MIDI Controller Sequencer

ECE 445 Final Report -- Spring 2019
Team 2: Devin Alexander (dbalexa2),
Martin Lamping (mdI3),
Nathan Zychal (nzycha2)

TA: Christopher Horn
Date: 4/9/2019

Abstract

This report explains the process of creating a MIDI Controller Sequencer. The MIDI Controller
Sequencer was designed for the senior design course (ECE 445) at the University of lllinois at
Urbana Champaign. Throughout this document, the software, hardware, methodology for
testing, safety precautions, and physical considerations for the project are all explained in
detail. Design choices, conceptual / initial design ideas, and design influences for each portion
(if any) are also mentioned. The MIDI Controller Sequencer was designed with the user in mind,
and as such, an attempt was made at creating an easy to understand, intuitive interface. The
sequencer will allow users to produce any type of music while also offering a new, unique, and
modern way to do it.

Table of Contents

L INEFOTUCTION ...ttt sttt et e b e e s bt e sat e s bt s bt e bt e be e s reesmeeeaneereeneens 1
O R o U1 o To 1= PP P PP P PP P PPPPPPPPPPPPPPPPPPPPIRS 1
02N W1 ot o o F=1 1 4V 2 USSP 1
S B0 o YA €= 0 T O A=Y V711 SRR 2

2 0 T - o TS 4
2.1 EQUations and SimMUIGTIONScouiiiieieeieeee et 4
2.2 DESIGN ARLEINATIVES ..enveereeiieiieeeite ettt ettt ettt sttt et b e s bt e s heesaeesanesareereer e e reennees 5
2.3 Design Description & JUSHIfiCationcoiiiiiiiiieiee e 6
2.4 Design Description & JUSTITICAtioNccuviii i 8

SOFEWAIE FIOWCNAIT ...ce ittt ettt e st e e s b e sbe e e nee e sbeeenneeas 8
Potentiometer Module SChemMAtiCSuiiiiiiie e s s 9
Control Module SChEMATICS.......cooiiiieeiiie ettt s s e 11
Power DistribUtion CIFCUILIY .oooccuiiieiiciiee ettt e e st e e e tae e e s sata e e e eeaeaeeessnsaaeeesnnsaees 14

B COSt B SCREAUIE.ottt e st e e bt e st e e e be e e s b e e s be e e enteesneeesareaeas 14
R o 1y RO RRO PRSP 14
3.2 SCNEAUIE .ttt e s e st e e s bt e e r e e s bt e e be e e s be e e beeeaneee s neeesareeeas 16

4 Requirements and VerifiCations ..o s 16

B CONCIUSION ...ttt et s e st te e st e s bt e e bt e e sabe e e sabeesabeesbeeesabeeeabeeesnbeesneeesareaas 17
oI A Vololo o o] 11 a0 o T=T o A3 PP PPP 17
5.2 UNCEITAINTIES ittt e 18
5.3 FUTUIE WOTK/ALEINATIVES .ooeeeeeeeeee ettt ettt et e e e e seeaae et e eeesesassaaaeeeesesssasssaaeeeesesssnnsreaeees 18
5.4 EthiCal CONSIAEIATIONS vuvviiiiiiieiiieeeiee et ee et e e e e et e e e e e e eeesabaaaeeeeeeeesnssraneees 18

REFEIEINCESot ettt et st e s ab e st e e s bt e e s be e e bee e sateesabeeesabeesabeeeneeesaneeennes 20

LY o T o T=T 4T L SRS 21
B. L TN e 21
6.2 Detent CalCUIQTiONS ..ccveieiiieieeie ettt ettt bt st st s be b e b e be e sme e st e ereenreens 21
6.3 SCREAUIE ...ttt et e sa e s bt e st e e s bt e s a bt e s be e e s abeesbee e ntee s beeenareas 21
6.4 Requirement and VerifiCationsoccuiiiiiiii i et 24

1 Introduction

1.1 Purpose

Modern sequencers are almost exclusively software based and most frequently employ the use of
DAWs (Digital Audio Workstations) to output MIDI data. The software sidedness and in some cases
non-intuitive control interface of current software sequencers is a major proponent that inspired the
creation of this MIDI controller sequencer. The MIDI Controller Sequencer design itself is unique and
has not been previously implemented in the same way. The motorized potentiometers, PCB design
modularity, LED code structure and physical considerations all emphasize its’ unique qualities. The
purpose of this MIDI Controller Sequencer project is to create a dynamic physical interface that
responds, alters, and reports musical parameters to the user(s) in real time, all while MIDI data is being
output. This MIDI Controller Sequencer fills the gap modern software based sequencers have created.
The sequencer does this by allowing parameters to be changed with dials, buttons, DC motors, and a

plethora of other intuitive and easy to use interfaces.

1.2 Functionality

There are many high-level project functionalities that were taken into consideration while designing the
sequencer. Firstly and most importantly, the output of the system must be a MIDI data as a sequence
of notes at a consistent tempo. MIDI OUT data is generated and adjusted based on user input
sequencer values such as the tempo, root note, scale, and pitch. Second, the potentiometer slider
positions can be set manually and also can be moved into position by the motors. When the motor
moves the slider, the final slider position is also determined by the sequencer status values. The
position of the slider in combination with the sequencer status values will set the MIDI OUT data and in
turn produce the desired output sound. Third, the current step in the sequence of notes will be
automatically indicated by a dedicated LED placed below each motorized potentiometer slider. Fourth,
the ability to turn off / on a step in the sequence is afforded to the user. Steps in the sequence can be
turned off / on by pressing a dedicated button below the desired step. Lastly, the sequencer status
information is output accurately and in timely manner to the LCD screen to be displayed to the user(s).
Each of these high-level project functionalities play a separate and crucial role in the successful
operation of the MIDI Control Sequencer and meeting the project’s purpose.

