
 
 

 

  

ILLINI THEREMIXER 

By 

Karthik Achar 
Shiv Kapur 

Akhil Reddy 
 
 

Final Report for ECE 445, Senior Design, Spring 2019 
TA: Zhen Qin 

1 May 2019 
Project No. 15 



ii 
 

Abstract 

The Illini Theremixer is a project that aims to utilize the fundamental characteristics of a traditional musical 
instrument, the Theremin, to achieve modern music applications. By utilizing hand movements relative to 
the antennas on the Theremixer, users can mix music. The relative hand placement with the function 
select antenna (the antenna that is vertical) dictates the current filter applied to the live audio: bass 
boosting, mid boosting, treble boosting, or volume boosting. On the other hand, the relative placement 
with the magnitude antenna (the antenna that is horizontal) dictates the magnitude at which the current 
filter is amplified or attenuated. This report entails the research and development of the Illini Theremixer, 
and the various successes and challenges during the course of this project. Our primary results included 
various modules that functioned as per requirement, but we faced several challenges in properly 
integrating all parts together. 
  



iii 
 

Contents 
1 Introduction ............................................................................................................................................... 1 

1.1 Purpose ............................................................................................................................................... 1 

1.2 Functionality ....................................................................................................................................... 1 

1.3 Subsystem Overview ........................................................................................................................... 2 

2 Design ......................................................................................................................................................... 3 

2.1 Power .................................................................................................................................................. 3 

2.1.1 14 V AC Transformer .................................................................................................................... 3 

2.1.2  12 V Regulator ........................................................................................................................... 3 

2.1.3 + 2.5 V Regulator .......................................................................................................................... 3 

2.1.4 + 3.3 V Regulator .......................................................................................................................... 4 

2.2 Hardware ............................................................................................................................................ 4 

2.2.1 Antenna Circuits ........................................................................................................................... 4 

2.2.2 Oscillator Circuits ......................................................................................................................... 4 

2.3 Sampling .............................................................................................................................................. 5 

2.3.1 Buffer Circuits............................................................................................................................... 6 

2.3.2 Analog to Digital Converter .......................................................................................................... 6 

2.4 Software .............................................................................................................................................. 6 

2.4.1 SPI Protocol .................................................................................................................................. 6 

2.4.2 FFT Implementation ..................................................................................................................... 6 

2.4.3 Audio Filters ................................................................................................................................. 7 

3. Design Verification .................................................................................................................................... 8 

3.1 Power .................................................................................................................................................. 8 

3.2 Hardware ............................................................................................................................................ 8 

3.2.1 Antenna Circuits ........................................................................................................................... 8 

3.2.2 Oscillator Circuits ......................................................................................................................... 9 

3.2.3 Integration ................................................................................................................................... 9 

3.3 Sampling ............................................................................................................................................ 10 

3.4 Software ............................................................................................................................................ 10 

4. Costs & Schedule ..................................................................................................................................... 11 

4.1 Parts .................................................................................................................................................. 11 

4.2 Labor ................................................................................................................................................. 12 

4.3 Schedule ............................................................................................................................................ 12 

5 Conclusion ................................................................................................................................................ 14 

5.1 Accomplishments .............................................................................................................................. 14 



iv 
 

5.2 Uncertainties ..................................................................................................................................... 14 

5.3 Future work ....................................................................................................................................... 14 

5.4 Ethical considerations ....................................................................................................................... 15 

6 References ............................................................................................................................................... 16 

Appendix A: Requirement and Verification Table ...................................................................................... 17 

Appendix B: Circuit Schematics, Graphs, and Data ..................................................................................... 21 

Appendix C: Software Program Code ......................................................................................................... 30 



1 
 

1 Introduction 
Throughout human history, innumerable musical instruments have been created to allow people to 
express themselves in their own ways. One such instrument is the Theremin, which is notable as an 
instrument that can be operated entirely without touching it. Its ingenious design utilizes two antennae, 
which individually control the pitch and volume of the output sound based on the distance of the player’s 
hands from each antenna. The Theremin is named after its inventor Léon Theremin, who received a patent 
for the device in 1928.  
 
Theremin’s original design used vacuum tubes and because of this operated at very high voltages; since 
its invention, multiple new designs have been created to adapt to modern tastes and technologies. The 
antennae in almost all designs function as variable capacitors, with the antenna itself serving as one plate 
and the user’s hand (or any other closer object) serving as the second, grounded plate. Modern analog 
Theremin designs often use dual oscillators and a heterodyne detector to extract pitch as a difference 
frequency, and while digital Theremin are now common and generally cheaper than their analog 
counterparts, analog Theremins are generally considered to have better sound quality and are preferred 
by serious musicians. 

1.1 Purpose 
After learning more about the Theremin and its history, we decided to bring a more modern light to this 
often-overlooked instrument. The Theremixer is an effort to repurpose analog Theremin technology to 
modify existing music, as one would with an equalizer or DJ controller. As music technology has advanced, 
the price and complexity of necessary equipment has also increased steeply. However, by taking 
advantage of the Theremin’s gesture-based controls, we hoped to design a simplistic and intuitive mixer 
capable of performing basic functions such as editing bass, midrange, treble, and volume in real time.  

1.2 Functionality 
To accurately measure the success of our project, we developed three high-level requirements that 
encompass the critical features of this project.  

1. The output signal from the magnitude oscillator will have a frequency of 142 kHz ±10%.  
2. The output signal from the function select oscillator will have a frequency of 430 kHz ±10%.  
3. Teensy Microprocessor will apply filters to increase and decrease bass, treble, mid, and volume 

levels of the imported song based on the output signals of the function and magnitude oscillators. 
The first two high-level requirements are important as they establish the control signals for the 
microprocessor’s filters and are critical to determine changes in relative hand positioning near the 
Theremixer’s antennas. The third high-level requirement is important to the success of this project 
because it implements the DSP filters on the microcontroller to provide the Theremixer mixing 
capabilities.  
 
A fully integrated Theremixer will use the output waveforms from the magnitude and function select 
oscillator as control signals to apply the various filters. Figure 1 indicates the physical design of the 
Theremixer. The function select antenna protrudes vertically out of the housing, while the magnitude 
detection antenna protrudes horizontally from the housing. The two antennas were placed on different 
axes to avoid unintended interference while playing the Theremixer. To play the instrument, a user places 
one hand in the desired function region near the function select antenna and another hand in the desired 
magnitude region near the magnitude detection antenna. For example, to decrease bass to a 25% level, a 



2 
 

user should place one hand near the function select antenna in the “Bass” region (purple ovals) as 
depicted in Figure 1 and one hand near the magnitude detection antenna in the “25%” region.  

1.3 Subsystem Overview 

 
Figure 2: Block Diagram of Theremixer Modules 

 
As Figure 2 illustrates, the Theremixer comprises of several subsystems that work together to provide 
necessary functionality. These subsystems include the Power Module, the Hardware Module, the 
Sampling Module, and Software Module. The Power Module includes the 14 V AC Transformer which is 
off board, the Center Tapped Full-Wave Rectifier and ± 12 Regulators on a perfboard, and the +2.5 V 
Regulator and + 3.3 V Regulator on the PCB. The Hardware Module consists of the function and magnitude 
antenna circuits which are off board and the function and magnitude oscillator circuits which are on the 
perfboard. The Sampling module includes the AD8022 Buffer Circuits and the AD7352 Analog to Digital 
Converter that are placed on the PCB. The Software module includes the Teensy Microprocessor that 
supports an input from an SD card and output to a speaker, all on the PCB.  

Teensy 3.2 

Figure 1: Theremixer Physical Design and Functionality 



3 
 

2 Design 
We built the Theremixer in four separate subsystems. The first subsystem is the power module which 
provides power to the other subsystems. The second subsystem is the hardware module which includes 
the antenna circuits and the oscillator circuits. The hardware portion is critical to establish the control 
signal for the software portion. The oscillator circuits create a sinusoidal waveform with a frequency that 
is altered by capacitance changes relative to hand positioning near the antenna. The outputs (two 
sinusoidal waveforms) are fed into the sampling components. The sampling components are the third 
subsystem in our design. This portion consists of buffering circuits and our ADC (AD7352). This subsystem 
processes the control signal and converts the analog input into a digital output that is processable by the 
software subsystem. The software subsystem consists of the Teensy 3.2 microcontroller which uses SPI 
communication to read the input from the sampling subsystem. The software subsystem also includes 
appropriate code to perform audio filtering operations and output the altered audio signal to a speaker. 

