https://www.souschef.co.uk/blogs/the-bureau-of-taste/everything-you-need-to-know-about-bubble-tea
http://paperpile.com/b/Y4Ebmk/HhCB
http://paperpile.com/b/Y4Ebmk/zjfx
http://paperpile.com/b/Y4Ebmk/zjfx
http://paperpile.com/b/Y4Ebmk/zjfx
http://sunnysboba.com/milk-tea--iced-tea.html
http://sunnysboba.com/milk-tea--iced-tea.html
http://paperpile.com/b/Y4Ebmk/zjfx
http://paperpile.com/b/Y4Ebmk/gHcs
https://cdn-shop.adafruit.com/datasheets/TIP120.pdf
https://cdn-shop.adafruit.com/datasheets/TIP120.pdf
http://paperpile.com/b/Y4Ebmk/gHcs
http://paperpile.com/b/Y4Ebmk/J6Uh
http://paperpile.com/b/Y4Ebmk/J6Uh
https://tttapa.github.io/ESP8266/Chap04%20-%20Microcontroller.html
http://paperpile.com/b/Y4Ebmk/J6Uh
http://paperpile.com/b/Y4Ebmk/J6Uh
http://paperpile.com/b/Y4Ebmk/Fya7
http://paperpile.com/b/Y4Ebmk/Fya7
https://www.sparkfun.com/datasheets/Components/General/RFP30N06LE.pdf
http://paperpile.com/b/Y4Ebmk/Fya7
http://paperpile.com/b/Y4Ebmk/Fya7
http://paperpile.com/b/Y4Ebmk/TFf2
http://paperpile.com/b/Y4Ebmk/TFf2
https://media.digikey.com/pdf/Data%20Sheets/Adafruit%20PDFs/996_Web.pdf
http://paperpile.com/b/Y4Ebmk/TFf2
http://paperpile.com/b/Y4Ebmk/TFf2
http://paperpile.com/b/Y4Ebmk/HG5T
https://www.servocity.com/hs-311-servo
http://paperpile.com/b/Y4Ebmk/HG5T
http://paperpile.com/b/Y4Ebmk/HG5T
http://paperpile.com/b/Y4Ebmk/7q9v
https://www.servocity.com/how-does-a-servo-work
https://www.servocity.com/how-does-a-servo-work
http://paperpile.com/b/Y4Ebmk/7q9v
http://paperpile.com/b/Y4Ebmk/Z8Tz
http://paperpile.com/b/Y4Ebmk/Z8Tz
https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/hx711_english.pdf
http://paperpile.com/b/Y4Ebmk/Z8Tz
http://paperpile.com/b/Y4Ebmk/Z8Tz
http://paperpile.com/b/Y4Ebmk/cHUF
http://paperpile.com/b/Y4Ebmk/cHUF
https://docs.micropython.org/en/latest/esp8266/tutorial/
http://paperpile.com/b/Y4Ebmk/cHUF
http://paperpile.com/b/Y4Ebmk/cHUF
http://paperpile.com/b/Y4Ebmk/5sJ4
http://paperpile.com/b/Y4Ebmk/5sJ4
https://www.ieee.org/about/corporate/governance/p7-8.html
http://paperpile.com/b/Y4Ebmk/5sJ4
http://paperpile.com/b/Y4Ebmk/nDJj
https://www.bubbleteasupply.com/faq/
http://paperpile.com/b/Y4Ebmk/nDJj
http://paperpile.com/b/Y4Ebmk/nDJj
http://paperpile.com/b/Y4Ebmk/tjZY
http://paperpile.com/b/Y4Ebmk/tjZY
http://paperpile.com/b/Y4Ebmk/tjZY
http://paperpile.com/b/Y4Ebmk/tjZY

20

[14] “Danger Zone.” [Online]. Available: https://www.fsis.usda.gov/wps/portal/fsis/topics/food-

safety-education/get-answers/food-safety-fact-sheets/safe-food-handling/danger-zone-40-f-

140-f/CT_Index. [Accessed: 01-May-2019].