1.3 Subsystem Overview
Block Diagram

|
|
| | USER
I LCD FEEDBACK ENCODERS
o) |
o 1 e e
= a1 POWER -3 :]
o = -
= o 1 CONTROL ATINY
w ; . 5V Linear
[[e] Regulator
g ; l MICROCONTROLLER ::— -1 I
o & 1 !
; Fuse | I
Protection
00 | [1
) I PWM Motorized | I
Driver Potentiometers | l
l 10V Linear P Jboarsexs
otentiometers per
Regulator 16 Total I
l LED Motor I
A Controller I
1 ey (H-Bridge) Potentiometer Board]
|
1 1
| MIDI CONTROLLER :
1 SEQUENCER
.-----------------------------l

Figure 1: The above figure shows the block diagram. The block diagram consists of four modules:
the power, control, potentiometer and user interface. Note the system has four ports: independent 18 V
and 9 V power supplies as well as a set MIDI In and Out ports.

Subsystems:

Power Distribution Board - This board will be used to distribute appropriate amounts of power to all
other boards in the MIDI Controller. Has inputs from both an external 18 V DC source and also an
external 12V DC source.

Table 1: Power Distribution Board Interconnects:

Connection From: Connection To: Purpose:

Power Distribution Board Potentiometer Board Supplies both an 18 V DC and 12V DC
power source connection.

Power Distribution Board Microcontroller / MIDI Board Supplies only a 12 V DC power source
connection.

Power Distribution Board Auxiliary Board Supplies only a 12 V DC power source
connection.

Microcontroller / MIDI Board - This board contains the ATmega2560 which controls most of the
project’s functionality. The ATmega2560 reads analog and reads/writes digital values, services

interrupts, interacts with serialized MIDI channels, and provides communication to ICs on aux boards
using the 12C protocol.This board also contains the MIDI IN, and MIDI out communication ports and

accompanying circuitry.

Table 2: Microcontroller/MIDI Board Interconnects:

Connection From:

Connection To:

Purpose:

Microcontroller / MIDI Board
(ATmega2560)

Microcontroller / MIDI Board
(ATtiny85)

Communicates with the ATtiny85 using
the 12C communication protocol after
the ATtiny85 requests to be read via
hardware interrupt.

Potentiometer Board

Microcontroller / MIDI Board
(ATmega2560)

Receives analog input values from
each motorized potentiometer, this
information will in turn be supplied to
the MIDI circuitry and then MIDI
THROUGH and MIDI QUT ports will be
set through software.

Microcontroller / MIDI Board
(Button Pins)

Microcontroller / MIDI Board
(ATmega2560)

Receives digital input values from the
buttons connected to the
Microcontroller / MIDI Board.

Auxiliary Board

Microcontroller / MIDI Board
(ATmega2560)

Receives digital input values from the
buttons connected to the
Microcontroller / MIDI Board.

Microcontroller / MIDI Board
(ATtiny85)

Microcontroller / MIDI Board
(ATmega2560)

The ATtiny85 sends “interrupts” to the
ATmega2560 serially, in the form of
writing a digital pin value high (this is
connected to a hardware interrupt pin
on the ATmega2560).

Microcontroller / MIDI Board

Potentiometer Board

Supplies 12C signals to the
Potentiometer Board for the motor and
LED PWM drivers.

Microcontroller / MIDI Board

Auxiliary Board

Supplies 12C signals to the Auxiliary
Board for the LED PWM drivers.

Power Distribution Board

Microcontroller / MIDI Board

Connects to Power Distribution board
through only a 12 V DC power source
connection.

Potentiometer Board - This board was made with a modular design, and as such each board
contains sufficient space for four motorized potentiometers. Four of these boards are used in the final
design. Here, both input Power levels from the Power Distribution Board are regulated down. This
board drives the motors, and step LEDs.

Table 3: Potentiometer Board Interconnects:

Connection From:

Connection To:

Purpose:

Potentiometer Board
(Button Pins)

Microcontroller / MIDI Board
(ATmega2560)

Supplies digital values from buttons (on
board) to the ATmega’s digital pins on
the Microcontroller / MIDI Board.

Potentiometer Board

Microcontroller / MIDI Board

PWMs connect to
Microcontroller / MIDI Board through
I12C data bus lines.

Power Distribution Board

Potentiometer Board

Connects to the Power Distribution
Board through both the 18 V DC and
12 V DC power source connections.

Auxiliary Board - This board houses additional buttons and LED pins as well as additional LED
PWM drivers. This board was pofentially used in the event that there was time to implement additional
functionality to the MIDI Controller Sequencer.

Table 4: Auxiliary Board Interconnects:

Connection From:

Connection To:

Purpose:

Auxiliary Board

Microcontroller / MIDI Board

PWMs connect to Microcontroller /
MIDI Board through 12C data bus lines.

Auxiliary Board

Microcontroller / MIDI Board.
ATmega2560)

Supplies digital values from buttons (on
board) to the ATmega’s digital pins on
the Microcontroller / MIDI Board.

Power Distribution Board

Auxiliary Board

Connects to Power Distribution board
through only a 12 V DC power source
connection.

2 Design

2.1 Equations & Simulations

Timing Calculations

- Estimations for timing specific tasks shown in a table in the Appendix.

Detent Calculations

-Many of our calculations were code based due to the logic controlling aspect of the microcontroller.
These are shown in the Appendix.

2.2 Design Alternatives

Table 5:

Design Alternatives Explanation and Results

Design Issue:

Corrective Action Taken:

Overall Results:

Quantitative
Explanation:

tempo based off of that was too
asynchronous, and resulted in an
atonal sequence.

used to calibrate the tempo
and output notes at the
correct frequency.

played with correct
timing.

Mounting PCBs to each other. Included drill holes into MIDI, Mounting between N/A

Potentiometer and Auxiliary boards worked

PCB design. successfully with

hex standoffs.

