
Intuitive and Ergonomic

Gesture-Based Drone Controller

By

Elaine Houha

Adam Poindexter

Final Report for ECE 445, Senior Design, Spring 2019

TA: Channing Philbrick

1 May 2019

Team No. 22

Abstract

This project details the creation of a gesture-based controller for commercially available drones. The device is a glove

worn by the user that serves as a complete replacement for a standard controller. The user controls the drone by

holding out their hand, palm down, and miming the desired drone movements. For example, tilting the hand to the

right would cause the drone to move to the right. The device passed all verification procedures and successfully flew

the available drone on multiple occasions throughout testing.

i

Contents

1 Introduction . 1

2 Design. 2

2.1 Power Subsystem . 2

2.2 Control Subsystem . 3

2.3 Sensor Subsystem . 3

2.4 Filtering . 4

3 Design Verification . 8

3.1 Power Subsystem . 8

3.2 Control Subsystem . 8

3.3 Sensor Subsystem . 9

4 Cost . 10

4.1 Parts . 10

4.2 Labor . 10

5 Conclusion. 11

5.1 Accomplishments . 11

5.2 Ethical Considerations. 11

5.3 Future work . 11

References . 13

Appendix A Requirement and Verification Tables . 14

Appendix B Schematics. 16

Appendix C Compatible Products . 20

Appendix D Software . 21

ii

1 Introduction

There are currently 1.4 million Unmanned Ariel Vehicles in the United States as of 2018, and the Federal

Aviation Administration expects that to double by 2021 [1]. Currently, many market available drones are

flown from a standard radio transmitter much like how one would drive an RC car. Our product intends to

change this method of controller-based flight to one that is gesture-based with a controller mounted on a

glove that uses the users own movements control the flight of the drone. The glove will be compatible with

a wide variety of hobbyist drones, eliminating the need for a separate controller for each drone a person

may own. See Appendix C for compatible products. Additionally, this provides users a new novel way to fly.

Through much trial and error, a successful product was built where a person could fly a drone using their

hand movements, and the next chapters describe the process of this design from concept to fabrication, then

verification and testing, and finally flying.

Figure 1: Block Diagram

Figure 1 shows the block diagram for the overall system and the three subsystems that make up the controller.

The subsystems are power, control, and sensors. The power system steps the battery voltage down to the

required voltages needed for the micro-controller, transmitter, and inertial measurement unit (IMU). The

control system filters the data from the sensors and formats in a way the transmitter will be able to send

it to the drone. The sensor system is a combination of debounced buttons, a potentiometer, and an IMU.

This is a change from our original design where two IMUs were used; the change was made based off more

research into the type of filtering algorithms used on IMU data this is discussed in detail in Section 2.4.

1

2 Design

Before delving into the electrical components of the glove there were considerations made to the physical

placement of the glove as well as how the analog trigger would function on the glove. See Figure 2 below for

pictures of the final glove. The IMU unit is in the top left corner of the PCB. While the control subsystem

is centrally located in the middle of the PCB with the transmitter resting above the micro-controller. The

digital buttons are in the bottom center of the PCB and to the right of the silver reset button. The analog

trigger mechanism is on the underside of the glove between the index and middle finger spots with a lever

that faces towards the thumb for ease of control when flying. In addition to the hardware components, we

also designed a software filtering and control system.

Figure 2: Top and side views of the glove

2.1 Power Subsystem

The power systems consists of two sub-components, a battery and voltage regulators. See Appendix B for

schematic and Appendix A for full requirements and verification procedures.

2.1.1 Battery

The main requirements for the battery where it had to last for a period of about one hour, so the user could

have decent amount of flight time with the drone. It also had to be compact so it would add unnecessary

bulk to the glove which could cause user discomfort. A 3.7V Lithium-Polymer battery was chosen for these

2

reasons.

2.1.2 Voltage Regulators

The battery’s 3.7V output provided a higher voltage than what many of the components’ specifications

allowed. Regulators were used to consistently reduce the voltage to 3.3V operating voltage of the IMU,

micro-controller and transmitter.

2.2 Control Subsystem

The control subsystem consists of two sub-components, a micro-controller and a transmitter. See Appendix

B for the schematic and Appendix A for full requirements and verification procedures.

2.2.1 Micro-controller

The requirement for the micro-controller is that it needed to be able to process the filtering algorithm within

6ms. The controller also had to have enough inputs and outputs for the specified design to ensure proper

function. Hence the choice for the ATMega328PB, the same chip that is on the Arduino Pro Mini, as it

has 13 digital pins, 6 analog pins, MOSI/MISO pins for SDI communication, and SDA/SCL pins for I2C

communication.