2.1 Power 
The power supplies we created worked through a 14 V AC Wall Transformer. Using this input, we created 

 12 V power rails to run the oscillator circuits, buffer circuits, + 2.5 V power supply, and + 3.3 V power 
supply. The + 2.5 V supply provided power to the AD7352. The + 3.3 V supply provided power to the 
Teensy 3.2 Microcontroller. In designing these power supplies, we kept in mind that we needed stable 
and consistent voltage outputs to avoid damaging parts. For this reason, we included several bypass 
capacitors at the inputs and outputs of our regulators and used parts that were properly rated for our use.  

2.1.1 14 V AC Transformer 
In this project, we used the Hammond Manufacturing 14 V AC Transformer BPD2EE to convert the input 
voltage to be used by a center-tapped full-wave rectifier. This center-tapped full-wave rectifier is based 
from the Etherwave Theremin Design and is intended to convert the half cycles of the 14 V AC signal into 
a pulsating DC signal with current flow in a single direction into the voltage regulator circuit using two 
D1N4001 diodes. The output of the voltage rectifier is the voltage regulator. We chose to also include a 
switch between the 14 V AC Transformer’s positive line and the input of the rectifier to make powering 
the circuit easier. Figure 3 in Appendix B is the circuit schematic of the 14 V AC Transformer and Figure 4 
is the circuit schematic of the Center-Tapped Full-Wave Voltage Rectifier. 

2.1.2  12 V Regulator 
The  12 V regulator creates power rails that are used by both oscillator circuits and the + 2.5 V regulator 
and +  3.3 V regulator. The voltage regulator circuit uses the LM7912 and LM7812, 3-Terminal 
Positive/Negative Regulators, to create the positive and negative voltage rails. The regulator schematic is 
adapted from the component data sheet to reflect the intended use. Figure 5 in Appendix B is the circuit 
schematic for this component. 

2.1.3 + 2.5 V Regulator 
The + 2.5 V Regulator powers the AD7352 ADC. It uses bypass capacitors at the inputs and outputs to 
reduce ripple voltage and smooth out the incoming and outgoing signals. The + 2.5 V Regulator also uses 
pin 4 to provide more ripple reduction and smoothing. We set tied the Enable Pin (Pin 3) to Vin to ensure 
that the voltage regulator was always functioning while the circuit was powered. The + 2.5 V Regulator 
used was the LP2985 regulator by Texas Instruments. The regulator schematic is adapted from the 
component data sheet to reflect the intended use. Figure 6 in Appendix B is the circuit schematic for this 
component. 
 

https://www.mouser.com/datasheet/2/177/166-1390002.pdf
https://www.diodes.com/assets/Datasheets/ds28002.pdf
http://www.ti.com/lit/ds/symlink/lm79.pdf
http://www.ti.com/lit/ds/symlink/lm340.pdf
http://www.ti.com/lit/gpn/LP2985-N


4 
 

2.1.4 + 3.3 V Regulator 
The + 3.3 V Regulator powers the Teensy 3.2 microcontroller. It uses bypass capacitors at the inputs and 
outputs to reduce ripple voltage and smooth out the incoming and outgoing signals. The regulator used 
in this project was the LP2950 by Texas Instruments. The regulator schematic is adapted from the 
component data sheet to reflect the intended use. Figure 7 in Appendix B is the circuit schematic for this 
component. 

2.2 Hardware 
The Hardware Subsystem consists of the antenna circuits and oscillator circuits. The overarching purpose 
of the hardware subsystem is to create analog control signals to be sampled by the sampling subsystem. 
The antenna circuits and oscillator circuits are based from the Etherwave Theremin design [2]; however, 
parts were replaced based on availability. The oscillators are designed to create a stable high frequency 
sinusoidal waveform that has an increasing frequency when a hand comes near the oscillator’s respective 
antenna. These high frequency sinusoidal waveforms serve as the control signals for the Theremixer.  

2.2.1 Antenna Circuits  
The antenna circuits connect to the respective oscillator circuits as indicated in the circuit schematics. Our 
antennas are designed based on the fundamental concept of the Etherwave Theremin design. In the 
Etherwave Theremin design, a copper plated tube serves as an effective capacitor with the nearest object 
as the ground plane. As a user’s hand comes near the antenna, the effective capacitance of the antenna 
increases due to the distance between the antenna and ground plane reducing. The function select 
antenna was positioned vertically on the left side of the Theremixer, while the magnitude detection 
antenna was positioned horizontally on the right side of the Theremixer. We aligned the two antennas on 
different planes to avoid interference while playing the instrument.  
 

2.2.1.1 Function Select Antenna Circuit  
The function select antenna consists of a wire soldered onto a ¾ inch copper plated tube connected to 
four 10 mH inductors in series. Figure 8 in Appendix B is the circuit schematic for this component. 
 

2.2.1.2 Magnitude Detection Antenna Circuit  
Our magnitude detection antenna consists of a wire soldered onto a ¾ inch copper plated tube connected 
to two 2.5 mH inductors and one 5 mH inductor in series. We also use a 1N4148 and a 1000 pF capacitor 
to help regulate the output. Figure 9 in Appendix B is the circuit schematic for this component. 

2.2.2 Oscillator Circuits 
The oscillator circuits were adapted from the Etherwave Theremin design; however, parts were replaced 
based upon availability. The oscillator circuits are connected to their respective antenna circuits. As the 
antennas increase their effective capacitance, the effective impedance of the entire system is affected. As 
a hand comes near the antenna, the frequency of the oscillators increases with the increase of antenna 
capacitance.  
 
We chose to use the Etherwave Theremin design for our oscillators because it seemed advantageous over 
other oscillator designs. The oscillator circuits are fundamental in establishing a control signal that can be 
used to affect filters. To be used as a control signal, the oscillators must be receptive to hand movements 
near the respective antenna. We considered using the Shockley and Harley oscillators instead of the 
Etherwave Theremin oscillators. However, after performing simulations we could not find a feasible way 
to connect the antenna such that the oscillator frequency would reliably change due to hand movements. 
In these simulations, we modeled our antenna as a capacitor and stepped through various capacitance 

https://www.vishay.com/docs/81857/1n4148.pdf


5 
 

values. In the Etherwave Theremin design simulation, we saw a significant frequency change at small 
capacitance changes. For this reason, we chose to build our Theremixer using the Etherwave Theremin 
design, however we realized the design had many unnecessary components. Since we only needed to 
establish a control signal, we chose to use the variable pitch oscillator circuit as our function select 
oscillator and the volume oscillator circuit as our magnitude oscillator. These were the only circuits from 
the Etherwave Theremin design that we used. We considered using two variable pitch oscillator circuits 
or two volume oscillator circuits instead of using one of both. After building and testing each, we found 
that there were no significant advantages of either. Since both oscillator circuits worked as needed and 
provided smooth waveforms, we decided to stick as closely with the original design to use one of both 
type of oscillator for the Theremixer. 
 
In both simulations and testing, we trialed with different inductor values across the first transistor 
Collector and the + 12 V Rail. We found that increasing the inductance value decreased the oscillation 
frequency and output voltage. We considered changing this inductance value however upon further 
research we found that increasing the inductance would decrease the overall effect of hand movements 
near the antenna. Although we were not able to physically see the difference in our built circuit, in LTSpice 
simulations we confirmed this to be true. While LTSpice was an immense help in simulating the design of 
these oscillator circuits we found many inconsistencies when testing the design on a protoboard. 
Primarily, the oscillator frequencies and peak-to-peak voltages were higher in simulation than real testing. 
This did not influence our design or implementation, however showed that simulations do not always 
relay to applications identically.  
 