Keeping ground planes common Decided to make two ground Allowed for safer N/A
while isolating noise between planes | planes on the Power testing and fewer
for both the 18 V DC and 12V DC Distribution Board connected shorts throughout
power supplies on the Power only at the “star point” the project.
Distribution Board. (ferrite bead).
The original Potentiometer Board In the board redesign, the 10 The 10V linear N/A
design was incorrectly designed V linear regulator output was regulator supplied
with the 10 V linear regulators as switched to supply power to power to the correct
the electromotive potential between | the motor driver instead. components.
the potentiometer.
The original Potentiometer Board In the board redesign, the 5V | Redesigned N/A
design used a library with an linear regulator pad Potentiometer
incorrect 5 V linear regulator pad configuration was manually Board’'s 5V linear
configuration. changed (using EAGLE) to regulator regulated

the correct configuration. voltage levels

correctly.

MIDI IN tempo code with arduino Altered the code and used the | Arduino UNO N/A
UNO testbench not reading in data 6 times per beat MIDI tuning correctly read input
correctly. clock command to obtain MIDI data.

correct tempo.Additionally the

MIDI cable direction was

changed.
Polling for the tempo and setting the | Hardware interrupts were Sequences were N/A

Motors for the motorized
potentiometers on one and a half
boards could not be controlled. This
was due to shorting issues
connecting VCC and GND for some
I.C.s.

Most components that
overheated due to shorting
were replaced. However some
I.C.s could not be.

Some of the motor
functionality for the
device could not be
implemented due to
software constraints

6 motors could not be
controlled due to lack of
H-bridge supply

The motors that did run successfully
on the MIDI controller Sequencer
resulted in instability in
potentiometer slider position (at
times) .

The code was rewritten
several times in an attempt to
reduce the instability in
potentiometer slider position.

This issue could not
be fixed.

Using only the wiper
blade voltage as the
determining factor for
potentiometer slider
position was not
adequate. If a future
attempt was made for
accurate potentiometer
slider positioning, a PID
algorithm should be
implemented.

2.3 Design Description & Justification

Component selection was one of the most important parts of the design process. One of the most
important components that needed to be selected was a microcontroller. We decided to use the
Atmega 2560 microcontroller. From the data sheet:

Table 6: Comparison between: Atmel Atmega640/V-1280/V-1281/V-2560/V-2561/V. [1]

General 16 bits resolution Serial ADC
Device Flash EEPROM RAM Purpose /O pins PWM channels USARTs | Channels
ATmega640 64KB 4KB 8KB 86 12 4 16
ATmega1280 128KB 4KB 8KB 86 12 4 16
ATmegai281 128KB 4KB 8KB 54 6 2 8
ATmega2560 256KB 4KB 8KB 86 12 4 16
ATmega2561 256KB 4KB 8KB 54 6 2 8

Using the above table, we decided the ATmega2560 is the best option for this application. We
need 16 ADC channels and at least 2 USART pins. This cuts down the options between the ATmega
2560, ATmega 640 and ATmega1280. The reason we chose the ATmega 2560 is because it has a
large amount of flash storage. This gave us room to add more software functionality at a later time.

The second most important component to find was the sixteen linear, motorized potentiometers.
These were selected by the ability to perform pretty well and with the cheapest motorized pots we could
find on the market. Due to how expensive these specialized components are, we had to select these
really carefully.

For most board to board interfaces we chose to use 0.1” (inch) spaced pin headers to house jst
xh connector housings. This allows for easy interchange of board to board connections as well as good
debugging points. For the power distribution board, we thought it would be best to use screw jacks for
easy interchange, because they are quite robust and are designed for power applications.

The ATtiny85 will act as an intermediary between the encoder dials and the main
microcontroller. These will be nice to act as an 12C data buffer and interrupt handler. These ATtiny’s
will also help reduce the software complexity on the Atmel 2560 microcontroller which will help with
debugging the code. Various voltage regulators were selected to deliver reasonable power values to
various components across the device. These dropout regulators were selected based on the
restrictions of the components drawing power from them.

We also designed and implemented a power distribution board that will disperse power to the
other various boards in the project. It is this board that will house the circuit protection and makes sure
over current scenarios were handled safely.

Modularity was also a key design component. This module design would allow for unit testing of
individual components and subsystems. Unit testing ensured that when subsystems were connected
for the first time, that they would work accordingly. This design technique helped shorten the time it
took to fabricate and test working circuitry. In only a few instances this did not actually help mitigate
integration issues and these situations were mostly self inflicted.

Faceplate Design and Development

The faceplate design went through many iterations and design improvements. All of these
improvements fell into two different categories, 1) adding more functionality for future project versions
or 2) adjusting fitment issues. Below are the two different versions of the faceplate design in CAD and
the third image is the final, fabricated version 2 of the faceplate.

T e o

0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O 0O o o o

Figure 2: The above figure show the birds eye view of Team 2’s first faceplate design. Note that this
design didn’t have adequate cutouts for all buttons and LEDs we wanted in the final design. This
design was useful to help reteach CAD development and we used many of these measurement in
future versions.

Figure 3: Shows a 30° offset 3D view of version 1 of the faceplate.

O0O00O0O0O0O0

@)
: O ! e
OJ00/0/0/0/0/0)0,0/0/00/0)0/0/0)0,

Figure 4: The above figure shows V2 (version 2) of the faceplate. In this version the number of button
locations along the bottom of the PCB was increased to the preferred amount of one per potentiometer.
This faceplate was also design to fit a 4U rack mount.

e e e e 6 e e 6

EE_EEE EFBiseeedsee

Figure 5: The figure above is the final, V2 faceplate post fabrication. It was laser cut from a 3mm thick

blue acrylic stock.

2.4 Subsystem Diagrams & Schematics
Note: The following subsystem Diagrams and Schematics detail the parts of the initial design we got
working by the time of demo. More was designed and built and can be found in the Design Document.

Software Flowchart

Start
Sequencer

0
}

TEMPOTIUE? s [\| () sy
]
YES
\ 4 v
Update Tempo LED — Update Step LED Sample ADC
\ 4 \ 4
Turn New MIDI note on S le Butt
and off ample Buttons
Yes *
Update LEDs for Buttons
v *
Playing?
LCD Change state?
No Yes
Update LCD
\ 4
No—v‘t_ l
-«

Figure 6: The flowchart above details the software system that was designed for the MIDI sequencer.
It show how timing sensitive features took priority in the completed project. Less timing sensitive tasks
were completed only after timing sensitive tasks/interrupts were serviced.