2.2.2 Transmitter

The requirement for the transmitter is it needed to communicate with the drone, so we could control it

from the glove. In this case we had two design options, design our own transmitter and antenna or use

a stock ready-made breakout board transmitter. For the sake of time and ease we chose a ready-made

transmitter, the NRF2401+, as it has an Arduino library to communicate with the micro-controller and

there’s an opened-sourced library developed by hobbyists that uses this chip to communicate with the type of

drone we are using in the project [2].

2.3 Sensor Subsystem

This subsystem provides all the raw data for the micro-controller to process and then package for the

transmitter to transmit to the drone. It consists of three sub-components: digital buttons; analog trigger;

and an inertial measurement unit. See Appendix B for a schematic and Appendix A for full requirements

and verification procedures.

2.3.1 Digital Buttons

The digital buttons in the design will control trim. This is important as it provides error corrections for

variations in motor power on each of the propellers on the drone to provide a more stable flight. The

requirement for the buttons is they only register one input per press, also known as debouncing.

2.3.2 Analog Trigger

The analog trigger in the block diagram is described as a potentiometer and is used to control the thrust

on the drone. Originally, the design was to have discreet power levels where the user would push a lever

which would rotate the potentiometer and based on the angle of the lever would provide fraction of the

maximum thrust available. Figure 3 shows the division of power as the potentiometer turned as described for

3

Figure 3: Original design of discrete thrust values

the original design. However, during testing it was discovered we could linearly scale the value read by the

micro-controller from the potentiometer to create continuous thrust values. This is discussed in detail in

Section 3.3.2. The trigger also needed a lever so the user could easily turn the potentiometer by pushing and

pulling the lever with the thumb. Figure 4 is a rendering of the lever which was 3D printed.

Figure 4: Design of Trigger Lever

2.3.3 Inertial Measurement Unit

The inertial measurement unit (IMU) is the crux of the design. The requirements for the unit are the

accelerometer had to measure hand movements within 0.2g of force and the gyroscope had to be to measure

hand movements within 3◦. During the creation of the design there were several options to consider: a separate

gyroscope and accelerometer; a combined 6-axis gyroscope-accelerometer; and 9-axis gyroscope-accelerometer-

magnetometer combination. Since the data coming from this unit is filtered in the micro-controller, we could

use a relatively inexpensive IMU and to save space on the board decided a combined 6-axis unit would best

fit our needs.

2.4 Filtering

Our original design called for the combination of data from two different inertial measurement units (IMUs)

through a Kalman filter in order to acquire stable data for flight control. However, after researching Kalman

4

filters in greater depth, we realized that this was a poor approach. We came to understand that Kalman

filters excelled in combining data points into a stable output by examining the mathematical relationships

between the differing data sources. In the case of a single 6-axis gyro-accelerometer, relationships between

acceleration and rate of rotation are developed geometrically. For example, a rotation about the x-axis will

cause changes in the acceleration of the y-axis and z-axis.

In order to design a Kalman filter for the purpose of combining the sensor data from two identical sensor

units, a relationship between the two sensors (and each of their 6 axes) would need to be developed. The

best relationship we could create was that of a simple average. Other than the additional computations

for the averaging, the filter mathematics would be merely extensions of the single sensor algorithm. Upon

discovering this, we scraped the two sensor idea altogether. The cost of the extra sensor and the greatly

increased processing time did not add enough value to be worth it.

Deciding to look in another direction, we began researching how to make one IMU as stable as possible

through an alternative filtering method. The filtering system we found is called the Madgwick filter [3]. This

filter is specifically designed to increase the stability of low-cost IMU data for measuring the orientation of an

object. See Figure 5 for the block diagram of the algorithm.

Figure 5: Madgwick Filter Block Diagram [3]

The algorithm first calculates the direction of the gravity vector using a gradient decent algorithm. From

this, orientation with respect to the earth can be easily determined with simple trigonometry. The gradient

decent operation outputs a quaternion matrix that is then normalized and scaled by a tuning factor β. This

information is then combined with the change of orientation information provided by the gyroscope. If the

two information sources do not correspond, the result is canceled out. The output is integrated over the time

between algorithm runs and then normalized once more. This final quaternion is used to calculation roll,

pitch, and yaw using conversion formula. The system operates in continuous feedback so that momentary

noise can be accounted for.

The original report by Madgwick contained graphs comparing the designed filter against a Kalman filter

in the same setting. These are included in Figures 6 and 7 below. As you can see, the Madgwick filter is

5

superior.

Figure 6: Comparison 1 of the Kalman and Madgwick filters [3]

6

Figure 7: Comparison 2 of the Kalman and Madgwick filters [3]

7

3 Design Verification

For full details on the procedures to verify the requirements set in the previous chapter please see Appendix

A for the requirements and verification tables.

3.1 Power Subsystem

3.1.1 Battery

To verify the battery provided the required 3.7V over at least an hour, a rechargeable 3.7V battery was

placed in the circuit and the drone was flown. It passed this requirement by being able to control the drone

for an hour and did not need charging.