http://paperpile.com/b/Y4Ebmk/U1J6
https://www.fsis.usda.gov/wps/portal/fsis/topics/food-safety-education/get-answers/food-safety-fact-sheets/safe-food-handling/danger-zone-40-f-140-f/CT_Index
https://www.fsis.usda.gov/wps/portal/fsis/topics/food-safety-education/get-answers/food-safety-fact-sheets/safe-food-handling/danger-zone-40-f-140-f/CT_Index
https://www.fsis.usda.gov/wps/portal/fsis/topics/food-safety-education/get-answers/food-safety-fact-sheets/safe-food-handling/danger-zone-40-f-140-f/CT_Index
http://paperpile.com/b/Y4Ebmk/U1J6

21

Appendix A

Table 1. System Requirements and Verifications

Requirement Verification Verification

Status

Power Supply: 120 VAC to 12 VDC

Transformer

1. Converts 120 VAC to 12 VDC.

Power Supply: 120 VAC to 12 VDC

Transformer

1A. Connect the input of the power supply to a

wall outlet outputting 120 VAC.

1B. Measure the output voltage using an

oscilloscope. Check that the output voltage is

in the range 12 V +/- 5%.

1. Y

Power Supply: 120 VAC to 5 VDC

Transformer

1. Converts 120 VAC to 5 V DC.

Power Supply: 120 VAC to 5 VDC

Transformer

1A. Connect the input of the power supply to a

wall outlet outputting 120 V AC.

1B. Measure the output voltage using an

oscilloscope. Check that the output voltage is

in the range 5 V +/- 5%.

1. Y

Liquid Dispensing Mechanism

1. The dispensing mechanism must be able

to dispense 10 mL +/- 5% milk tea in 0.1

second of opening.

Liquid Dispensing Mechanism

1A. Connect it to a microcontroller and open it

for 0.1 second.

1B. Measure whether the amount of dispensed

material is accurate.

1. Y

Liquid Dispensing Mechanism: Solenoid

Valve

1. Valve must open when 12 V +/- 5% is

applied.

2. Valve must be gravity fed (allow flow of

liquid by gravity alone when open), as no

Liquid Dispensing Mechanism: Solenoid

Valve

1A. Apply 12V DC to the valve’s input.

1B. Ensure that the valve opens fully within 1

second of verification 1A.

1. Y

2. Y

22

other liquid pressurizing mechanism is in

place.

2. During verifications 1A and 1B, place a

liquid container above the valve and attach it.

Ensure that liquid both enters and exits the

valve.

Liquid Dispensing Mechanism: Solenoid

Control

1. Must be able to output 12 V +/- 5% and

3 A +/- 5% to the solenoid valve.

Liquid Dispensing Mechanism: Solenoid

Control

1A. Apply 3.3V to transistor base.

1B. Measure the output voltage and current

using an oscilloscope. Check that the output

voltage is in the range 12 V +/- 5% and check

that the output current is in the range 3 A +/-

5%.

1. Y

Solid Dispensing Mechanism

1. The solid dispensing mechanism must

dispense at least 1 tapioca pearls during 1

second of opening.

Solid Dispensing Mechanism

1A. Connect it to a microcontroller and open it

for one second.

1B. Measure the amount of dispensed pearls.

1. Y

Solid Dispensing Mechanism: Servo and

Door

1. Servo must provide enough torque to

rotate the tube.

2. Servo must be able to rotate 180 degrees.

3. Door must be 1” wide.

Solid Dispensing Mechanism: Servo and

Door

1A. Connect the servo to the PVC tube and

apply a 1ms pulse of 3.3 V DC to the servo.

Ensure that the PVC tube rotates easily.

2A. Repeat verification 1A, but with a pulse of

2.4ms. Ensure that the PVC tube rotates any

amount greater than or equal to 180 degrees.

3A. Measure the door with ruler and verify

whether it’s 1” wide.

1. Y

2. Y

3. Y

Weight Sensing Mechanism: Load

Sensor

1. Sensor must be able to produce a signal

< 1 V that increases as the weight on the

cell increases.

Weight Sensing Mechanism: Load Sensor

1A. Rigidly attach the load cell to two plates.

