

i

1

Abstract

Parking meters are amongst some of the most antique and overlooked technology today. These
systems are rarely updated, and when they are, they’ve proven to frequently obfuscate the parking
process with unclear messages and strict fees. Our parking meter seeks to add simplicity to the
process by removing as much worry on the driver as possible. With the ability to automatically
recognize a driver’s license plate and charge their associated balance accordingly, we can easily
eliminate the need to carry around spare change or a credit card. Furthermore, strict fees often
discourages drivers from parking in certain spots, especially when they are ruthlessly enforced by
previous failed attempts at automated parking. We seek to solve this by integrating more lenient
parking rules on our devices, by only charging a driver once they have been parked for a set amount
of time, and by allowing a time gap between when their balance runs out and when parking officials
should be notified. With these considerations in mind, our parking meter will automatically detect
license plates with high accuracy, and remove the hassle of the driver having to monitor their
parking time themselves.

2

Contents
1. Introduction 3

2. Design 4

2.1 Design Procedure 4

2.1.1 General Design Considerations 4

2.1.2 Hardware design 5

2.1.3 Software design 6

2.2 Design Details 6

2.2.1 PCB & LCD screen and Ultrasonic sensor 6

2.2.2 Microcontroller to Raspberry Pi Module 7

2.2.3 Raspberry Control & Power distribution and saving 7

2.2.5 Plate Recognition Model 8

3. Design Verification 10

3.1 Raspberry Pi Power Saving Verification 10

3.2 Other Verification 11

4. Costs 13

4.1 Parts 13

4.2 Labor 13

5. Conclusion 14

5.1 Accomplishments 14

5.2 Uncertainties 14

5.3 Ethical considerations 14

5.4 Future work 15

References 16

Appendix A Requirement and Verification Table 17

3

1. Introduction
When people forget to pay the parking meter due to carelessness or some emergencies, people
could be charged for $15-50. Also, sometimes because of the bad schedule plannings, people ran
late to the parking lot to pick up their car. In case of these scenarios, people usually pay extra money
to safely cover the time they will use, which in turns cause people losing money because they left
early.

Also, parking spots on campus are numerous, and there is constantly a need for multiple people to
constantly monitor parking spots to ensure rules are not broken. It is very easy for an individual to
make an honest mistake however, such as parking too close to the curb, forgetting the time limit
they paid for, or parking in a spot they are not allowed to park in.

We propose to solve those problem with an enhanced parking device that can be either mounted on
a pole or a wall that will monitor cars coming in and out of the parking space, and notify the
car-owner and the officials if there is a violation. Our device will also be able to calculate the parking
fee depends on the exact time for a driver parks and charge his or her prepaid account based on the
plate number, which would be a more reasonable method compared with current inflexible one.

 2. Design

2.1 Design Procedure

2.1.1 General Design Considerations

With consideration to the flow below, there are four jobs that must be accomplished: incoming car
detection, plate recognition, parked-time counting, and WiFi communications. With respect to these
requirements, we decided to include a Raspberry Pi in our overall design for its WiFi communication
capabilities and its speed in terms of processing power over the standard microcontroller, since
plate recognition and communication would have to happen in a very short amount of time (during
a car’s arrival and departure), there was a necessity for sufficient processing power in addition to
our standard microcontroller.

Another one of our goals was to preserve power as much as possible. While the entire workflow is
possible with the Raspberry Pi alone, there exist concerns over its lifetime if it were to run 24/7;
plus, it would consume considerably more power in doing so (calculations in 3.1 Power Verifications
section). Thus, we chose to have the Raspberry Pi sleep during periods when it was not needed, and
allow the microcontroller to wake the Pi instead. While the Pi is asleep, the microcontroller will then
perform the simpler tasks such as calculating the balance while a car is parked or awaiting a parked
car while there isn’t one.

4

Figure 1: The designed working flow of our parking assistance device, shown as one round of a

car park in and leave.

2.1.2 Hardware design

Based on the flow shown in Figure 1, our front-facing interface requires three main parts: an LCD
screen to display parking-related messages, an ultrasonic sensor to detect motion, and a camera for
license plate recognition. We decided to allow a Raspberry Pi (B+) handle the WiFi communications
with the main server and the plate recognition because these processes can potentially consume a
lot of processing power, we chose to delegate these tasks to a device that has proven itself in these
areas.