Potentiometer Module Schematics

Figure 7:

Figure 8: Portion of potentiometer board schematic showing the 4 potentiometers connected to their
respective H-bridges.

F1 _RED (e
Vi - L
12 GRE =]

BLEAN 4
e
YTy
ED: ™
Bzl RED . ot
piz GRH = ¥
APz e %v
A -
LEDZ o
2 > I’
e B!
N p gRN 2] y
Ak 4
L7
Gl
LED .

T
),
E4A

SUT 2
236
o
100t

£

Figure 10: Portion of potentiometer schematic connecting button JST connectors to RC low pass
filters.

10

Control Module Schematics
Microcontroller

]] 7

o
o

& oo
el

Figure 11: The above figure shows the AtMega 2560 microcontroller connections used on our final
control module iteration.

Voltage Regulation

o
N
<
+5V/
VIN Ic2

GND o MC33269D-5.0
M) .3 - I
P 7 Vi . VO
PWRIN pcth C2 :)J +| beo

ATu I IOOHI l I47u

GND GND GND GND

———O X2-1

Figure 12: Power Circuitry on controller board. 5 V dropout regulator with capacitors to reduce voltage
transients on the control board is used to power the ICs and made available via external pinouts.

11

MIDI Out

S

Figure 13: The above figure show the MIDI out circuit. It uses a standard 7404D inverter IC and
2N2222 bipolar junction transistor (BJT). The 7404D (like all other IC’s used in the project) uses 5V
VCC. The MIDI port selected is a standard MIDI Port and will be mounted external to the board for
durability concerns and connected via a jst connector.

MIDI In

Figure 14: The above figure shows the MIDI In circuit. It utilizes a 6N139ND opto isolator from SD
Micro. It was on of the more expensive parts that we almost ran out of during the fabrication portion of
the different control modules versions. A standard 1N914 surface mount diode was selected for current
management.

External Oscillator

Eo
TS

Figure 15: External Crystal Oscillator Circuit

12

Reset Circuitry

Figure 16: Reset Circuitry. Common reset circuitry used on the ATMega 2560.
Miscellaneous Circuitry

Pt

LB?&ULK

+5V

100n,

10 K

GND

Figure 17: Other Circuitry. This circuitry was necessary from the proper implementation of the SCL
and SDA lines. Itis these two lines that comprise the 12C data bus we needed to utilize for inter board
communication. The external AREF pin needed a 100 nF capacitor to smooth the voltage input and

help mitigate potential surge or high voltage ripple situations for ADC readings.
Control PCB

Figure 18: Control PCB: the above PCB holds the circuits detailed above. Furthermore it also has an

array of six ATTiny85 ports and many interboard jst connector ports.

13

Power Distribution Circuitry

Figure 19: Power Distribution Circuitry with circuit protection: Circuit schematic detailing the power
distribution circuit. This circuit has diodes that show when the specific power bus was being used for
safety reasons for reverse voltage. It also has fuse protection in case of over current scenario.

Figure 20: Power Distribution PCB: The above PCB diagram shows the power distribution circuit.

This circuit was tasked with distributing power sent from the external power supplies and routing to the
individual modules. It also includes circuit protection to protect the individual modules from over current
using fuses.

3 Cost & Schedule

3.1 Cost

Labor

An entry level engineering job makes a starting wage of around $40 / hr or around $76,800 per year
(pre-tax). With these numbers in mind, the project cost roughly: $25,600 (with project duration assumed
consistent at 4 months.)

Table 7: PROJECT COST TABLE:

PART: MODEL(DIGIKEY): QUANTITY: Total COST:

10 V Linear Regulator BAJOCCOFP-E2CT-ND 8 12.16

14

Gen Purp 75 V 200 mA Diode 1N914BWTCT-ND 1 0.17
270 Ohm Resistor RMCF0805JT270RCT-ND 1 0.10

10 K Ohm Resistor RMCF0805JT10KOCT-ND 22 0.45

1 K Ohm Resistor RMCF0805JT1KOOCT-ND 16 0.35

600 Ohm Ferrite Bead 732-1620-1-ND 1 0.22

0.1 uF Ceramic Capacitor 1276-1286-1-ND 69 1.50
220 uF Aluminum Capacitor 493-2098-1-ND 8 2.37
180 Ohm Resistor RMCFO0805JT180RCT-ND 20 0.40

47 uF Aluminum Capacitor PCE3908CT-ND 16 5.96
100 Ohm Resistor RMCF0805JT100RCT-ND 1000 3.95

5V 1.5 A Linear Regulator 497-7255-1-ND 5 3.50
6Ch Inverter 296-38210-1-ND 1 1.89

5V 800 mA Linear Regulator LM1117IDTX-5.0/NOPBCT-ND 10 13.22
8 Pin DIP Socket AEQ9986-ND 6 1.08

PVC Pipe N/A 10 ft 1.68
Opto-Isolator 6N139SDMCT-ND 5 8.65
ATmega 2560 ATMEGA2560-16AU-ND 1 12.21

P-Ch Mosfet FDS6681ZCT-ND 4 8.80

Fuse Holder 486-1261-ND 2 3.76

Fuses (10 A, 3 A) AGC Type 2 1.50

RGB LED Pack N/A 24 8.99

110 V /220 V AC to 18 V Transformer Aiposen 1 17.94
Hex Standoff Pack N/A 1 11.99
Black Plastic LED Holder Pack N/A 1 5.19

15

Header Pack N/A 1 5.00
60mm Motorized Potentiometers 688-RS60N11M9AOE 16 350.00

20 Detent Rotary Encoders N/A 6 8.99
16mm LED Backlit Buttons N/A 20 11.08

3 Pin XH JST 2.54mm Connector N/A 4 1.99
4 Pin XH JST 2.54mm Connector N/A 63 24.99
5 Pin XH JST 2.54mm Connector N/A 18 12.99
6 Pin XH JST 2.54mm Connector N/A 4 2.93

Grand Total= Labor + Cost (Note: Labor is per person)
$77,346.00 = (3 x $25,600.00) + $546.00

3.2 Schedule

This portion of the project was similar to that of the schedule displayed in the submitted “Revised
Design Document”, as such it will be reported in the Appendix below.