1B. Connect the load cell’s red wire to 5 V

and its black wire to ground.

1C. Connect the load cell’s green and white

wires to an oscilloscope.

1. Y

23

1D. Apply increasing weight on top of the

load cell. The oscilloscope reading should

increase as the weight on the cell increases.

Weight Sensing Mechanism: Load

Sensor ADC

1. Must be able to read voltages less than

0.5 V from a load cell and convert it to a

digital value that a microcontroller can

read.

Weight Sensing Mechanism: Load Sensor

1A. Connect the ADC circuit to the load cell

and to a microcontroller.

1B. Apply 25 pulses to pin CLK. The

microcontroller should be able to obtain a

number from the DATA pin that increases as

the weight on the load cell increases.

1. Y

Control Unit: Microcontroller

1. Microcontroller connected to network

and can communicate with laptop.

2. Set a HIGH signal (3.3 V) on GPIO 2

when a Request “v=1” is sent to the

microcontroller.

Respond “OK”.

3. Set a LOW signal (0 V) on GPIO 2 when

a Request“v=0” is sent to the

microcontroller. Respond “OK”.

4. Set a PWM signal MIN (pulse width 1

ms) for 2 seconds, then off on GPIO 2

when Request “PWMv=0” is received.

Respond “OK”.

5. Set a PWM signal MAX (pulse width 2

ms) for 2 seconds, then off on GPIO 2

when Request “PWMv=1” is received.

Respond “OK”.

6. Read value from GPIO 2 when Request

“SENSOR,v=0” is received. Respond with

value.

Control Unit: Microcontroller

1A. Ping microcontroller IP from laptop.

B. Verify response

2A. Send “v=1” to microcontroller from

laptop

B. Probe GPIO 2. Check for 3.3 V

3A. Send “v=0” to microcontroller from

laptop

B. Probe GPIO 2. Check for 0 V

4A. Send “PWM,v=1” to microcontroller from

laptop

B. Probe GPIO 2 with oscilloscope. Check for

3.3V PWM with duty cycle 50% at freq =

50hz.

5A. Send “PWM,v=0” to microcontroller from

laptop

B. Probe GPIO 2 with oscilloscope. Check for

3.3 V PWM with pulse width 13% at freq =

50hz.

6A. Send “v=0” to microcontroller from

laptop

B. Verify response value is proportional to

weight on sensor by varying weight.

1. Y

2. Y

3. Y

4. Y

5. Y

6. Y

24

Control Unit: Control Unit Power

Delivery

1. Must supply 3.3 V DC at 1 A +/- 5%

Control Unit: Control Unit Power Delivery

1A. Attach V_In and GND to test bench

power supply, vary input voltage between 4.5

V to 12.5 V.

B. Probe V_Out with oscilloscope and insure

stable 3.3 V output.

C. Attach microcontroller, ensure stable 3.3 V

under load.

1. Y

Control Unit: Web Server

1. Must be able to send HTTP requests

through port 80.

Control Unit: Web Server

1A. Run server, check if it’s using port 80.

Send a request to the server and it should send

back a response

1. Y

25

Appendix B

Liquid Dispensing Logic Data for a desired load of 200g with final load of 299.22g. Tick is the

round. Rate is the amount of time the solenoid valve is open for.

Tick Rate (sec) Total Time (sec) Load (g)

0 0.05 0.05 0.194

1 0.05 0.1 4.93

2 0.05 0.15 9.5

3 0.1 0.25 19.25

4 0.1 0.35 24.5

5 0.1 0.45 34.2

6 0.1 0.55 44.15

7 0.1 0.65 54.27

8 0.1 0.75 64.35

9 0.1 0.85 74.65

10 0.1 0.95 84.91

11 0.1 1.05 94.97

12 0.1 1.15 104.94

13 0.1 1.25 114.97

14 0.1 1.35 124.91

15 0.1 1.45 134.71

16 0.1 1.55 144.53

17 0.1 1.65 154.05

18 0.1 1.75 163.77

19 0.1 1.85 175.99

26

20 0.056 1.906 182.305

21 0.045 1.951 189.31

22 0.071 2.022 197.411

Final 2.1 199.22