Figure 2: The final combination of our hardware components. Ultrasonic sensor for detection,

camera to take a photo including the car plate, LCD for information displaying. Inside the box is

our PCB with microcontroller and Raspberry Pi.

Since the Raspberry Pi is only needed when there is an incoming car and a departing car, the vast
majority of the time will be spent either awaiting a new car, or deducting from the balance of a
currently parked car. These simple tasks can be left to the microcontroller. In the case of awaiting an
incoming car, the motion sensor need only be polled for a (decreasing) change in distance, and in
the case of calculating the balance of a parked car, the balance need only be deducted by a set rate
every couple minutes; thus, during this time, the Pi is put to sleep.

5

2.1.3 Software design

To recognize the plate number on the car, we started working on the recognition algorithm. The
image would be taken by Raspberry Pi camera and then processed by Raspberry Pi. The next part of
our software design are the communication between microcontroller and Raspberry Pi, data
transmission between Raspberry Pi and central server, which store the information of users
accounts.

2.2 Design Details

Figure 3: Top-Level block diagram of the entire system. The hardware section is separated into a

PCB module, which will consist of the modules to be placed on the PCB, as well as the Pi Module,

which consists of only the Raspberry Pi.

2.2.1 PCB & LCD screen and Ultrasonic sensor

Figure 4: PIC Microcontroller to LCD Module and Motion Sensor Module connections.

6

To detect whether a car is parking, we are using the ultrasonic sensor. The basic principle of
ultrasonic sensor is that one hole of the sensor send the sound wave, and then the other one
receive the wave reflection. The distance is calculated by:

 distance = time interval of sending and receiving * speed of sound / 2 (1)

Figure 5: The Ultrasonic sensor. pin Trig is the input from MCU and Echo is the output to the

MCU. Those two pins connect and communicate with microcontroller based on the formula

described above.

2.2.2 Microcontroller to Raspberry Pi Module

Figure 6. Raspberry Pi to Microcontroller connection. The dotted module is the module depicted

in Figure 2 (connections between the microcontroller, the LCD screen, and the ultrasonic motion

sensor).

2.2.3 Raspberry Control & Power distribution and saving

Our device use the ground power. For Raspberry Pi, we used the power adapter of Raspberry Pi. All
other components, including microcontroller are powered by 5V pin on Raspberry Pi.

Another significant feature of our design is Raspberry wake up & halt control. Raspberry would sleep
twice and wake up twice in one round of parking, our goal of this module is to save the power as
much as possible.

7

At first, what we trying to do is using transistor to modify the connection between 5V dc power and
raspberry pi micro usb power input, simulating the plug in and plug out operation, but we find out
that any resistor or the resistance of transistor would affect the voltage applied on Raspberry pi
since the working resistance of Raspberry pi is only at 5 ohms to 10 ohms.

But then we find another way to achieve the similar feature: We keep Raspberry PI connected with
5v dc power. If we code a command in our program,The raspberry would stay in halt mode, and if
we wanna wake it up, we have to short short pin 5 and 6, which is GPIO 3 and GND. We complete
this control module still by the feature of transistor(BJT), a digital signal would be sent from MCU,
the other two pin would act like connected.

Figure 7. Power supply and the virtualization of Raspberry Pi power control module.

2.2.5 Plate Recognition Model

The plate recognition model will consist of multiple models. The first model consists of detecting
objects with the shape of a license plate, which means this model will be trained to recognize a
rectangle of a specific size, edge, and of corner shape (since license plates have distinctly rounded
corners). The second portion of the model consists of optical character recognition. Once a license
plate-shaped object is detected, there needs to be a model to recognize text on the license plate
itself, and associate this text with ASCII characters in order to perform lookups based on the license
plate.

We implement the major parts ourselves, including plate segmentation and character segmentation.
For the remaining character recognition, we use Tesseract, developed by Google, to recognize the
characters. Tesseract is actually powerful to directly segment characters and recognize them.
However, after several trials, we found that the results of Tesseract’s recognition are inconsistent
and prone to noise. That’s why we only use Tesseract model for single character recognition. With
the help from [5], we are able to do plate segmentation and character segmentation effectively.