3.1.2 Voltage Regulators

The voltage regulators were tested by running a voltage larger than 3.3V into them and making sure the

output was consistently around 3.3V. See the graphs in Figures 8 below.

Figure 8: Voltage Test

3.2 Control Subsystem

3.2.1 Micro-controller

To the test the micro-controller we created a circuit with a breakout board that had the chosen IMU on it

and loaded the chosen filtering algorithm onto the controller. Then we added a timer to the serial print how

long the full operation took for each point of data received by the controller from the IMU. The output of

the monitor consistently showed between 6ms and 8ms to run the algorithm. See Listing 4 in Appendix D for

8

the verification code.

3.2.2 Transmitter

The transmitter was tested by powering on the drone and controller while in proximity to one another. After

the drone calibrates its internal gyroscope it begins to the search for an RF signal from a controller. The

transmitter then sends out a pairing command and if the lights on the drone went from blinking to solid then

the controller was successfully paired with the drone. This occurred correctly in roughly 80% of trials and in

the remaining 20% a simple reboot of the controller solved the issue.

3.3 Sensor Subsystem

3.3.1 Digital Buttons

To test the buttons with created a circuit according to the Figure 11 in Appendix B and ran the script in

Listing 3 in Appendix D then looked at the serial output on the monitor to ensure each button only registered

once per press. This worked flawlessly.

3.3.2 Analog Trigger

After verifying the chosen 10 kΩ potentiometer had a full actuation between (1.5 ± 0.1) V with a multi-meter;

testing the analog trigger required creating a circuit and measuring the read values from the analog-in pin on

the micro-controller and mapping it the angle the potentiometer was turned. From these values the data was

then converted to linearly map to values for thrust on the controller. Below in Table 1 shows the angle the

potentiometer was at along with raw data value the micro-controller read. After finding these values a test

script was made to linearly translate the raw data into a number from 0-1000 which is the range of values the

library we used to communicate with the drone uses for thrust. Equation 1 is the equation used to translate

the raw data into a usable number by the micro-controller where T is average of ten raw thrust values.

Thrust = (T − 50)/625 ∗ 1000 (1)

Table 1: Angle of potentiometer and Raw Data Value

Angle (◦) Data Value

0 50
45 312
90 430
135 545
180 675

3.3.3 Inertial Measurement Unit

Much like the other sensors in the this section to test the requirements of the IMU we built a circuit

according to the schematic in Appendix B. Then we ran the specified scripts in Appendix D. The gravitational

measurements displayed correctly and the failsafe for motions over 2g triggered as planned. The angular

measurements were well within the tolerance typically 1◦ or less off the real value.

9

4 Cost

4.1 Parts

Table 2: Costs for Parts

Part Manufacturer Retail ($) Bulk ($) Count Actual ($)

MPU-6050 Invensense 12.95 8.31 4 42.52
ATMega328 Atmel 4.25 1.46 4 14.21
NRF24L01+ Nordic Semiconductor 2.37 4 9.50
Resonator Murata 0.28 3 0.84
LEDs ROHM Semiconductor 0.40 3 1.20
Resistors-10K Yageo 0.58 0.41 10 4.12
Resistors-1K Yageo 0.68 0.38 20 7.62
MIC5205 Microchip 0.41 10 4.06
Capacitors-Varied Yaego 0.27 50 13.54
Custom PCB PCB way 1.00 5 5.00
Battery Sparkfun 9.95 1 9.95
Physical Glove Adidas 5.00 1 5.00
Poteniometer Panasonic 0.95 1 0.95
3D Printed Trigger Illinois Maker Lab 2.00 1 2.00

Total 120.51

4.2 Labor

Table 3: Costs for Labor

Worker Rate Hours Multiplier Cost

Elaine $38/hr 60 2.5 $5,700
Adam $38/hr 60 2.5 $5,700

Total $11,400

10

5 Conclusion

5.1 Accomplishments

In the end we were able to build a low-profile glove to control a drone. While flying a drone still takes practice,

using hand movements to map controls gives a more intuitive sense of how to fly. For example, tilt your hand

to the left the drone will also follow to the left. Achieving a latency of less than 50 ms is an achievement

because it means the delay between the movement of the controller and the drone making the movement is

not seen by the human eye improving user experience. Also by only using one IMU and the Madgwick filter

instead of two IMUs and the Kalman filter the overall cost of the design is reduced. This bodes well if the

product was to go to market as the market price could be lowered.

5.2 Ethical Considerations

Our project poses possible safety concerns in two ways. The first, electrocution, rises from the fact that we

are attaching electrical components to a wearable device; however, the battery size we are using (3.7 V) is

not powerful enough to cause a harmful current across human skin. The minimum resistance for dry skin is

∼1000 Ω which results in a current much too small to cause damage [4]. This resistance is greatly reduced

when wet so a warning would be attached to the product advising not to operate when wet.