4 Requirements and Verification

Due to the expansive nature of our RV tables, the RV tables that weren’t changed or were met
successfully were placed in the Appendix. Tables that were not met are placed below.

Table 8: Encoder Requirement and Verification Table

REQUIREMENT: VERIFICATION:

1.) Enough detent for active cycling. A. Create list of all desired outputs that encoder needs
to cycle through.

B. Connect every encoder output to Arduino board
pins.

C. Use digitalRead(pin) syntax to read every pin
output with Arduino IDE software.

D. If detent of encoder is less than or greater than the
number of desired outputs, ensure that the encoder
cycles through the list.

1.) Tempo encoder has a range of 60 bpm - 140 bpm
(1 Hz-2.33 Hz))

Turn encoder to minimum tempo of 60 bpm.
Connect minimum frequency output of encoder to
oscilloscope.

Check that minimum frequency selection operates
at or below 60 bpm.

Turn encoder up to maximum tempo of 140 bpm.

w >

o O

16

E. Connect maximum frequency output of tempo
encoder to oscilloscope.

F. Check that maximum frequency output of tempo
encoder operates at or above 140 bpm.

Table 9: Motorized Potentiometer Requirement and Verification Table

REQUIREMENT: VERIFICATION:
1.) Potentiometer ranges from 0 K() - 10 K() with a A. Configure individual potentiometer testbench.
tolerance +/- 2 K(). B. Apply known voltage across potentiometer.
C. Measure output current as the potentiometer
position is adjusted.
D. Ensure that all potentiometers operate in at 10 K()
+/- 2 KQL.
2.) Ability to drive motors such that positions can be A. Configure individual potentiometer testbench.
“quantized” to localized positions along B. Configure Microcontroller subcircuit with test code

potentiometer movement range. that will slide through all necessary positions.

C. Ensure smooth transition between locations.
D. Ensure lack of movement in between movements.
3.) Each individual motor needs to have noise from A. Connect output from the potentiometer to an
surrounding motors filtered out from the output oscilloscope.
voltage before being sent to ADC. B. Configure microcontroller subcircuit that will slide

through all necessary potentiometer positions.

C. Inspect that the amplitude of any periodic spikes in
voltage from the motor from that potentiometer (or
nearby potentiometers) is less than 8 mV +/- 2 mV.

4.) Potentiometer sliders will need to be moved at a
speed that seems fluid but does not harm users.

Configure individual potentiometer testbench.
Configure microcontroller subcircuit with test code
that will slide through all necessary note positions.
Test out the motor controllers with human hands
touching the knobs.

Determine that movements do not cause
discomfort.

w >

o o

5 Conclusion
5.1 Accomplishments

Overall, when looking back at the objectives and completeness, this project has shown much
success. The final version of the project interacts both with MIDI IN, and MIDI OUT data. MIDI OUT
and MIDI IN data is sent and read by our code and operates similarly to MIDI encoding standards.
MIDI OUT sends output according a pitch, root note, tempo and scale which was listed as a project
objective. MIDI OUT also sends MIDI active sensing and MIDI clock as specified in MIDI encoding.
The tempo for a sequence of notes can be read in and set from MIDI IN, or set from a linear
potentiometer slider (instead the planned use of an encoder) by the user. Tempo data is used to output
notes at a consistent tempo through the use of interrupts. The motors for the motorized linear
potentiometer sliders do work on some of the steps for the sequence however not as intended. For the
final version of the project 10 of the 16 potentiometers have motor code that can snap the slider into

17

place (to a detent) when pushed by the user. Using the detent positioning motor functionality of the
slider proved to be quite challenging, and the final slider position often oscillated about a point. In total
there was some success with motor positioning, however its full potential functionality has not been
reached. The objective to display information on the LCD screen for the user has also been reached.
The LCD screen functions as intended, and displays the root note, pitch, scale and tempo (in real time).
5.2 Uncertainties

Throughout this project there were a couple prominent areas of unsatisfactory results. These
areas presented mainly in the code / software portion of the design, and the motor aspect of the project.
In the final version of the code / software, a working version of interrupts to be sent by the ATtiny had
not been finished. The final code for the ATtiny interrupts was such that an interrupt was sent twice
when the encoder was turned clockwise, and once when turned counter-clockwise. In a future version
of the project, this issue could be fixed by accounting for if the gray-code output of the encoder was
incrementing or decrementing. Based on the change in grey code, it could be determined which
direction the encoder was turned in. If turned clockwise, a counter would be set and ensure that only
one interrupt was set per turn.

Secondly, the intended functionality of the motors on some of the motorized potentiometers was
not met. The motors did not function correctly due to both the hardware and software. Some of the
H-bridges didn’t function as intended and this caused some motors to run unpredictably. Some H-bridge
ICs did not work due to inadequate soldering and the fact that a cheap package was chosen. Heat was
not dissipated on these H-bridges and thus the ICs were prone to burning up and internal shorting.
Other aspects of code that had not been finished include all of the auxiliary board functionality (which
was a reach goal).

5.3 Future Work / Alternatives

There are many areas for potential improvement in the current MIDI Controller Sequencer
design. Some, but not all of the reported reach goals outline the areas for improvement. Firstly, the
micro-controller board would need to have input pins for the transmitting and receiving lines, also boot
loader circuitry would prove a worthy addition, both of these are crucial in shortening debugging time.
One aspect in the design that proved unruly was cable management, and as such, the use of ribbon
cables in place of the JST connectors would greatly aid in organization. Another very important
alternative would be to use a PID algorithm for intended functionality of motors instead of purely using
the potentiometer slider position. For the LCD screen, a menu could be added for user navigation with
the use of encoders.