8

2.2.6 Software Flowcharts

Figure 9: Top-level data flow of the entire system. Figure 10: Flow of data on the server

side.

Figure 11: Software logic flow on the meter/client side.

9

2.2.7 Design Alternatives

One alternative we considered was in the sleep/wake module of the Raspberry Pi. In our first
design, we supplied constant power to the microcontroller, and would use a relay to cut power
to the Raspberry Pi to put it to sleep. To wake it up, the microcontroller would operate the relay
to allow wall power to flow to the Pi. This design originally worked, but it’s unsafe to shut down
the Pi by abruptly cutting power to it. Instead, we took advantage of the fact that earlier
versions of the Pi used to have a power button, and even though this functionality was removed,
the capability to wake the Pi by simply shorting two of its GPIO pins remained.

3. Design Verification

3.1 Raspberry Pi Power Saving Verification
We recorded the current drawn by out Raspberry Pi, which could reflect the total power
consumption of our design.

Figure 12: Current value of the parking assistance device.

area1: Raspberry wake up (car arrives)

area2: Plate recognition and data transmission

area3: Raspberry sleep

area4: Raspberry wake up (car leaves)

area5: Data transmission while parking ending

From the above data, we could easily calculated the power consumption of one round of

parking by applying basic formula:

 Total Power = average current value * DC voltage applied (2)

10

From our data, we could get that average working current is 0.63 when Raspberry Pi is on, then

we would consume around 3W. However, if the Raspberry Pi is in halt state, we would only use

0.2A because of backlight of LCD,, which is 1W power. If we assume the average parking time is

one hour, and overall usage rate of parking spot is 70%, the average power consumption for one

device during the day time(8am - 5pm) would be 1.112W.

 We could turn the LCD off to save the power further. Then the power would be 0.2W for

microcontroller and ultrasonic sensors. Considering the numerous street parking meters, which

depends on the official website’s record[6], there are over 2000 University of illinois meters on

campus. we still assume the average parking time is 1 hour, and the overall usage rate is 70%

from 8am to 5pm. For one week the campus parking meter would consume 47628kW, which is

13.23 kWh. However, if we let Raspberry Pi keep awaking, the power consumption would reach

45 kWh.

3.2 Other Verification

Table 1. Requirements and Verifications for Overall Flow

Requirement Verification Result
(Functional/Non-Functional)

The module must be able to
communicate with the main
server to send and retrieve
license plate data.

A. Create a database entry
with an associated
predefined license plate
on the server side.

B. From the client, send a
(debug) request to
retrieve the plate entry
and its associated
balance.

Functional

The parking module is able to
look up and create entries in the
database for existing and new
license plates, respectively, in
under 1 second.

The parking module must be
able to identify a license plate
when there is one present
within 0.5 to 1 meter, of the
camera.

A. Position a license plate
0.5 meters from the
module’s camera.

B. Check to see that the
license plate number
displayed on the LCD
screen is the same as
the license plate
number held in front of
the parking module.

Functional

The parking module is able to
recognize a license plate at less
than 0.3 and more than 1 meter
away from the main camera.

11

Table 2. Requirements and Verifications for Microcontroller to Peripheral Functionality

Requirement Verification Result
(Functional/Non
-Functional)

The microcontroller must be
able to display a 16x2 character
message on the LCD screen.

A. Program the microcontroller to send a
predefined 32-character ASCII message
to the LCD display peripheral.

B. Verify that the corresponding message
appears on the display.

Functional

The microcontroller must be
able to read a distance from the
ultrasonic sensor.

A. Command the microcontroller to
display the distance read from the
ultrasonic sensor.

B. Position an object in front of the
ultrasonic sensor. Verify that the
distance displayed changes in
correspondence with the position of
the object.

Functional

Table 3. Requirements and Verifications for Microcontroller to Pi Module

Requirement Verification Result
(Functional/Non
-Functional)

The microcontroller must be
able to send and receive data
over UART with a baud rate of
9.6kbaud.