The second possible concern is the drone injuring someone while being controlled by our product. Unlike the

former issue, this one cannot be dismissed. All drone operation is accompanied by some hazard for injury to

oneself and others. In addition to warnings advising users to not fly in crowded areas or near people, we

included an emergency shut-off feature as part of the glove. This disables the drone in the event of user

becoming incapacitated or device malfunction.

Addressing both of these concerns falls under the IEEE Code of Ethics Policy 1, “hold paramount the

safety[. . .]of the public[. . .]and to disclose promptly factors that might endanger the public[. . .]”. We feel that

the warnings and preventative measures we have enacted adequately satisfy this mandate.

Drones for public and private use are regulated by the Federal Aviation Administration (FAA). According to

current guidelines, all “Unmanned Aircraft Systems” being piloted in public airspace for non-recreational,

non-commercial purposes fall under “Part 107” [5]. This regulation mandates that all drones used for

educational purposes be registered with the FAA and all operators be “FAA-Certified Drone Pilots”. As

both of these processes require time and money, we decided to confine our testing to within campus buildings.

The regulations do not cover indoor spaces allowing for a streamlined project timetable.

Additionally, the University of Illinois at Urbana-Champaign has a policy on drones used for non-recreational

purposes that mandates operators obtain approval from the Division of Public Safety if operating outdoors

on campus property and from Code Compliance & Fire Safety if operating indoors on campus property [6].

We obtained these authorizations will little difficulty.

5.3 Future work

The future for this project would include a redesign of the circuit board to make it smaller and fix the minor

mistakes in wiring that were made in the first version of the design. By making the board smaller we improve

placement on the top of the hand and the overall glove lighter in design. Another consideration would be

11

making it easier for the end user to switch what type of drone they are flying with the glove. This could be

with more buttons or an app that would sync with the glove and pick the right programming based on the

drone being flown.

Since the control signals are being sent through a relatively strong processor before being sent to the drone,

there are a large amount of software improvements that could be made to ease the control of the drone. One

of the trickiest parts of flying a drone is thrust compensation—the act of slightly throttling up when other

movements are made in order to counteract the slight dip in thrust that occurs. With relatively little work

this task could be, at least partially, automated by the controller.

12

References

[1] A. Pasztor, “Faa projects fourfold increase in commercial drones by 2022,” Mar 2018. [Online].

Available: https://www.wsj.com/articles/faa-projects-fourfold-increase-in-commercial-drones-by-

2022-1521407110

[2] Goebish, “nrf24 multipro,” Feb 2019. [Online]. Available: https://github.com/goebish/nrf24 multipro

[3] S. O. H. Madgwick, “An efficient orientation filter for inertial and inertial / magnetic sensor arrays,” 05

2010.

[4] “Q & a: The human body’s resistance,” Oct 2007. [Online]. Available: https://van.physics.illinois.edu/

qa/listing.php?id=6793

[5] “Recreational fliers & modeler community-based organizations,” Feb 2019. [Online]. Available:

https://www.faa.gov/uas/recreational fliers/

[6] E. D. of Public Safety, “Aerial activities over, on, or in campus property,” Sep 2015. [Online]. Available:

https://cam.illinois.edu/policies/fo-05/

13

https://www.wsj.com/articles/faa-projects-fourfold-increase-in-commercial-drones-by-2022-1521407110
https://www.wsj.com/articles/faa-projects-fourfold-increase-in-commercial-drones-by-2022-1521407110
https://github.com/goebish/nrf24_multipro
https://van.physics.illinois.edu/qa/listing.php?id=6793
https://van.physics.illinois.edu/qa/listing.php?id=6793
https://www.faa.gov/uas/recreational_fliers/
https://cam.illinois.edu/policies/fo-05/

Appendix A Requirement and Verification Tables

All verification tests were successful and therefore individual success/failure indicators were excluded from

this appendix.

Table 4: Requirements and Verification

Requirement Verification

Each button should register exactly one input per
press (debouncing).

1. Attach USB adapter and power on device.
2. Load and run buttonTest.ino.
3. Press the button and observe the on-screen

data. The counter should only increment by
one.

4. Repeat step 3 five times.
5. Repeat steps 2-4 for all buttons.

Full actuation of the trigger mechanism should have
a range of (1.5 ± 0.1) V.

1. Power on the device.
2. Attach a multi-meter to the potentiometer

output and ground.
3. Actuate the trigger from full extension to full

retraction noting the voltages at the extremes.
4. The difference between the maximum voltage

and the minimum voltage should match the

requirement.
(∣∣1.5 − (Vmax − Vmin)

∣∣ ≤ 0.1
)

The accelerometer must be able to measure user
hand movements within 0.2 g.

1. Attach USB adapter and power on device.
2. Load and run generalTest.ino.
3. Orient the glove so that the z-axis is up.
4. Verify the z acceleration display on the com-

puter reads (1.0 ± 0.2) g.
5. Repeat steps 3-4 for the x and y axes.