2.2.2.1 Function Select Oscillator Circuit  
The function selects antenna circuit feeds into this oscillator at the first transistor’s collector to create the 
sinusoidal pitch waveform. This waveform will be sensitive to hand positioning near the pitch antenna. 
The transistors we used were 2N3904 NPN bipolar transistors by ON Semiconductors. The function select 
oscillator is based on the pitch oscillator of the Etherwave Theremin design. The function select oscillator 
operates at an average frequency of 431.15 Hz with an average peak-to-peak voltage of 3.51 V. Figure 10 
in Appendix B is the circuit schematic for this component and Figure 11 in Appendix B is a simulation of 
this circuit. 
 

2.2.2.2 Magnitude Detection Oscillator Circuit  
The magnitude detection oscillator will create a sinusoidal waveform with varying frequencies based on 
hand positioning near the volume antenna. The transistors we used were 2N3904 NPN bipolar transistors 
by ON Semiconductors. The magnitude detection oscillator is based on the magnitude oscillator of the 
Etherwave Theremin design. The magnitude detection oscillator has an average frequency of 141.76 kHz 
and an average Peak-to-Peak of 761.29 mV. The magnitude detection oscillator had a slightly odd 
waveform; however, it was periodic and reliable. Figure 12 in Appendix B is the circuit schematic for this 
component and Figure 13 in Appendix B is the simulation of this circuit. 

2.3 Sampling 
The Sampling subsystem consists of the buffer circuits and the Analog to Digital Converter. The purpose 
of the Sampling subsystem is to convert the analog signals from the oscillators into digital signals that can 
be sent to the microprocessor and was necessary because the input oscillator signals had frequencies too 
high for the Teensy 3.2’s onboard ADC to reliably sample. The AD7352 requires low impedance inputs for 
fully reliable operation, and so it was necessary to include buffer circuits as per the AD7352’s datasheet. 
The buffer circuits are fed the analog input from the oscillator circuits and output signals to the ADC. The 
AD7352 then converts these analog inputs to digital outputs to be sent to the microprocessor.  

https://www.onsemi.com/pub/Collateral/2N3903-D.PDF
https://www.onsemi.com/pub/Collateral/2N3903-D.PDF


6 
 

2.3.1 Buffer Circuits 
Our PCB design includes two sets of buffer circuits, one for each control signal from the oscillator circuits. 
They are direct replicas of the recommended layout from the AD7352 datasheet, using AD8022 dual op-
amp chips arranged such that any bipolar single-ended input signal is converted to a pair of differential 
unipolar signals that can be sent to the ADC’s input pins. Figure 14 in Appendix B includes a picture of the 
PCB. 

2.3.2 Analog to Digital Converter 
Our original plan for this submodule was to use the AD7367 1 MSPS ADC, but we eventually decided 
against this component because we wanted to make sure our high-frequency input signals would be 
accurately sampled (at the very least at the Nyquist rate) in case our oscillators ended up operating at a 
higher frequency than we intended. We finally settled on the AD7352 12-bit ADC as the best option for 
our project’s requirements, as it takes in differential inputs and samples at 3 MSPS. Differential inputs add 
the benefits of significant common-mode voltage rejection and help to cut out any RF noise that could be 
introduced by the rest of our system, and the high sampling rate would be useful for providing better 
resolution when processing the digital signals.  

2.4 Software 
The Software subsystem consists of the implementation of SPI Protocol, FFT, and Audio Filters. The 
purpose of this subsystem is to read the digital output from the Sampling subsystem using the SPI 
protocol, interpret the frequency of these signals using an FFT, and then apply the necessary audio filters. 
The SPI protocol simultaneously reads input from the ADC for both control signals and outputs the values 
to the serial interface for the Teensy microprocessor. Then, the microprocessor utilizes these values to 
determine the current filter to be applied to the live audio. Appendix B contains the program code that 
was used to implement these functions. 

2.4.1 SPI Protocol 
The AD7352 transmits output data via SPI, and so it is necessary to implement SPI protocol to allow the 
Teensy Microprocessor to be able to read information from the ADC. This protocol reads 32 bits of 
information for each sample. In these 32 bits, two 12-bit values dictate the converted digital signals. The 
remaining 8 bits indicate the beginning of a new sample and separate the data for the two signals. To 
properly utilize SPI protocol, the software capitalizes on the Teensy SPI library to properly retrieve 
information from the ADC.  

2.4.2 FFT Implementation 
After receiving the digital signal from the ADC via SPI, the Teensy Microprocessor should use an FFT 
implementation to properly interpret the frequency of the input control signals. During the course of this 
project, we were unable to properly implement the FFT on the digital signals from the ADC because of a 
limitation with the Teensy FFT library. The FFT library only supports 512 bins with each representing 44.1 
Hz, which means that the maximum frequency that can be sampled using this FFT library is 22.6 kHz. This 
introduces a problem, since our oscillator circuits produce signals with frequencies above 100 kHz. As a 
result, we researched alternative methods to implement the FFT. The first method is to develop our own 
FFT implementation without using a library. Another method involves heterodyning our control signals 
with a fixed oscillator signal and then passing these values through a lowpass filter to lower the overall 
frequency of the control signals. This method is actually very similar to the Moog Etherwave design that 
our oscillators are based on: the pitch frequency is the difference frequency between a variable and fixed 
oscillator, sent through a small detector circuit. Unfortunately, we were unable to implement either of 
these methods due to time constraints. 

https://www.analog.com/en/products/ad7352.html
https://www.analog.com/media/en/technical-documentation/data-sheets/AD8022.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD7366_7367.pdf
https://www.analog.com/en/products/ad7352.html


7 
 

2.4.3 Audio Filters 
The audio filters serve the purpose of providing mixing capabilities for the Theremixer. Theoretically, we 
would interpret the frequency of the input control signals properly using an FFT implementation and then 
use these to dictate the filter being applied. But, as a result of not getting the FFT implementation to work 
properly, we mimicked the input frequencies using a signal generator to determine the current filter being 
applied and the magnitude to which it is being applied. Essentially, the function select control signal allows 
a user to dictate the audio filter they would like to apply. These audio filters include capabilities to modify 
the bass, mid, treble, or volume of the output audio. On the other hand, the magnitude control signal 
allows the user to either amplify or attenuate the audio filter that is selected. We were able to successfully 
implement these audio filters.  
 

2.4.3.1 Bass Boosting 
Bass Boosting serves the purpose of amplifying or attenuating the bass in an output audio signal. This is 
implemented on the Teensy Microprocessor using a Low Pass Filter from the audio library at a cutoff 
frequency of 100 Hz. The magnitude signal dictates the extent to which the bass is amplified or 
attenuated. 
 

2.4.3.2 Mid Boosting 
Mid Boosting serves the purpose of amplifying or attenuating the midrange in an output audio signal. This 
is implemented on the Teensy Microprocessor using a Band Pass Filter from the audio library, using a 
cutoff frequency range of 400 to 600 Hz. The magnitude signal dictates the extent to which the midrange 
is amplified or attenuated. 
 

2.4.3.3 Treble Boosting  
Treble Boosting serves the purpose of amplifying or attenuating the treble in an output audio signal. This 
is implemented on the Teensy Microprocessor using a High Pass Filter from the audio library at a cutoff 
frequency of 800 Hz. The magnitude signal dictates the extent to which the treble is amplified or 
attenuated. 
 

2.4.3.4 Volume Boosting  
Volume Boosting serves the purpose of increasing or decreasing the output volume of the audio signal. 
This is implemented on the Teensy Microprocessor by altering the baseline volume by a scalar factor 
based on the magnitude signal. 
  



8 
 

3. Design Verification 

3.1 Power 
Each power module functioned as expected and was able to provide power to the necessary components 
within the proper tolerances. The + 12 V Regulator powered the oscillators and other voltage regulators 
with + 12.08 V. The – 12 V Regulator powered the oscillators with -12.07 V. The + 2.5 V Regulator powered 
the AD7352 ADC chip with + 2.6 V. The + 3.3 V Regulator powered the Teensy 3.2 microcontroller. This 
information is summarized in Table 1.  