A. Using PySerial, open a serial connection
between the Raspberry Pi and the
microcontroller (with 9.6kbaud
transmission speed).

B. Send a command to the microcontroller
to give it a predefined message.

C. Command the microcontroller to send
back the predefined message.

D. Verify that the message received is the
same as the message sent.

Functional

The microcontroller must be
able to wake the Raspberry Pi
from sleep mode via.

A. Manually put the Raspberry Pi to into
sleep mode by entering “sudo
shutdown -h now” into the console.

B. From the microcontroller, program it to
manually send the wake up command
upon a debug button (physical debug
button) being pressed.

C. Verify that the Raspberry Pi is able to
wake up within 30 seconds of the
button being pressed.

Functional

The
microcontroller
is able to wake
the Raspberry Pi
from sleep
mode, but the
Raspberry Pi
requires ~30

12

seconds to boot
up before it can
recognize plates.

The Raspberry Pi must be able
to send and receive a balance
from the microcontroller, and
the microcontroller must be
able to update this balance
(while a car is parked).

A. From the Raspberry Pi, send the
command to update the
microcontroller’s stored license plate.

B. From the Raspberry Pi, send the
command to display the license plate
on the LCD screen.

C. Verify that the plate number displayed
on the LCD screen is the same as the
one sent.

Functional

4. Costs

4.1 Parts
Table 1 Parts Costs

Part Manufacturer Retail Cost
($)

Bulk
Purchase
Cost ($)

Actual Cost ($)

Raspberry Pi Model 3
B+

Raspberry pi 35 35 35

Raspberry Pi Camera
Module V2-8

Megapixel,1080p

Raspberry pi 24 24 24

SanDisk Ultra 16GB
Ultra Micro SDHC

UHS-I/Class 10 Card

SanDisk 7 7 7

5V Standard 16 x 2
Character Blue

Backlight LCD Display
Module

uxcell 17 17 17

Ultrasonic sensor
hc-sr04 (3942)

Adafruit 3.95 3.95 3.95

Atmega 328P Microchip Technology 1.96 1.6274 1.96

Total 88.91 88.54 88.91

4.2 Labor
Rate: $50/hr

Bo Wang: 50 * 2.5 * (10 * 3) = $3750

Christopher Santoso: 50 * 2.5 * (10 * 3) = $3750

Ximin Lin: 50 * 2.5 * (10 * 3) = $3750

13

5. Conclusion

5.1 Accomplishments
From our final demo, the overall flow depicted in Figure 1 is completely working. Upon arrival of a
(mock) car, the microcontroller is able to wake the Raspberry Pi from sleep mode, and the Raspberry
Pi is able to take a picture of the license plate, look it up in the database, and fetch its corresponding
balance. In the case when a new license plate is seen, a new entry with 0 balance is created on the
server. The Pi is able to successfully communicate with the microcontroller and send the
corresponding balance and to go sleep. The microcontroller is then able to deduct a set fee while
the car is parked, and upon the car leaving, successfully send the balance back to the Raspberry Pi
after waking it and update the final balance.

5.2 Uncertainties
a. In the design of Raspberry control, we let GPIO3 on Pi keep receiving floating data,

which would cause potential problem to while device is running.
b. We did not include state information while plate recognition, so our device could not

work correctly if there are two cars from different state but have same plate number.
c. Since it would take some time to end the parking, if one car parks in the same parking

spot just after other car leaves, we cannot ensure our device would respond.

5.3 Ethical considerations
One of the primary concerns to be aware of is the fact that user data and their credit card account
information is being stored and charged while utilizing our service. For this reason, it’s imperative
that user information is properly encrypted and transmitted in a safe and secure manner. This will
require us to research our options for when it comes to storing and transferring data.

An issue brought up during our discussions revealed that a similar automated parking collection
meter was installed in Palisades Park (1). As a result, user complaints were numerous, and stores
lost customers because they simply didn’t want to deal with the complications of these new meters.
Furthermore, the city was able to raise a lot of money from drivers going over time, since tickets
would be automatically billed to their address. This practice seems to clearly violate IEEE ethics code
#5: “to improve the understanding by individuals and society of the capabilities and societal
implications of conventional and emerging technologies, including intelligent systems.” Because the
use of their meters was confusing and unclear, many users suffered fines, which only seems to
exacerbate the concern of automated processes. We seek to improve user parking experience with a
more fully-featured automated driver parking assist.