The gyroscope must be able to measure user hand
orientation within 3◦.

1. Attach USB adapter and power on device.
2. Load and run generalTest.ino.
3. Using a protractor or digital leveling tool, po-

sition the device at 20◦. Verify the angle dis-
played on the computer matches the require-
ment and positioning.

4. Repeat step 3 for 40◦ and 60◦.

14

Table 5: Requirements and Verification (cont.)

Requirement Verification

Must be able to preform the Madgwick filtering

algorithm on the IMU data in less than 6 ms.
1. Attach USB adapter and power on device.

2. Load and run generalTest.ino.

3. Slowly rotate device from −90◦ to 90◦ along

the pitch axis. Verify that the times displayed

on the computer match the requirement.

4. Repeat step 3 for roll and yaw axes.

5. Repeat steps 3-4 for quick rotations.

The transmitter must be able to communicate with

the drone.
1. Power on drone and wait for lights to stabilize

to a slow blink.

2. Power on device.

3. Wait appx. 5 seconds for device to pair.

4. Verify that the lights transitioned from a slow

blink to a solid state signifying a connection.

15

Appendix B Schematics

Figure 9: Microcontroller

Figure 10: Transmitter, Battery, and Trigger Connections

16

Figure 11: Buttons

Figure 12: IMUs

17

Figure 13: Power Controllers

18

Figure 14: PCB (Ground Plane Not Shown in This Figure)

19

Appendix C Compatible Products

Attop YD-822/YD-829/YD-829C

BayangToys X6/X7/X9

BWhoop B03

Cheerson CX-10/CX11/CX12/CX205/CX30/SH6057/SH6043/SH6044/SH6046/SH6047

EAchine CG023/CG031/3D X4/E010/H7/H8 mini/H8 mini 3D/JJRC H20/JJRC H22

Floureon FX10/H101

FQ-777-124 Pocket Drone

FY326Q7

HiSky RXs/HFP80/HCP80/HCP100/FBL70/FBL80/FBL90/FBL100/FF120/HMX120

JJRC DHD D1/H36 mini/H6C/JJ850

JXD 385/388/389/391/393

MJX X600

NiHui NH-010

Syma X5C/X5C-1/X11/X11C/X12/X2

WLToys V202/252/252 Pro/272/343/930/931/939/966/977/988/933/944/955

XinXun X28/X30/X33/X39/X40

Yizhan Tarantula X6

20

Appendix D Software

In addition to the following files and the libraries included in them, files were directly taken from this github

repository and added to our sketch: https://github.com/goebish/nrf24 multipro. These files contain the

communication protocols for controller-drone interfacing.

Listing 1: fullController.ino

1 #include <EEPROM.h>

2 #include "iface_nrf24l01.h"

3 #include <ButtonDebounce.h>

4 #include "MPU6050.h"

5 #include "Wire.h"

6 #include "customMadgwick.cpp"