5.4 Ethical Considerations

IEEE’s code of ethics article 1 is, “to hold paramount the safety, health, and welfare of the
public, to strive to comply with ethical design and sustainable development practices, and to disclose
promptly factors that might endanger the public or the environment.” [5] Our group also strives to
uphold IEEE’s article 1 safety standards throughout our project. Synthesizers/sequencers generally
operate at 15 V [6], these voltage levels are considered a safe range for users to operate the device at.
Our synthesizer implementation will run at a similar voltage level, with a maximum operation voltage of
around +18 V. Even with the device operating at safe voltage levels, there is always a potential for risk.
To mitigate the risk of electrical shock, the device inputs and outputs, and even some passive elements
will be clearly labeled and fuse / led circuitry was implemented to limit current through some of the
boards.

18

Additionally, non-electrical issues taken into consideration are users jamming their fingers into the slider
holes, sharp edges, or otherwise rough use of the device. The physical faceplate will be designed such
that the holes are not large enough for a user to insert their fingers into. Sharp edges will either be
noted by a warning label on the front of the faceplate or the edges will simply be ground down so the
edges feel smooth. In following with Underwriter Laboratories, “ We will create and maintain
environmental, health and safety (EHS) work practices and secure work environments that enable
employees to work injury free.” [7] Significant amounts of soldering will pose a safety risk for the team
but we will handle it accordingly. Carbon filtered fans were used to keep from solder fume inhalation
during soldering. In keeping with the Underwriter Laboratories statement above, safety precautions
such as personal protective equipment, adequate ventilation, and lighting will always be available and
in use during the assembly stages of this project. Furthermore cleanliness and proper workspace
organization will lessen the risk of accidents.

The main ethical dilemma that may need to be considered is the way in which our device is used. The
types of music, sounds, and melodies, a user chooses to produce can have an effect on a listener's
behavior and emotions. Another safety hazard/ ethical dilemma would be if a user operates the MIDI
controller sequencer with malicious or harmful intent or otherwise forcing the device to operate under
abnormal conditions (e.g. running the motors too often or quickly, forcing potentiometers into place,
etc.).

19

References

[1] ‘Atmel Atmega640N—1280N—1281/V 2560/V 2561/V” Datasheet. [Onllne] Avallable

_daiash_e_e_t.p_df [Accessed 27- Feb -2019].

[2] “MIDI,” code circuits construction. [Online]. Available: http://www.tigoe.com/pcomp/code/communication/midi/. [Accessed:
12-Mar-2019].

[3] “Arduino Mega 2560 Reference Design” arduino.cc [online] available:
https://www.arduino.cc/en/uploads/Main/arduino-mega2560-schematic.pdf [accessed: 2-Mar-2019]

[4] Bermudez, Adam. “How to Reduce Electromagnetic Interference in Motor Drive Systems.” [Online] Available:

[Accessed 5 Mar 2019]

[5] “IEEE Code of Ethics,” IEEE - Advancing Technology for Humanity. [Online]. Available:
https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 22-Feb-2019].

[6] “What is Voltage? | The Synthesizer Academy,” synthesis tutorial. [Online]. Available:
http://synthesizeracademy.com/what-is-voltage/. [Accessed: 22-Feb-2019].

[7] “Ethics and Compliance,” UL - Empowering Trust. [Online]. Available:
https://www.ul.com/aboutul/standards-of-business-conduct/. [Accessed: 25-Feb-2019].

20

6 Appendix
6.1 Timing

Table A1: Timing

The table below shows the timing data that was calculated empirically. Tasks were timed in software and the results are as

follows:
Task Time (sec)
Sample ADC 108 ps - 1896 us

Sample Button

108 pus -1896 ps

Change Step LED

3996 ps - 4004 pus

Change Motor

8 ms

Blink Tempo LED

Variable based on BPM

Service Encoders

~ 500 s

Update LCD Screen

~ 26548 ps

Detent Calculations:

6.3 Schedule

Table A2: Schedule

Detent spacing =

—1024

Num Detents

where : Num Detents = 13 for one octave

=25 for two octaves

(eq 1)

WEEK: Nathan: Devin: Martin:
Week of 2/18 1. Design Document Design Document 1. Design Document

Check - 2/19 Check - 2/19 Check - 2/19

2. Begin initial 2. Start soldering 2. Start soldering
potentiometer board assignment assignment
PCB diagram/design Begin initial 3. Begin software
in Eagle potentiometer board design/debugging for

3. Start soldering PCB 1 test potentiometer
assignment diagram/design in 4. Microcontroller

21

Plan design review
presentation details

Begin software

Eagle
Plan design review

presentation details

breakout board
design

Plan design review

design/debugging for Begin software presentation details
1 test potentiometer design/debugging
for 1 test
potentiometer
Week of 2/25 Design Review - 2/27 Design Review - Design Review - 2/27
Finish potentiometer 2/27 Continue work on
board PCB Finish microcontroller circuit
diagram/design in potentiometer board
Eagle PCB
diagram/design in
Eagle
Week of 3/4 Teamwork evaluation First round of Teamwork evaluation
1-3/4 PCBway orders 1-3/4
Soldering assignment must pass audit - Soldering
due - 3/8 3/14 assignment due - 3/8
Finish microcontroller Submit final Finish microcontroller
board PCB revisions to board PCB
diagram/design in machine shop - diagram/design in
Eagle 3/15 Eagle
Begin software Begin software Begin software
design/debugging for design/debugging design/debugging for
microcontroller for LCD and MIDI microcontroller
Finish initial PCB data Finish initial PCB
designs and Improvef/fix initial designs and
(microcontroller and PCB design (microcontroller and
potentiometer board) potentiometer board)
for PCBway for PCBway
Week of 3/11 First round of First round of First round of

PCBway orders must
pass audit - 3/14
Submit final revisions
to machine shop -
3/15

Begin software

design/debugging for

PCBway orders
must pass audit -
3114

Submit final
revisions to
machine shop -
3/15

PCBway orders must
pass audit - 3/14
Submit final revisions
to machine shop -
3/15