Our meter will provide clear signals to the driver when a violation has occurred, and one of our
biggest goals is to make the user interface as simple as possible. To reap benefits from users’
confusion is unethical, so it’s very important that our design choices make sense to the driver and
that our signals and instructions are easy to follow.

IEEE ethics rule #6 (“to maintain and improve our technical competence and to undertake
technological tasks for others only if qualified by training or experience, or after full disclosure of

14

pertinent limitations”) brings up another concern about storing and transmitting user data. Only one
of us has experience with storing and retrieving encrypted user data for public services, so in doing
so, we acknowledge that our knowledge in the field is limited, so in order to prevent unsafe
practices, we should consult online resources and utilize existing tools for secure transfer and
storage of user data.

5.4 Future work
One modification we could make is to change the Raspberry Pi’s camera to a night-vision camera.
This comes at a low additional cost (~36 USD each), and enables the camera to see at night. Another
additional feature that could be implemented are smarter ways to detect whether a car is incoming
or leaving as opposed to a random object passing by. One way this can be done is to have an
average of samples taken from the ultrasonic sensor and apply a prior to eliminate outliers from
sampling error. More complex methods can be used as well to detect more complex parking
violations; for example, when a picture of the license plate is taken, based on the position of the
license plate and the distance (in pixels) from the center of the image, assuming the parking meter is
centered in the parking spot, one can determine whether a car is parked too far or too close to the
edge of its parking space.

Another edge case we can potentially account for is during a busy day when another car is detected
as soon as a car leaves. In this instance, since it requires ~30 seconds for the Pi to boot up and ~20
seconds for the Pi to go to sleep, we can simply leave the Raspberry Pi on for ~2 minutes after a car
has left to ensure that no additional license plate is detected within that time.

Aside from these changes to the original design, an app and website for user sign-up and University
Parking notification can be built on top of the web API we’ve created.

15

References

[1] northjersey. (2019). Palisades Park: Digital parking meters a chance at a camera windfall. [online]
Available at:
https://www.northjersey.com/story/news/bergen/palisades-park/2018/06/19/palisades-park-digit
al-parking-meters-camera-windfall/710805002/ [Accessed 3 Feb. 2019].

[2] Learn.adafruit.com. (2019). How PIRs Work | PIR Motion Sensor | Adafruit Learning System. [online]
Available at:
https://learn.adafruit.com/pir-passive-infrared-proximity-motion-sensor/how-pirs-work [Accessed
4 Feb. 2019].

[3] MaxBotix Inc. (2019). Ultrasonic vs Infrared (IR) Sensors - Which is better? - MaxBotix Inc.. [online]
Available at: https://www.maxbotix.com/articles/ultrasonic-or-infrared-sensors.htm [Accessed 4
Feb. 2019].

[4] Officer.com (2018). OpenALPR Software Upgrade: Brings Accuracy Up To 99.02%. [online] Available
at:
https://www.officer.com/command-hq/technology/traffic/lpr-license-plate-recognition/press-relea
se/21031077/openalpr-technology-inc-openalpr-software-upgrade-brings-accuracy-to-9902
[Accessed 18 Feb. 2019].

[5] github.com. (2019). OpenCV 3 License Plate Recognition Python. [online] Available at:
https://github.com/MicrocontrollersAndMore/OpenCV_3_License_Plate_Recognition_Python
[Accessed 25 Mar. 2019].

[6] illinoi.edu. (2019). number of University parking meters on campus:
https://parking.illinois.edu/parking_items/meters [Accessed 25 Mar. 2019].

16

https://github.com/MicrocontrollersAndMore/OpenCV_3_License_Plate_Recognition_Python

Appendix A Requirement and Verification Table
Table 2 System Requirements and Verifications

Requirement Verification Verification
status

1. Requirement

The module must be able to
communicate with the main
server to send and retrieve
license plate data.