Table 1: Power Module Verification 

 Required Value Actual Value 

+ 12 V Regulator + 12 V  5 % + 12.08 V 

- 12 V Regulator - 12 V  5 % - 12.07 V 

+ 2.5 V Regulator + 2.5 V  5 % + 2.6 V 

+ 3.3 V Regulator + 3.3 V  5 % + 3.33 V 

3.2 Hardware 

3.2.1 Antenna Circuits 
Each antenna circuit functioned as expected and were affected by hand placement near the antenna. To 
test the Antenna circuits, we used an LCR Meter to measure the effective capacitance of each antenna. 
The positive lead was connected to the bottom of the antenna through a wire and the negative lead was 
held in the tester’s hand. By holding the negative lead, the tester becomes the ground plane. Using a ruler, 
the tester placed his hand 20 cm away from the antenna. After 10 trials, at 20 cm the Magnitude Oscillator 
Antenna had an average capacitance of 2.31 pF. The Variable Oscillator Antenna had an average 
capacitance of 5.52 pF 20 cm away. Shown in Figure 15 and Table 2, both antennas had an increased 
effective capacitance as the tester’s hand approached the respective antenna. After 10 trials, at 1 cm away 
the Magnitude Oscillator Antenna had an effective capacitance of 5.33 pF. The Variable Oscillator Antenna 
had an effective capacitance of 9.06 pF at 1 cm.  

 
Figure 15: Antenna Effective Capacitance vs. Distance of Hand (graph)  

 
Table 2 : Antenna Effective Capacitance vs. Distance of Hand (values)  

Distance (cm) 0 1 2 3 4 5 10 15 20 

Magnitude Oscillator 
Antenna Capacitance (pF) 

87.17  5.33 4.59 4.14 3.82 3.6 3.01 2.59 2.31 

Variable Oscillator 
Antenna Capacitance (pF) 

120.01 9.06 7.93 7.62 7.48 6.75 6.07 5.67 5.52 



9 
 

3.2.2 Oscillator Circuits 
Each oscillator circuit created a very stable and reliable frequency with low standard deviations. For the 
Magnitude Detection Oscillator Antenna, we met the desired oscillation frequency requirement of 142 
kHz ±10% at an average of 141.76 kHz. The standard deviation of this frequency was 354.91 Hz. The 
average peak-to-peak value was 761.29 mV. For the Function Select Antenna Circuit, we met the desired 
oscillation frequency requirement of 430 kHz ±10% at 431.31 kHz. The standard deviation of this 
frequency as 727.70 Hz. The average peak-to-peak value was 3.51 V. To verify these frequencies, we used 
an oscilloscope to probe the base of the second transistor of each oscillator across ground. Shown in 
Figure 16 is the Magnitude Detection Oscillator scope with statistics over 1.006 thousand samples. Shown 
in Figure 17 is the Function Select Oscillator scope with statistics over 1.522 thousand samples. 
 

 
Figure 16: Verification of Magnitude Detection Oscillator Circuit 

 

 
Figure 17: Verification of Function Select Oscillator Circuit 

3.2.3 Integration 
Although each antenna circuit functioned as expected and each oscillator circuit outputted a very stable 
waveform at the desired frequency, we were unable to achieve full integration of these two parts. An 
increase of capacitance in the antenna should result in an increase in frequency of the oscillation, however 
we were unable to visualize this on the oscilloscope. We may not have been able to visualize the change 
on the oscilloscope since the intended frequency change for the oscillators were less than 1 kHz. 



10 
 

Specifically, we expected a frequency shift of 500 Hz for the magnitude detection oscillator; and we 
expected a frequency shift of 300 Hz for the function select oscillator. These small fluctuations may be the 
reason we could not visualize the change on the oscilloscope. One way we could potentially visualize these 
frequency changes is through proper FFT windowing on the software end through the Teensy 3.2 
microcontroller. By using a larger FFT window, we theorize that it would be possible to see these subtle 
changes because they will be occurring over a longer period.  

3.3 Sampling 
Using our base PCB design, the buffer circuits did not function as intended. However, we quickly realized 
that we had based our PCB design on the wrong schematic in the AD7352 datasheet, using Figure 21 
rather than Figure 22 in the datasheet. Thankfully, the two layouts were very similar and only differed in 
a grounded resistor and a few changed component values. We were able to correct them using wires and 
through hole resistors, and after making these changes, we were able to verify that each buffer output 
was both unipolar and 180 degrees out of phase with each other as the ADC required. After verifying the 
buffer outputs and completing the SPI submodule, we connected the Teensy 3.2 Microprocessor to the 
rest of the PCB and were able to simultaneously view both outputs as changing integer values. However, 
we wanted to further verify that the sampling subsystem was working since due to the high frequency 
nature of our input signals it was difficult to know whether the oscillators were being properly sampled. 
To do this, we replaced the inputs with very low frequency (0.5-1 Hz) sine waves from a function 
generator. By doing this we were able to see the output integer values oscillate very reliably on the 
Teensy. The final PCB is pictured in Figure 18 in Appendix B, and the original board layout is shown in 
Figure 19. 

3.4 Software 
In the Software subsystem, there are many components that were successfully implemented. In fact, all 
the requirements that we specified in the R & V Table in Appendix A for the Teensy Microcontroller were 
fulfilled. To summarize the results, we were able to properly implement all the audio filters using a control 
signal that mimicked the signal from the function select oscillator, and then properly amplify or attenuate 
this audio filter using a control signal that mimicked the signal from the magnitude oscillator. Figure 20 in 
Appendix B indicates a frequency analysis of a snippet of audio from the Teensy Microcontroller. For this 
same snippet of audio, we applied different filters separately to determine if they were properly being 
selected and applied. As noted in Figure 21, when Bass Boosting is chosen, a low pass filter is applied to 
the audio output which eliminates frequencies above 100 Hz. It also indicates that the frequencies under 
100 Hz are amplified. Also, in Figure 22, it is noticeable that when Mid Boosting is chosen, a band pass 
filter is applied to the audio output which eliminates frequencies below 400 Hz and above 600 Hz. It also 
expresses that frequencies between 400 Hz to 600 Hz are amplified. Additionally, Figure 23 indicates that 
when Treble Boosting is chosen, a high pass filter is applied to the audio output which eliminates 
frequencies below 800 Hz. It also shows that frequencies above 800 Hz are amplified. Lastly, Figure 23 
indicates that when Volume Boosting is chosen and the value of the magnitude control signal changes, 
the baseline volume either increases or decreases. This is noticeable in decibel level changes in Figure 23 
that were monitored by increasing the magnitude by 100 Hz every second. Overall, all the audio filters 
properly functioned because they were able to modify live audio output using the signals that were 
mimicked with the signal generator. Although we were able to read the digital output of the ADC through 
an SPI protocol, we were unable to properly compute the FFT of the digital signal. This is primarily because 
we were constrained for time in implementing alternative methods that were outlined in section 2.4. If 
alternative methods were used to implement the FFT, we would have been able to properly integrate the 
Theremixer. 
  