Begin software

design/debugging for

LCD and MIDI data 3. Begin software LCD and MIDI data
Improvef/fix initial design/debugging Improve/fix initial
PCB design for LCD and MIDI PCB design
data
4. Improve/fix initial
PCB design
Week of 3/18 Finish final PCB 1. Finish final PCB Finish final PCB
design design design
Finish software 2. Finish software Finish software
design/debugging for design/debugging design/debugging for
LCD and MIDI data for LCD and MIDI LCD and MIDI data
data
Week of 3/25 Individual progress 1. Individual progress Individual progress
reports due - 3/25 reports due - 3/25 reports due - 3/25
Final Round PCBway 2. Final Round Final Round PCBway
orders must pass PCBway orders orders must pass
audit - 3/28 must pass audit - audit - 3/28
Prepare for mock 3/28 Prepare for mock
demo 3. Prepare for mock demo
demo
Week of 4/1 Mock demo 1. Mock demo Mock demo
Debug/improve all 2. Debug/improve all Debug/improve all
software applications software software applications
applications
Week of 4/8 Prepare for mock 1. Prepare for mock Prepare for mock
presentation presentation presentation
Add “reach goal(s)” 2. Add “reach goal(s)” Add “reach goal(s)”
hardware and hardware and hardware and
software functionality software software functionality
if possible functionality if if possible
possible
Week of 4/15 Prepare for mock 1. Prepare for mock Prepare for mock
presentation presentation presentation
Prepare final paper 2. Prepare final paper Prepare final paper
document document document
Week of 4/22 Mock presentation 1. Mock presentation Mock presentation

23

2. Prepare for final 2. Prepare for final 2. Prepare for final
presentation presentation presentation
3. Prepare final paper 3. Prepare final paper 3. Prepare final paper
document document document
Week of 4/29 1. Final presentation 1. Final presentation 1. Final presentation
2. Final paper due - 5/1 2. Final paper due - 2. Final paper due - 5/1
3. Lab notebook due - 5/1 3. Lab notebook due -
52 3. Lab notebook due - 5/2
4. Teamwork evaluation 5/2 4. Teamwork evaluation
Il due - 5/2 4. Teamwork Il due - 5/2
evaluation Il due -
5/2

Requirement and Verification Tables
-These RV tables were met in the finished version of the project.

Table A2: LCD Module Requirement and Verification Table

REQUIREMENT: VERIFICATION:
1.) Make sure that the contrast of the LCD display is A. Configure microcontroller test circuit with LCD
such that the message can be seen on it from interface.
multiple viewing angles. B. Send known text to the LCD from microcontroller.

C. Provide an analog voltage to the pin on the display
controller that is responsible for controlling the
contrast.

D. Adjust contrast until viewable from top, sides and
bottom with viewing angle of roughly 45 degrees
from the z axis.

2.) LCD backlight brightness is great enough to see the A. Configure microcontroller test circuit with LCD
text on the screen in a dark environment. interface.
B. Send known text to the LCD from microcontroller.
C. Take test setup into dark room.
D. Make sure that the voltage going to the LCD I2C to

parallel backplate has the correct voltage to power
the LED backlight.
E. Ensure backlighting is bright enough

3.) Real time display of messages A. Configure microcontroller test circuit with LCD
interface.
B. Supply the LCD with a series of known messages.
C. Increase the refresh rate of that.
4.) The LCD display can not take up too many pins on A. To save IC digital pins for use of connecting to
the microcontroller. other modules, we will be using a Parallel to 12C

BUS converter chip to free up digital pins for other
requirements.

24

5.) LCD screen will run off a 5 V regulator +/- 0.5 V.

Connect linear regulator to 12 V power supply.
Using multimeter measure the output of the linear
input to the LCD screen and confirm voltage is 5 V
+/-0.5 V.

Table A3: 9 V Linear Regulator Requirement and Verification Table

REQUIREMENT:

VERIFICATION:

1.) Outputs at a voltage level of 9 V with a tolerance of
+/- .1V at a maximum current output of 500 mA.

Set up linear voltage regulator mock up circuit with
500 mA load.

Connect known 12 V power supply to voltage
regulator.

Connect voltage regulator to 24 () in order to pull
500 mA.

Test output is operating within acceptable range of
8.9V -9.1 V and the output current does not
exceed 500 mA.

Table A4: 5V Linear Regulator Requirement and Verification Table

REQUIREMENT:

VERIFICATION:

1.) Outputs at a voltage level of 5 V with a tolerance of
+/- .4 V at a maximum current output of 1500 mA.

Set up linear voltage regulator mock up circuit with
1500 mA load.

Connect known 12 V power supply to voltage
regulator.

Measure output is operating within acceptable test
range of 4.6 V - 5.4 V and the output current does
not exceed 1500 mA.

Table A5: 12 V Power Supply Requirement and Verification Table

REQUIREMENT:

VERIFICATION:

1.) Provides +/- 12 V with a tolerance of +/- .1V .

O w>

Set up mock test circuit with rated resistor.

Apply 12 V power supply to rated resistor.

Use digital multimeter to test that the voltage drop
across the resistor does not exceed 12.1 V.

2.) Supplies 4.5 A +/- 2A

Set up mock test bench circuit with resistive load of
1.10 Q) (comparable to circuit).
Calculate current across resistor.

Table A6: Microcontroller Requirement and Verification Table

REQUIREMENT:

VERIFICATION:

1.) Supports an 12C frequency of at least 100 KHz.

Input 12C test signal using computer and USB input
port of breakout board.

Measure output frequency and confirm it reaches at
least 100 KHz +/- .5 KHz using oscilloscope.

25

2.) Crystal oscillator will run off a 5 V regulator +/- 0.2

V.

w >

o o

Connect linear regulator to 12 V power supply.
Using multimeter measure the output of the linear
oscillator and confirm voltage is 5V +/- 0.2 V.
Apply output of 5 V linear oscillator to the input of
the crystal oscillator.