1. Verification

a. Create a database entry with an
associated predefined license
plate on the server side.

b. From the client, send a (debug)
request to retrieve the plate
entry and its associated balance.

c. Verify that the client contains
the same entry information as
what was created in (A).

Y

2. Requirement

The parking module must be

able to identify a license plate

when there is one present

within 0.5 to 1 meter, of the

camera.

2. Verification

a. Position a license plate 0.5
meters from the module’s
camera.

b. Check to see that the license
plate number displayed on the
LCD screen is the same as the
license plate number held in
front of the parking module.

Y

3. Requirement

The parking module must be

able to fetch an associated

balance from the server

within 1 minute of identifying

the license plate.

3. Verification

a. Position the plate until it is
identified by the meter.

b. Verify that the debug message
on the LCD screen correctly
displays the database entry
associated with the licence
plate.

Y

4. Requirement

The parking module must be

able to detect a car leaving

the parking space, which is

defined as the car moving

away more than 1 meter from

the meter, and no identical

license plate being identified

within the next minute.

4. Verification

a. Position the license plate 0.5
meters from the parking
module, and hold it in place for
five minutes to signal the meter
that a car is parked.

b. Move the plate away from the
module to a distance of 1 meter
(or greater), and keep it out of
range for two minutes.

Y

17

5. Requirement

 The microcontroller must be

able to display a 16x2

character message on the LCD

screen.

5. Verification

a. Program the microcontroller to

send a predefined 32-character

ASCII message to the LCD display

peripheral.

b. Verify that the corresponding
message appears on the display.

Y

6. Requirement

 The microcontroller must be

able to read a distance from

the ultrasonic sensor

6. Verification

a. Command the microcontroller to
display the distance read from
the ultrasonic sensor.

b. Position an object in front of the
ultrasonic sensor. Verify that the
distance displayed changes in
correspondence with the
position of the object.

Y

7. Requirement

 In displaying a status message

(1. Empty Balance and 2.

Obstructed Spot or Plate, 3.

Restricted Hours), the LCD

module will take no more

than 3 seconds to display the

correct status message upon

the correct conditions being

met.

7. Verification

a. Load the parking module with an
nearly-empty balance (0.40
USD).

b. Allow the balance to empty by
keeping a parked car in the same
spot for more than 5 minutes.

c. Verify that the LCD display
reflects the “Empty Balance”
message.

d. Place an object within 3 meters,
1 meter, and 1cm of the parking
module with no license plate in
view of the

e. Verify that for each of the 3
distances, the “Obstructed
Parking Spot” message displays
on the LCD.

f. Set the meter’s restricted hours
to -1 and +1 hours of the current
time.

g. Place an object with a license
plate within 0.5 meters of the
parking meter camera view.

h. Verify that the LCD displays the
“Restricted Parking Hours”
message.

Y

18

8. Requirement

 The microcontroller must be

able to send and receive data

over UART with a baud rate of

9.6kbaud.

8. Verification

a. Using PySerial, open a serial
connection between the
Raspberry Pi and the
microcontroller (with 9.6kbaud
transmission speed).

b. Send a command to the
microcontroller to give it a
predefined message.

c. Command the microcontroller to
send back the predefined
message.

d. Verify that the message received
is the same as the message sent.

Y

9. Requirement

 The microcontroller must be

able to wake the Raspberry Pi

from sleep mode via.

9. Verification

a. Manually put the Raspberry Pi to
into sleep mode by entering
“sudo shutdown -h now” into
the console.

b. From the microcontroller,
program it to manually send the
wake up command upon a
debug button (physical debug
button) being pressed.

c. Verify that the Raspberry Pi is
able to wake up within 30
seconds of the button being
pressed.

Y

10. Requirement

 The Raspberry Pi must be able

to send and receive a balance

from the microcontroller, and

the microcontroller must be

able to update this balance

(while a car is parked).

10. Verification

a. From the Raspberry Pi, send the
command to update the
microcontroller’s stored license
plate.

b. From the Raspberry Pi, send the
command to display the license
plate on the LCD screen.

c. Verify that the plate number
displayed on the LCD screen is
the same as the one sent.

Y

19