11 
 

4. Costs & Schedule 

4.1 Parts 
The cost of parts for this project is in Table 3. 

Table 3 : Costs of Parts 

Part Name Part Number Manufacturer Unit 
Cost ($) 

Quantity Total 
Cost ($) 

AC Transformer BPD2EE Hammond 
Manufacturing 

17.58 1 17.58 

Teensy 3.2 Teensy 3.2 PJRC 29.25 1 29.25 

NPN Transistor 2N3904 ON  
Semiconductor 

0.07 8 0.56 

+ 12 V 
Regulator 

LM78L12 Texas 
Instruments 

0.79 1 0.79 

- 12 V 
Regulator 

LM79L12 Texas 
Instruments 

0.79 1 0.79 

+ 2.5 V 
Regulator 

LP2985 Texas 
Instruments 

0.88 1 0.88 

+ 3.3 V 
Regulator 

LP2950 Texas 
Instruments 

0.96 1 0.96 

Power Supply 
Diode 

1N4001 ComChip 
Technology 

0.17 2 0.34 

Detector / 
Oscillator 

Diode 

1N4148 ON 
Semiconductor 

0.10 2 0.20 

AD8022 Dual 
Op-Amp Chip 

AD8022 Analog Devices 6.18 3 18.54 

AD7352 12-bit 
ADC 

AD7352 Analog Devices 24.40 1 24.40 

10 mH Inductor 74404086103 Wurth 
Electronics, Inc 

0.65 4 1.30 

47 uH Inductor 74404065233 Wurth 
Electronics, Inc 

0.67 5 1.34 

5 mH inductor 74404023433 Wurth 
Electronics, Inc 

0.55 2 1.10 

2.5 mH 
Inductors 

74404076811 Wurth 
Electronics, Inc 

0.52 2 1.04 

3300 pF 
Capacitor 

GRM2165C1H332JA01D Murate 
Electronics 

0.87 2 1.74 

15 pF Capacitor CL05C150JB5NNNC Samsung 
Electro 

Mechanics 

0.35 2 0.70 



12 
 

1000 pF 
ceramic 

Capacitor 

GRM033R71E102KA01D Murata 
Electronics 

0.72 2 1.44 

22 uF tantalum 
Capacitor 

GRM027R1E102KA01D Murata 
Electronics 

0.76 1 1.52 

1800 pF film 
Capacitor 

GRM076F76E00KA01D Murata 
Electronics 

0.80 1 1.60 

2200 uF 
Aluminum 
Electrolytic 
Capacitor 

GRM897T6F2155LA01D Murata 
Electronics 

0.56 2 1.02 

0.1 uF Ceramic 
Capacitor 

GRM762F8T200MA01D Murata 
Electronics 

0.42 2 0.84 

Copper Plated 
Tubing for 
Antennas 

1-36A-C BrassCraft 7.05 2 14.10 

Printed Circuit 
Board 

 PCBWay 50.00 1 50.00 

Total 
    

172.03 

 

4.2 Labor 
The cost of labor for this project is as follows: 

𝑇𝑒𝑎𝑚 𝑀𝑒𝑚𝑏𝑒𝑟𝑠 (3)  ∗  𝐻𝑜𝑢𝑟𝑙𝑦 𝑅𝑎𝑡𝑒 ($50)  ∗  𝐻𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑊𝑒𝑒𝑘 (12)  ∗  𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑒𝑘𝑠 (16)  ∗  2.5 
=  $𝟕𝟐, 𝟎𝟎𝟎 

4.3 Schedule 
The schedule our team followed during the course of this project is in Table 4. 

Table 4: Weekly Schedule 

Week Akhil Karthik Shiv 

01/14/19 
- 

02/04/19 

• Conduct research for 
project proposal 

• Create project proposal 

• Conduct research for 
project proposal 

• Create project 
proposal 

• Conduct research for 
project proposal 

• Create project 
proposal 

02/11/19 • Work on design 
document 

• Complete eagle 
assignment  

• Work on design 
document  

• Complete eagle 
assignment  

• Work on design 
document  

• Complete eagle 
assignment  

02/18/19 • Complete Design 
Document 

• Order Parts 

• Complete Design 
Document 

• Order Parts 

• Complete Design 
Document 

• Order Parts 

02/25/19 • Build filter prototype 
on Teensy 
microcontroller 

• Complete PCB Design 

• Build Magnitude 
Detection 

• Complete PCB Design 

• Build Function Select 
Antenna 



13 
 

• Conduct Antenna 
Impedance Testing 

• Conduct Antenna 
Impedance Testing 

03/04/19 • Complete Soldering 
Assignment 

• Complete Teamwork 
Evaluation I 

• Build software 
prototype to utilize 
multiple inputs for 
choosing filters 

• Complete Soldering 
Assignment 

• Antenna Oscillator 
Testing & Calibration 

• Complete Teamwork 
Evaluation I 

• Complete Soldering 
Assignment 

• Antenna Oscillator 
Testing & Calibration 

• Complete Teamwork 
Evaluation I 

03/11/19 • Test and calibrate 
filters using simulated 
inputs 

• Construct housing 
design and submit to 
ECE shop 

• Connect and test 
Theremixer hardware 
subsystem 

• Construct housing 
design and submit to 
ECE shop 

03/18/19 SPRING BREAK 

03/25/19 • Connect and test 
Theremixer hardware 
subsystem 

• Submit individual 
progress reports 

• Connect and test 
Theremixer hardware 
subsystem 

• Submit individual 
progress reports 

• Connect and test 
Theremixer hardware 
subsystem 

• Submit individual 
progress reports 

04/01/19 • Test and interface  all 
hardware and software 
components 

• Test and interface  all 
hardware and software 
components 

• Test and interface  all 
hardware and software 
components 

04/08/19 • Develop project 
demonstration 

• Further verification and 
calibration 

• Develop project 
demonstration 

• Further verification 
and calibration 

• Develop project 
demonstration 

• Further verification 
and calibration 

04/15/19 • Develop project 
demonstration 

• Further verification and 
calibration 

• Develop project 
demonstration 

• Further verification 
and calibration 

• Develop project 
demonstration 

• Further verification 
and calibration 

04/22/19 • Work on final paper 
and presentation 

• Work on final paper 
and presentation 

• Work on final paper 
and presentation 

04/29/19 • Finalize and submit the 
final paper, 
presentation, lab 
notebook, lab 
checkout, and 
Teamwork Evaluation II 

• Finalize and submit the 
final paper, 
presentation, lab 
notebook, lab 
checkout, and 
Teamwork Evaluation II 

• Finalize and submit the 
final paper, 
presentation, lab 
notebook, lab 
checkout, and 
Teamwork Evaluation II 

 
 



14 
 

5 Conclusion 
Senior design proved to live up to its reputation and challenged each of us a great deal. We grew both our 
interpersonal and professional skills in working on this project. We did not manage to achieve full 
integration of each module in our project; however, we were immensely proud of the work we 
accomplished. We managed to create functioning power sources, oscillators, antennas, buffer circuits, 
and filters. We managed to properly sample our outputs and communicate to our microcontroller. We 
struggled on integration of the antennas with their respective oscillators due to much uncertainty. We 
also had set backs integrating the sampled output with our microcontroller filters. At this stage, there are 
still many improvements that we can make the Theremixer more functional and user-friendly.  

5.1 Accomplishments 
Although we lacked in fulfilling full integration, we succeeded in developing individual components. We 
created functioning power supplies that properly operated to power each respective component. In the 
hardware subsystem, we met the requirements for creating both working antennae and created two 
functioning oscillators. We struggled in proving the integration of each oscillator with their respective 
antenna. Our ADC properly sampled the output from the oscillators and the Teensy 3.2 microcontroller 
was able to read this input via SPI communication. The Teensy 3.2 microcontroller was also able to 
properly apply each audio filter using mimicked control signals. 

5.2 Uncertainties 
One of our main shortcomings in completing our project involved implementing the FFT subsystem to 
determine the frequency of our oscillators, since the Teensy 3.2’s native FFT algorithm only provides 
frequency data up to 22.6 kHz which is far below our signal frequencies. Professor Oelze suggested that 
we heterodyne our signals with other sine waves close to the frequency of the input signals to create a 
low frequency signal that can be read by the Teensy’s onboard ADC, and after considering this further we 
realized that the Etherwave design uses a very similar method to extract its pitch frequency, even using a 
capacitor in parallel to apply a low-pass filter to the modulated signal. There was also significant 
uncertainty with our antenna operation, specifically the effect of changing antenna capacitance on the 
oscillators’ frequencies. We are still unsure whether or not our current design actually has a measurable 
difference in frequency within a reasonable range of motion, but we theorized that this might be partly 
or even fully fixed with a better FFT implementation.  