7

8 // ############ Wiring ################

9 #define MOSI_pin 11

10 #define SCK_pin 13

11 #define CE_pin A2

12 #define MISO_pin 12

13 #define CS_pin A0

14

15 // SPI outputs

16 #define MOSI_on PORTB |= _BV(3) // PB3

17 #define MOSI_off PORTB &= ˜_BV(3)// PB3

18 #define SCK_on PORTB |= _BV(5) // PB5

19 #define SCK_off PORTB &= ˜_BV(5) // PB5

20 #define CE_on PORTC |= _BV(2) // PC2

21 #define CE_off PORTC &= ˜_BV(2) // PC2

22 #define CS_on PORTC |= _BV(0) // PC0

23 #define CS_off PORTC &= ˜_BV(0) // PC0

24 // SPI input

25 #define MISO_on (PINB & _BV(4)) // PB4

26

27 #define yaw_ccw_pin 3

28 #define yaw_cw_pin 4

29 #define pitch_b_pin 5

30 #define pitch_f_pin 6

31 #define roll_l_pin 7

32 #define roll_r_pin 8

33 #define trim_rst_pin 9

34

35 ButtonDebounce yaw_ccw(yaw_ccw_pin, 50);

36 ButtonDebounce yaw_cw(yaw_cw_pin, 50);

37 ButtonDebounce pitch_b(pitch_b_pin, 50);

21

https://github.com/goebish/nrf24_multipro

38 ButtonDebounce pitch_f(pitch_f_pin, 50);

39 ButtonDebounce roll_l(roll_l_pin, 50);

40 ButtonDebounce roll_r(roll_r_pin, 50);

41 ButtonDebounce trim_rst(trim_rst_pin, 50);

42

43 #define SAMPLES_TAKEN 10

44 #define TWENTY_THRESH 545

45 #define FOURTY_THRESH 430

46 #define SIXTY_THRESH 312

47 #define EIGHTY_THRESH 181

48

49 #define RF_POWER TX_POWER_80mW

50

51 // PPM stream settings

52 #define CHANNELS 12 // number of channels in ppm stream, 12 ideally

53 enum chan_order{

54 THROTTLE,

55 AILERON,

56 ELEVATOR,

57 RUDDER,

58 AUX1, // (CH5) led light, or 3 pos. rate on CX-10, H7, or inverted

flight on H101

59 AUX2, // (CH6) flip control

60 AUX3, // (CH7) still camera (snapshot)

61 AUX4, // (CH8) video camera

62 AUX5, // (CH9) headless

63 AUX6, // (CH10) calibrate Y (V2x2), pitch trim (H7), RTH (Bayang, H20),

360deg flip mode (H8-3D, H22)

64 AUX7, // (CH11) calibrate X (V2x2), roll trim (H7)

65 AUX8, // (CH12) Reset / Rebind

66 };

67

68 #define PPM_MIN 1000

69 #define PPM_SAFE_THROTTLE 1050

70 #define PPM_MID 1500

71 #define PPM_MAX 2000

72 #define PPM_MIN_COMMAND 1300

73 #define PPM_MAX_COMMAND 1700

74 #define GET_FLAG(ch, mask) (ppm[ch] > PPM_MAX_COMMAND ? mask : 0)

75

76 // supported protocols (stripped all but SYMAX5C1)

77 enum {

22

78 PROTO_V2X2 = 0, // WLToys V2x2, JXD JD38x, JD39x, JJRC H6C, Yizhan

Tarantula X6 ...

79 PROTO_CG023, // EAchine CG023, CG032, 3D X4

80 PROTO_CX10_BLUE, // Cheerson CX-10 blue board, newer red board, CX-10A,

CX-10C, Floureon FX-10, CX-Stars (todo: add DM007 variant)

81 PROTO_CX10_GREEN, // Cheerson CX-10 green board

82 PROTO_H7, // EAchine H7, MoonTop M99xx

83 PROTO_BAYANG, // EAchine H8(C) mini, H10, BayangToys X6, X7, X9,

JJRC JJ850, Floureon H101

84 PROTO_SYMAX5C1, // Syma X5C-1 (not older X5C), X11, X11C, X12

85 PROTO_YD829, // YD-829, YD-829C, YD-822 ...

86 PROTO_H8_3D, // EAchine H8 mini 3D, JJRC H20, H22

87 PROTO_END

88 };

89

90 // EEPROM locations

91 enum{

92 ee_PROTOCOL_ID = 0,

93 ee_TXID0,

94 ee_TXID1,

95 ee_TXID2,

96 ee_TXID3

97 };

98 uint32_t timeout;

99

100 int16_t trim_rpy[3] = {0, 0, 0};

101

102 int16_t trigger_sample_sum = 0;

103 float trigger_sample_average = 0;

104 unsigned trigger_val;

105

106 uint8_t transmitterID[4];

107 uint8_t packet[32];

108 volatile uint16_t Servo_data[12];

109 static uint16_t ppm[12] = {PPM_MIN,PPM_MID,PPM_MID,PPM_MID,PPM_MID,PPM_MID,

110 PPM_MID,PPM_MID,PPM_MID,PPM_MID,PPM_MID,PPM_MID,};

111

112 MPU6050 gyro(0x69);

113 int16_t gx, gy, gz, ax, ay, az;

114 SF gyro_filter;

115 float gyro_rpy[3];

116 float delta_t;

117 float gRes = 250.0/32768.0*DEG_TO_RAD;

23

118 float aRes = 2.0/32768.0*9.8;

119

120 float scale_rpy[3] = {2, 2, 1};

121

122 void setup() {

123 randomSeed((analogRead(A4) & 0x1F) | (analogRead(A5) << 5));

124 pinMode(MOSI_pin, OUTPUT);

125 pinMode(SCK_pin, OUTPUT);

126 pinMode(CS_pin, OUTPUT);

127 pinMode(CE_pin, OUTPUT);

128 pinMode(MISO_pin, INPUT);

129

130 TCCR1A = 0; //reset timer1

131 TCCR1B = 0;

132 TCCR1B |= (1 << CS11); //set timer1 to increment every 1 us @ 8MHz, 0.5

us @16MHz

133

134 delay(1000);

135

136 Wire.begin();

137 do{

138 gyro.initialize();

139 delay(250);

140 }while(!gyro.testConnection());

141 // Modify gyro offsets

142 gyro.setXAccelOffset(191);

143 gyro.setYAccelOffset(1205);

144 gyro.setZAccelOffset(573);

145 gyro.setXGyroOffset (-30);

146 gyro.setYGyroOffset (-16);

147 gyro.setZGyroOffset (10);

148 gyro.setRate(0);

149

150

151 for(int i=0; i<4; i++) {

152 transmitterID[i] = random() & 0xFF;