Confirm normal operation of 16.000 MHz output of
crystal oscillator via oscilloscope.

3.) Samples voltage levels at 1000 KHz.

ow

Input square wave with peak to peak voltage 3.3 V
from function generator.

Connect microcontroller output to oscilloscope.
Ensure that microcontroller is capable of sampling
signal at 1000 KHz by measuring period of output
sample.

4.) Microcontroller must be capable of reading a
sample of at most 10 ms +/- 5 ms.

Set up microcontroller test bench and read signal

values via oscilloscope.

Provide microcontroller with known analog signal.
Make sure that the known signal and values read

into the microcontroller at the required 10 ms +/- 5
ms match.

5.) Samples voltage levels at 1000 KHz.

Input square wave with peak to peak voltage 3.3 V
from function generator.

Connect microcontroller output to oscilloscope.
Ensure that microcontroller is capable of sampling
signal at 1000 KHz by measuring the period of the
output sample.

7.) ADC being internal to the microcontroller.

Check the datasheet for the microcontroller to see
if there are any pins being utilized for analog to
digital conversion. This will reduce design
complexity.

Table A7: PWM LED Driver Requirement and Verification Table

REQUIREMENT: VERIFICATION:
1.) 12C bus on the microcontroller, that functions at a A. Connect mockup PWM driver circuit to
frequency of 100 KHz. oscilloscope.
B. Run data through the 12C bus.
C. Measure the frequency at which 12C signal
oscillates.
D. Check If the signal oscillates at a frequency within
+/- .1 KHz of the required 100 KHz.
2.) PWM driver will run off a 5 V regulator +/- 0.2 V. A. Connect linear regulator to 12 VV power supply.
B. Using multimeter measure the output of the linear
oscillator and confirm voltage is 5V +/- 0.2 V.
C. Apply output of 5 V linear oscillator to the input of
the crystal oscillator.
3.) The LED driver provides pulses that are able to drive A. Assemble microcontroller and LED driver
LEDs at 20 mA per channel. subcircuit.
B. Use multimeter to check the LED’s channel current

is within +/- 5 mA of the required 20 mA.

26

Table A8: PWM Motor Driver Requirement and Verification Table

REQUIREMENT: VERIFICATION:
1.) 12C bus on the microcontroller, that functions at a A. Connect mockup PWM driver circuit to
frequency of 100 KHz. oscilloscope.

B. Run data through the 12C bus.

C. Measure the frequency at which 12C signal
oscillates.

D. Check If the signal oscillates at a frequency within
+/- .1 KHz of the required 100 KHz.

2.) PWM driver will run off a 5 V regulator +/- 0.2 V. A. Connect linear regulator to 12 VV power supply.

B. Using multimeter measure the output of the linear
oscillator and confirm voltage is 5V +/- 0.2 V.

C. Apply output of 5 V linear oscillator to the input of

the crystal oscillator.

Table A9: Button Array Requirement and Verification Table

REQUIREMENT:

VERIFICATION:

1.) Output digital HIGH (1) when pressed or digital
LOW (0) when pressed depending on if the button
is active high or active low.

w >

Configure button testbench on breadboard.

Use a multimeter to read voltage across button
when it is pressed.

Check if voltage is above the critical point of 2.5 V
within +/- .2 V.

2.) Debounce buttons.

>

moow

Build a lowpass filter with capacitor in parallel with
the button and resistor in series.

Connect oscilloscope to the output of button.
Apply 3 V input to button.

Map button activation on oscilloscope.

Ensure that the button remains in the high position
with tolerable bounce (listed in 2.3.12 summary
above).

Table A10: LED Array Requirement and Verification Table

REQUIREMENT: VERIFICATION:
1.) The LEDs are RGB and can be changed to any A. Cycle through absolute RGB values.
color in the the RGB colour space . B. Ensure correctly display R, G and B
C. Variation in LEDs will be judged by running the R,
G, and B values. through the standard 256 color
value ranges.
2.) The LEDs must be driven correctly by PWM signals A. Set up I2C connection protocol between
generated by an external microcontroller and LED array.
B. Ensure an 12C data signal from the Microcontroller
has individually addressed PWM channels.
C. Test 12C communication with all three color

channels on each LED individually.

27

Table A11: MIDI Ports Requirement and Verification Table

REQUIREMENT:

VERIFICATION

1.) Successfully outputs MIDI data with industry
standard bit rate of 31.25 Kbaud ~ 3 bytes / ms.

w >

o o

Mock up microcontroller test board.

Connect MIDI input and output data lines to UART
port (solder).

Supply MIDI port with known sequence of MIDI
data from computer DAW.

Check that data is being sent at a rate of 31.25
Kbaud~ 3 bytes / ms.

2.) Ports connected to microcontroller on two of the
four UART ports.

w >

o O

Mock up microcontroller test board.

Connect MIDI input and output data lines to UART
port (solder).

Supply MIDI port with known sequence of MIDI
data from computer DAW.

Check that data is being transferred to the
microcontroller ensure successful connection.

3.) Provide a means to communicate with external
MIDI devices.

w >

Mock up microcontroller test board.

Connect MIDI output port to computer DAW
software.

Flash know MIDI sequence that probes the ‘status
bit’ onto microcontroller and output through MIDI
output port.

Using a DAW (digital audio workstation), check that
the MIDI encoding standard “status bit” is sent with
regularity.

4.) MIDI will output on, off, duration, velocity, and
tempo data.

Synchronize the MIDI output data to that of a MIDI
input device to verify if sound is coming out of a
MIDI module.

If status byte of the MIDI output data, is flashed
high every 1 ms +/- 1 ms for each parameter.

5.) MIDI input will only be used for syncing with
external tempo data and nothing else.

w >

o o

Mock up microcontroller test board.

Connect MIDI input and output data lines to UART
port (solder).

Supply MIDI port with known tempo data from
computer DAW.

Ensure correct synchronization of the MIDI input
clock with that of a MIDI output via the DAW using
a MIDI out port on a digital interface for testing.

28