5.3 Future work 
Improvements to hardware can enhance the overall experience of using the Theremixer. Firstly, we 
recommend enhancing the effect of the antenna capacitance on oscillator frequency. This change would 
allow us to notice a larger difference on the oscillator frequency when a user’s hand changes placement. 
Additionally, it would be ideal to redesign the Printed Circuit Board (PCB) to reflect design changes 
throughout the semester. Specifically, many changes were made to the PCB throughout the semester 
using through hole components that were soldered directly onto the PCB. Rather, it would be more 
appropriate to redesign the PCB to accommodate for the changes in the buffer circuits and the ground 
loops in the mixed signal design. Also, several changes on the software module can help enhance the 
Theremixer’s capabilities. It is vital to implement Fast Fourier Transform (FFT) on the input signals from 
the ADC to measure the frequencies of both control signals. This will help complete the integration in this 
project so that the change in hand placement will apply a filter to the audio being played. Some additional 
features can also improve the user experience. These features include the integration of a potentiometer 
for selecting the cut-off frequency for different filters, utilizing buttons for functions such as reset, pause, 
play, and skip, creating a visual display of current filters, and introducing additional mixing effects. All 
these implementations can help make the Theremixer a truly unique product. 



15 
 

5.4 Ethical considerations 
There are several ethical and safety matters to consider throughout the development of our project. 
Firstly, the IEEE Code of Ethics #5 states that the goal is “to improve the understanding by individuals and 
society of the capabilities and societal implications of conventional and emerging technologies, including 
intelligent systems” [1]. Our project encompasses replicating a traditional Theremin design to develop an 
alternative operation of mixing music using output from the Theremin. This aligns closely with the IEEE 
Code of Ethics #5 because we want to help individuals understand alternative uses of traditional 
technologies in the modern day. We also hope to accept honest criticism of our work throughout the 
semester to help guide our project and make fixes where necessary in accordance with IEEE of Ethics 
#7[1]. Another critical foundation of our project is to work closely with each other to develop 
professionally, and always uphold the IEEE Code of Ethics. The Code of Ethics is not only a statement of 
what to do on paper, but also the framework for an engineer’s mindset to always be solution oriented 
while upholding certain principles.  
 
The Theremin we hope to construct would be a modern replication of the traditional Theremin. We are 
going to be building a Theremin that is an adaption of an Etherwave Theremin that has been developed 
my Moog Music previously [2]. Fortunately, Moog Music has published various open-source information 
to help guide the design of the Theremin [3]. We hope to use this design as a foundation for further 
developing a modern Theremin and provide an alternative use with music mixing. Additionally, another 
ethical point to concern is developing a platform to alter music. Although the music is the property of 
artists, we will follow similar practices as those DJs in today’s day and age who mix music at clubs. We 
hope to access the music we play legally through a streaming service or through purchase of music albums. 
Overall, our project does not pose any significant ethical concerns that might impact its success. This is 
primarily because we are taking a traditional design and making a modern use of it.  



16 
 

6 References 
[1]  IEEE, ‘IEEE Code of Ethics’, 2014. [Online.] Available: 

https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 01 - Feb - 2019]. 
 
[2]  Robert Moog, Electronic Musician, ‘Build the EM Theremin’, 1996. [Online.] Available: 

https://www.cs.nmsu.edu/~rth/EMTheremin.pdf. [Accessed: 01 - Feb - 2019]. 
 
[3]  Moog Music Inc, ‘Understanding, Customizing, and Hot-Rodding Your Etherwave Theremin’, 

2003. [Online.] Available: http://www.suonoelettronico.com/downloads/HotRodEtherwav.pdf. 
[Accessed: 01 - Feb - 2019]. 

  

https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.cs.nmsu.edu/~rth/EMTheremin.pdf
http://www.suonoelettronico.com/downloads/HotRodEtherwav.pdf


17 
 

Appendix A: Requirement and Verification Table 
Table 5: System Requirements and Verifications 

Requirement Verification Verification 
status  

(Y or N) 

1. 14 Volt AC Transformer 
a. Provide 14V AC ±5% at 60 

Hz to voltage rectifier. 

1. Use specification sheet to confirm 
rating. 

a. Measure output of 
transformer (input of 
voltage rectifier) using 
oscilloscope while 
connected to power supply 
circuit. 

b. Verify from the waveform 
that the transformer is 
providing 14V ±5% AC at 60 
Hz. 

Y 

2. ± 12 Voltage Regulator  
a. Provide ±12V ±5% to the 

positive and negative 
power rails. 

b. Provide ±12V ±5% to 
power the AD8022 buffer 
op amps. 

2. Measure the output voltage at the 
positive rail using a multimeter. 

a. Verify that the positive rail 
provides +12V ±5%. 

b. Measure the output voltage 
at the negative rail using a 
multimeter. 

c. Verify that the negative rail 
provides -12V ±5%. 

d. Verify that each AD8022 
opamp is receiving ±12V 
±5% to properly power on. 

Y 

3. + 3.3 Voltage Regulator 
a. Provide +3.3V ±5% to the 

Teensy Microprocessor 

3. Measure the output voltage of the 
voltage regulator using a multimeter 

a. Verify that the teensy is 
receiving +3.3V to properly 
power on. 

Y 

4. + 2.5 Voltage Regulator 
a. Provide +2.5 V ±5% to 

power the AD7352 chip. 

4. Measure the output voltage of the 
voltage regulator using a multimeter 

a. Verify that the AD7352 chip 
is receiving +2.5 V ±5%. 

Y 

5. Magnitude Detection Antenna   
a. Antenna effective 

capacitance of 1-8 pF 
±10%  

b. Capacitance increase of 5-
7pF ±10% when a hand 
approaches the antenna. 

5. Measure the effective capacitance 
of the antenna using an LCR Meter, 
while your hand is far from the 
antenna. 

a. Verify that the total 
capacitance is in the range 
of 1-3 pF ±10%. 

b. Measure the effective 
capacitance of the antenna 

Y 



18 
 

using an LCR Meter, while 
your hand is near the 
antenna. 

c. Verify that the total 
capacitance has increased 
by 5-7 pF ±10%. 

6. Magnitude Detection Oscillator 
a. Maintain a baseline 

frequency of 142 kHz 
±10%. 

b. Be responsive to hand 
movements. 

i. When a hand 
approaches the 
antenna the 
oscillator’s 
frequency should 
increase by 500 
Hz. 

ii. When a hand is 
away from the 
antenna the 
variable frequency 
should maintain 
the baseline 
frequency 142 kHz 
±10% 

6. Using an oscilloscope, measure the 
frequency of the waveform when a 
hand is far from the antenna. 

a. Verify that the frequency is 
near 142 kHz ±10%. 

b. Using an oscilloscope, 
measure the frequency of 
the waveform when a hand 
is near the antenna. 

c. Verify that the frequency is 
near 142.5 kHz ±10%. 

N 

7. Function Select Antenna 
a. Antenna effective 

capacitance of 1-8 pF 
±10% . 

b. Capacitance increase of 5-
7pF ±10% when a hand 
approaches the antenna. 

7. Measure the effective capacitance 
of the antenna using an LCR Meter, 
while your hand is far from the 
antenna. 

a. Verify that the total 
capacitance is in the range 
of 1-3 pF ±10%. 

b. Measure the effective 
capacitance of the antenna 
using an LCR Meter, while 
your hand is near the 
antenna. 

c. Verify that the total 
capacitance has increased 
by 5-7 pF ±10%. 

Y 

8. Function Select Oscillator   
a. Maintain a baseline 

frequency of 430 kHz 
±10%. 

b. Be responsive to hand 
movements. 

8. Using an oscilloscope, measure the 
frequency of the waveform when a 
hand is far from the antenna. 

a. Verify that the frequency is 
near 430 kHz ±10%. 

N 



19 
 

i. When a hand 
approaches the 
antenna the 
oscillator’s 
frequency should 
increase by 300 
Hz. 

ii. When a hand is 
away from the 
antenna the 
variable frequency 
should maintain 
the baseline 
frequency 430 kHz 
±10% 

b. Using an oscilloscope, 
measure the frequency of 
the waveform when a hand 
is near the antenna. 

c. Verify that the frequency is 
near 430.3 kHz ±10%. 