153 EEPROM.update(ee_TXID0+i, transmitterID[i]);

154 }

155 EEPROM.update(ee_PROTOCOL_ID, PROTO_SYMAX5C1);

156 NRF24L01_Reset();

157 NRF24L01_Initialize();

158 Symax_init();

159 SymaX_bind();

24

160

161 Serial.begin(38400);

162 }

163

164 void loop() {

165 // Update buttons and trim

166 yaw_ccw.update();

167 yaw_cw.update();

168 pitch_b.update();

169 pitch_f.update();

170 roll_l.update();

171 roll_r.update();

172 trim_rst.update();

173

174 if(!roll_l.state()){

175 trim_rpy[0]--;

176 } else if(!roll_r.state()){

177 trim_rpy[0]++;

178 } else if(!pitch_b.state()){

179 trim_rpy[1]--;

180 } else if(!pitch_f.state()){

181 trim_rpy[1]++;

182 } else if(yaw_ccw.state()){

183 trim_rpy[2]--;

184 } else if(yaw_cw.state()){

185 trim_rpy[2]++;

186 } else if(!trim_rst.state()){

187 trim_rpy[0] = 0;

188 trim_rpy[1] = 0;

189 trim_rpy[2] = 0;

190 }

191

192 // Update trigger

193 for(int i=0; i < SAMPLES_TAKEN; i++){

194 trigger_sample_sum += (1023-analogRead(A1));

195 delay(2);

196 }

197 trigger_sample_average = float(trigger_sample_sum) / float(SAMPLES_TAKEN);

198 trigger_sample_sum = 0;

199

200 if(trigger_sample_average > 50 and trigger_sample_average < 675){

201 trigger_val = (trigger_sample_average - 50) / 625 * 1000;

202 } else if(trigger_sample_average > 675 and trigger_sample_average < 800) {

25

203 trigger_val = 1000;

204 } else {

205 trigger_val = 0;

206 }

207

208 // Update gyro

209 gyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);

210

211 if(abs(ax*aRes) >= 2*9.8 or abs(ay*aRes) >= 2*9.8 or abs(az*aRes) >=

2*9.8) {

212 exit(0);

213 }

214 Serial.println(gyro_rpy[2]);

215 delta_t = gyro_filter.deltatUpdate();

216 gyro_filter.customMadgwickUpdate(gx*gRes, gy*gRes, gz*gRes, ax*aRes, ay*

aRes, az*aRes, delta_t);

217 gyro_rpy[0] = gyro_filter.getRoll();

218 gyro_rpy[1] = gyro_filter.getPitch();

219 gyro_rpy[2] = gyro_filter.getYaw()-180;

220

221 // Thottle

222 ppm[THROTTLE] = trigger_val;

223

224 // Aileron/Roll

225 ppm[AILERON] = PPM_MID + gyro_rpy[0]*scale_rpy[0] + trim_rpy[0];

226

227 // Elevator/Pitch

228 ppm[ELEVATOR] = PPM_MID + gyro_rpy[1]*scale_rpy[1] + trim_rpy[1];

229

230 // Rudder/Yaw

231 ppm[RUDDER] = PPM_MID - gyro_rpy[2]*scale_rpy[2] + trim_rpy[2];

232

233 timeout = process_SymaX();

234 while(micros() < timeout) { } // wait for drone to process

235 }

26

Listing 2: customMadgwick.cpp

1 #include "Arduino.h"

2

3 #define betaDef 0.1f

4

5 class SF {

6 public:

7 SF(){

8 beta = betaDef;

9 q0 = 1.0f;

10 q1 = 0.0f;

11 q2 = 0.0f;

12 q3 = 0.0f;

13 anglesComputed = 0;

14 }

15 void customMadgwickUpdate(float gx, float gy, float gz,

16 float ax, float ay, float az, float deltat){

17 float recipNorm;

18 float s0, s1, s2, s3;

19 float qDot1, qDot2, qDot3, qDot4;

20 float _2q0, _2q1, _2q2, _2q3, _4q0, _4q1, _4q2;

21 float _8q1, _8q2, q0q0, q1q1, q2q2, q3q3;

22

23 // Rate of change of quaternion from gyroscope

24 qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);

25 qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);

26 qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);

27 qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);

28

29 // Normalise accelerometer measurement

30 recipNorm = invSqrt(ax * ax + ay * ay + az * az);

31 ax *= recipNorm;

32 ay *= recipNorm;

33 az *= recipNorm;

34

35 // Auxiliary variables to avoid repeated arithmetic

36 _2q0 = 2.0f * q0;

37 _2q1 = 2.0f * q1;

38 _2q2 = 2.0f * q2;

39 _2q3 = 2.0f * q3;

40 _4q0 = 4.0f * q0;

41 _4q1 = 4.0f * q1;

42 _4q2 = 4.0f * q2;

27

43 _8q1 = 8.0f * q1;