9. Analog to Digital Converter with 
Input Buffers (ADC) 

a. From two bipolar signal 
inputs from oscillator 
circuits, create two 
differential unipolar input 
pairs to feed into ADC 
using opamp buffers 

b. Properly sample both 
oscillator signals at least 
the Nyquist rate of the 
highest frequency signal 
(860 kHz) 

9. While feeding oscillator signals into 
PCB, probe all four buffer opamp 
outputs. 

a. Verify that all outputs fed 
into the ADC match input 
signal frequency and that 
voltage values remain within 
a range of 0<V<2.048. 

b. Verify from the specification 
sheet that the AD7352 has a 
maximum sampling 
frequency of 3 MSPS. This is 
much higher than the 
required sample rate of 860 
kSPS. 

c. Check Teensy Serial Monitor 
output to verify that 
oscillators are being 
sampled through SPI input 

N 

10. Teensy Microcontroller – Bass 
Boosting (Low Pass Filter) 

a. Select Low Pass Filter for 
frequency range of 50 to 
300 Hz of the input control 
signal 

b. Amplify frequencies of 0-
100 Hz and attenuate 
frequencies above 100 Hz 

c. Utilize magnitude control 
signal from 0 to 1200 Hz to 
amplify or attenuate 
altered signal 

10. Load test audio file  
a. Use spectrogram analysis 

program to verify that 
frequencies from 0 to 100 
Hz are amplified and 
frequencies above 100 Hz 
are attenuated. 

Y 



20 
 

11. Teensy Microcontroller - Treble 
Boosting (Band Pass Filter) 

a. Select Band Pass Filter for 
frequency range of 301 to 
600 Hz of the input control 
signal 

b. Amplify frequencies of 400 
to 600 Hz, attenuate 
frequencies outside of this 
range 

c. Utilize magnitude control 
signal from 0 to 1200 Hz to 
amplify or attenuate 
altered signal 

 

11. Load test audio file  
a. Use spectrogram analysis 

program to verify that 
frequencies from 400 to 600 
Hz are amplified and 
frequencies outside this 
range are attenuated. 

Y 

12. Teensy Microcontroller - Mid 
Boosting (High Pass Filter) 

a. Select High Pass Filter for 
frequency range of 601 to 
900 Hz of the input control 
signal 

b. Amplify frequencies above 
500 Hz, attenuate 
frequencies below this 
frequency 

c. Utilize magnitude control 
signal from 0 to 1200 Hz to 
amplify or attenuate 
altered signal 

12. Load test audio file  
a. Use spectrogram analysis 

program to verify that 
frequencies above 500 Hz 
are amplified and 
frequencies below 500 Hz 
are attenuated.  

 

Y 

13. Teensy Microcontroller - Volume 
Boosting 

a. Apply a 5-dB increase to 
the baseline volume by 
increasing the magnitude 
from 800 Hz to 900 Hz 

b. Apply a 3-dB decrease to 
the baseline volume by 
decreasing the magnitude 
to 800 Hz to 700Hz 

13. Utilize Visual Audio program to 
determine the dB increase as you 
increase the magnitude control 
signal from 800 Hz to 900 Hz 

a. Utilize Visual Audio program 
to determine the dB 
decrease as you decrease 
the magnitude control signal 
from 800 Hz to 700 Hz 

Y 

 

 

 

  



21 
 

Appendix B: Circuit Schematics, Graphs, and Data 

 
Figure 3: 14 V AC Transformer 

 
 

 
Figure 4: Center-Tapped Full-Wave Voltage Rectifier 

 

 

Figure 5: ± 12 Voltage Regulator Circuit 



22 
 

 
Figure 6: +2.5 Voltage Regulator 

 

 

Figure 7: +3.3 Voltage Regulator 

 

 
Figure 8: Function Select Antenna Circuit 

 

 

Figure 9: Magnitude Detection Oscillator Circuit 



23 
 

 

Figure 10: Function Select Oscillator Circuit 

 

 

Figure 11: Simulation of Function Select Oscillator Circuit 



24 
 

 
Figure 12: Magnitude Detection Oscillator Circuit 

 

 
Figure 13: Simulation of Magnitude Detection Oscillator Circuit 

 



25 
 

   

 
Figure 14: Sampling Module Schematic 

 



26 
 

 
Figure 18: Printed Circuit Board (PCB) 

 

 
Figure 19: Board Layout for PCB 

 



27 
 

 

Figure 20: Original Audio Clipping 

 

 

Figure 21: Bass Boosting - Low Pass Filter 



28 
 

 

Figure 22: Mid Boosting – Band Pass Filter 

 

 

Figure 23: Treble Boosting – High Pass Filter 



29 
 

 

Figure 24: Volume Boosting 

  



30 
 

Appendix C: Software Program Code 
Audio Filter Program 
#include <Audio.h> 
#include <Wire.h> 
#include <SPI.h> 
#include <SD.h> 
#include <SerialFlash.h> 
#include <Bounce.h> 
 
const int myInput = AUDIO_INPUT_LINEIN; 
 
AudioPlaySdWav           playSdWav1;     //xy=369,162 
AudioFilterStateVariable filter2;        //xy=555,232 
AudioFilterStateVariable filter1;        //xy=557,141 
AudioMixer4              mixer1;         //xy=750,143 
AudioMixer4              mixer2;         //xy=753,235 
AudioOutputI2S           i2s1;           //xy=937,167 
AudioConnection          patchCord1(playSdWav1, 0, filter1, 0); 
AudioConnection          patchCord2(playSdWav1, 1, filter2, 0); 
AudioConnection          patchCord3(filter2, 0, mixer2, 0); 
AudioConnection          patchCord4(filter2, 1, mixer2, 1); 
AudioConnection          patchCord5(filter2, 2, mixer2, 2); 
AudioConnection          patchCord6(filter1, 0, mixer1, 0); 
AudioConnection          patchCord7(filter1, 1, mixer1, 1); 
AudioConnection          patchCord8(filter1, 2, mixer1, 2); 
AudioConnection          patchCord9(mixer1, 0, i2s1, 0); 
AudioConnection          patchCord10(mixer2, 0, i2s1, 1); 
AudioControlSGTL5000     sgtl5000_1;     
 
AudioInputI2S          audioInput;         
AudioAnalyzeFFT1024    myFFT; 
AudioConnection patchCord11(audioInput, 0, myFFT, 0); 
AudioAnalyzeFFT1024    myFFT2; 
AudioConnection patchCord12(audioInput, 1, myFFT2, 0); 
 
#define SDCARD_CS_PIN    10 
#define SDCARD_MOSI_PIN  7 
#define SDCARD_SCK_PIN   14 
 
float magnitude = 1.0; 
int currentfilter = 0; 
int filter1seen = 0; 
int filter2seen = 0; 
int filter3seen = 0; 
int currentsong = 0; 
 
void setup() { 
  pinMode(0, INPUT); //Initialize Button 0 



31 
 

  pinMode(1, INPUT); //Initialize Button 1 
 
  //Audio Shield and SD Card Initialization 
  Serial.begin(9600); 
  AudioMemory(30); 
  sgtl5000_1.enable(); //Enable Audio Shield 
  sgtl5000_1.inputSelect(myInput); 
  sgtl5000_1.volume(1.0); //Set Initial Volume 
  myFFT.windowFunction(AudioWindowHanning1024); 
  myFFT2.windowFunction(AudioWindowHanning1024); 
  SPI.setMOSI(SDCARD_MOSI_PIN); 
  SPI.setSCK(SDCARD_SCK_PIN); 
  if (digitalRead(SDCARD_CS_PIN)) { 
    Serial.println("SD Card is high"); 
  } else { 
    Serial.println("SD Card is low"); 
  } 
  if (!(SD.begin(SDCARD_CS_PIN))) { 
    while (1) { 
      Serial.println("Unable to access the SD card"); 
      delay(500); 
    } 
  } 
  //Set fourth mixer input to zero 
  mixer1.gain(3, 0.0); 
  mixer2.gain(3, 0.0);   
  delay(100); 
} 
 
void loop() {   
  if(digitalRead(0) == HIGH){ 
    currentfilter = 0; 
  } 
  if ((playSdWav1.isPlaying() == false)) { 
      playSdWav1.play("SONG1.wav"); 
      delay(100); 
  } 
 
  float n; 
  int i; 
  if (myFFT.available()) { 
    for (i=0; i<40; i++) { 
      n = myFFT.read(i); 
      if((i >= 0) && (i <= 1) && (n > 0.1)){          //  Reset Functionality 
          currentfilter = 0; 
      } 
      if((i >= 2) && (i <= 8) && (n > 0.1)){          //  50 to 300 Hz, 0 <= i <= 8 
          currentfilter = 1; 



32 
 

      } 
      else if ((i >= 9) && (i <= 15) && (n > 0.1)){   //  301 to 600 Hz, 9 <= i <= 15 
          currentfilter = 2; 
      } 
      else if ((i >= 16) && (i <= 22) && (n > 0.1)){  //  601 to 900 Hz, 16 <= i <= 22 
          currentfilter = 3; 
      } 
      else if ((i >= 23) && (i <= 29) && (n > 0.1)){  // 901 to 1200 Hz, 23 <= i <= 29 
          currentfilter = 4; 
      } 
    } 
  } 
   if (myFFT2.available()) { 
    for (i=0; i<40; i++) { 
      n = myFFT2.read(i); 
      if((i == 2) && (n > 0.3)){         //100 Hz = 10% magnitude 
          magnitude = 0.1; 
      } 
      else if ((i == 5) && (n > 0.3)){   //200 Hz = 20% magnitude 
          magnitude = 0.2; 
      } 
      else if ((i == 7) && (n > 0.3)){  //300 Hz = 30% magnitude 
          magnitude = 0.3; 
      } 
      else if ((i == 9) && (n > 0.3)){ //400 Hz = 40% magnitude 
          magnitude = 0.4; 
      } 
      else if ((i == 12) && (n > 0.3)){   //500 Hz = 50% magnitude 
          magnitude = 0.5; 
      } 
      else if ((i == 14) && (n > 0.3)){  //600 Hz = 60% magnitude 
          magnitude = 0.6; 
      } 
      else if ((i == 16) && (n > 0.3)){ //700 Hz = 70% magnitude 
          magnitude = 0.7; 
      } 
      else if ((i == 19) && (n > 0.3)){ //800 Hz = 80% magnitude 
          magnitude = 0.8; 
      } 
      else if ((i == 21) && (n > 0.3)){ //900 Hz = 90% magnitude 
          magnitude = 0.9; 
      } 
      else if ((i == 23) && (n > 0.3)){ //1000 Hz = 100% magnitude 
          magnitude = 1.0; 
      } 
      else if ((i == 26) && (n > 0.3)){ //1100 Hz = 5000% magnitude 
          magnitude = 2; 
      } 



33 
 

      else if ((i == 28) && (n > 0.3)){ //1200 Hz = 50000% magnitude 
          magnitude = 3; 
      } 
    } 
  } 
 
  if(currentfilter == 0){ 
    mixer1.gain(0, 1);  
    mixer1.gain(1, 1); 
    mixer1.gain(2, 1); 
    mixer2.gain(0, 1); 
    mixer2.gain(1, 1); 
    mixer2.gain(2, 1); 
    filter1seen = 0; 
    filter2seen = 0; 
    filter3seen = 0; 
  } 
 
  if(currentfilter == 1){ 
    // Low Pass Signal 
    mixer1.gain(0, magnitude);  
    mixer1.gain(1, filter2seen); 
    mixer1.gain(2, filter3seen); 
    mixer2.gain(0, magnitude); 
    mixer2.gain(1, filter2seen); 
    mixer2.gain(2, filter3seen); 
    sgtl5000_1.volume(1); 
    float freq1 = 100; 
    filter1.frequency(freq1); 
    filter2.frequency(freq1); 
    filter1seen = 1; 
  } 
 
  if(currentfilter == 2){ 
    // Band Pass Signal 
    mixer1.gain(0, filter1seen); 
    mixer1.gain(1, magnitude); 
    mixer1.gain(2, filter3seen); 
    mixer2.gain(0, filter1seen); 
    mixer2.gain(1, magnitude); 
    mixer2.gain(2, filter3seen); 
    sgtl5000_1.volume(1.0); 
    float freq2 = 500; 
    filter1.frequency(freq2); 
    filter2.frequency(freq2); 
    filter2seen = 1;        
   } 
 



34 
 

  if(currentfilter == 3){ 
    //High Pass Signal 
    mixer1.gain(0, filter1seen); 
    mixer1.gain(1, filter2seen); 
    mixer1.gain(2, magnitude); 
    mixer2.gain(0, filter1seen); 
    mixer2.gain(1, filter2seen); 
    mixer2.gain(2, magnitude); 
    sgtl5000_1.volume(1.0); 
    float freq3 = 1500; 
    filter1.frequency(freq3); 
    filter2.frequency(freq3); 
    filter3seen = 1; 
  } 
 
  if(currentfilter == 4){ 
    sgtl5000_1.volume(magnitude); 
    mixer1.gain(0, 1);  
    mixer1.gain(1, 1); 
    mixer1.gain(2, 1); 
    mixer2.gain(0, 1); 
    mixer2.gain(1, 1); 
    mixer2.gain(2, 1); 
  } 
  delay(200); 
} 
 
SPI Protocol Code 
// include the SPI library: 
#include <SPI.h> 
#include <FreqCount.h> 
 
// SD Pins 7, 10, 14 
 
const int CS = 9;       // Chip Select from Teensy to ADC -  The pin on each device that the master can use 
to enable and disable specific devices. 
const int SDATA = 12;   // Data from ADC to Teensy - MISO (Master In Slave Out) - The Slave line for 
sending data to the master 
const int SCLK = 13;    // SCLK from Teensy to AD - The clock pulses which synchronize data transmission 
generated by the master 
// set up the speed, mode and endianness for ADC 
SPISettings settingsA(48000000, MSBFIRST, SPI_MODE3);  
//ADC - AD7352 Settings: 48 kHz max , Most Significant Bit in data first, and Mode 3 based on CPOL: 1 & 
CPHA: 1 
 
void setup() { 
  // set pin modes properly 
  pinMode (CS, OUTPUT);     // Set up pin mode for chip select as output 



35 
 

  pinMode (SDATA, INPUT); 
  pinMode (SCLK, OUTPUT); 
  //Initialize pins 
  digitalWrite(CS,  HIGH);  // Set output on chip select as high to initialize so that input from ADC is 
turned off 
  digitalWrite(SCLK,  HIGH);  //Set output on clock to hight to initialize 
  // initialize SPI: 
  Serial.begin(57600); 
  FreqCount.begin(1000); 
  SPI.begin();  
} 
uint16_t sdata_a, sdata_b; 
uint32_t count = 0; 
uint32_t counta = 0;  
uint32_t countb = 0; 
uint32_t tracker = 0; 
uint16_t sdata_a_out; 
uint16_t sdata_b_out; 
void loop() { 
  // read bytes from ADC 
  //assign settings for ADC and begin transaction 
  SPI.beginTransaction(settingsA);  
  digitalWrite(CS, LOW); 
    count = SPI.transfer(0); 
    count <<= 8; 
    count |= SPI.transfer(0); 
    count <<= 8; 
    count |= SPI.transfer(0); 
    count <<= 8; 
    count |= SPI.transfer(0); 
    count = count >> 1; 
    tracker = count; 
    counta = count >> 16; 
    countb = tracker << 16; 
    countb = tracker >> 16; 
    sdata_a = counta; 
    sdata_b = tracker; 
    sdata_a_out = sdata_a >> 2; 
    sdata_b_out = sdata_b >> 2; 
  digitalWrite (CS, HIGH); 
  SPI.endTransaction(); 
  Serial.print("sdata_a_out = "); 
  Serial.print(sdata_a_out); 
  Serial.print("      ,      "); 
  Serial.print("sdata_b_out = "); 
  Serial.println(sdata_b_out); 
} 