44 _8q2 = 8.0f * q2;

45 q0q0 = q0 * q0;

46 q1q1 = q1 * q1;

47 q2q2 = q2 * q2;

48 q3q3 = q3 * q3;

49

50 // Gradient decent algorithm corrective step

51 s0 = _4q0 * q2q2 + _2q2 * ax + _4q0 * q1q1 - _2q1 * ay;

52 s1 = _4q1 * q3q3 - _2q3 * ax + 4.0f * q0q0 * q1 - _2q0 *

53 ay - _4q1 + _8q1 * q1q1 + _8q1 * q2q2 + _4q1 * az;

54 s2 = 4.0f * q0q0 * q2 + _2q0 * ax + _4q2 * q3q3 - _2q3 *

55 ay - _4q2 + _8q2 * q1q1 + _8q2 * q2q2 + _4q2 * az;

56 s3 = 4.0f * q1q1 * q3 - _2q1 * ax + 4.0f * q2q2 * q3 - _2q2 * ay;

57 recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3);

58

59 // normalise step magnitude

60 s0 *= recipNorm;

61 s1 *= recipNorm;

62 s2 *= recipNorm;

63 s3 *= recipNorm;

64

65 // Apply feedback step

66 qDot1 -= beta * s0;

67 qDot2 -= beta * s1;

68 qDot3 -= beta * s2;

69 qDot4 -= beta * s3;

70

71 // Integrate rate of change of quaternion to yield quaternion

72 q0 += qDot1 * deltat;

73 q1 += qDot2 * deltat;

74 q2 += qDot3 * deltat;

75 q3 += qDot4 * deltat;

76

77 // Normalise quaternion

78 recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);

79 q0 *= recipNorm;

80 q1 *= recipNorm;

81 q2 *= recipNorm;

82 q3 *= recipNorm;

83 anglesComputed = 0;

84 }

85

28

86 float deltatUpdate (){

87 Now = micros();

88 deltat = ((Now - lastUpdate) / 1000000.0f);

89 // set integration time by time elapsed since last filter update

90 lastUpdate = Now;

91 return deltat;

92 }

93

94 float getRoll() {

95 if (!anglesComputed) computeAngles();

96 return roll * RAD_TO_DEG;

97 }

98 float getPitch() {

99 if (!anglesComputed) computeAngles();

100 return pitch * RAD_TO_DEG;

101 }

102 float getYaw() {

103 if (!anglesComputed) computeAngles();

104 return yaw * RAD_TO_DEG + 180.0f;

105 }

106

107 private:

108 float beta;

109 float q0, q1, q2, q3; // quaternion of sensor frame relative to auxiliary

frame

110 bool anglesComputed;

111

112 static float invSqrt(float x){

113 float halfx = 0.5f * x;

114 float y = x;

115 long i = *(long*)&y;

116 i = 0x5f3759df - (i>>1);

117 y = *(float*)&i;

118 y = y * (1.5f - (halfx * y * y));

119 y = y * (1.5f - (halfx * y * y));

120 return y;

121 }

122

123 void computeAngles(){

124 roll = atan2f(q0*q1 + q2*q3, 0.5f - q1*q1 - q2*q2);

125 pitch = asinf(-2.0f * (q1*q3 - q0*q2));

126 yaw = atan2f(q1*q2 + q0*q3, 0.5f - q2*q2 - q3*q3);

127 anglesComputed = 1;

29

128 }

129

130 float roll, pitch, yaw;

131 float Now,lastUpdate,deltat;

132 };

Listing 3: buttonTest.ino

1 #include <ButtonDebounce.h>

2

3 #define yaw_ccw_pin 3

4 #define yaw_cw_pin 4

5 #define pitch_b_pin 5

6 #define pitch_f_pin 6

7 #define roll_l_pin 7

8 #define roll_r_pin 8

9 #define trim_rst_pin 9

10

11 ButtonDebounce yaw_ccw(yaw_ccw_pin, 50);

12 ButtonDebounce yaw_cw(yaw_cw_pin, 50);

13 ButtonDebounce pitch_b(pitch_b_pin, 50);

14 ButtonDebounce pitch_f(pitch_f_pin, 50);

15 ButtonDebounce roll_l(roll_l_pin, 50);

16 ButtonDebounce roll_r(roll_r_pin, 50);

17 ButtonDebounce trim_rst(trim_rst_pin, 50);

18

19 int yaw_ccw_count = 0;

20 int yaw_cw_count = 0;

21 int pitch_b_count = 0;

22 int pitch_f_count = 0;

23 int roll_l_count = 0;

24 int roll_r_count = 0;

25 int trim_rst_count = 0;

26

27 bool yaw_ccw_state = HIGH;

28 bool yaw_cw_state = HIGH;

29 bool pitch_b_state = HIGH;

30 bool pitch_f_state = HIGH;

31 bool roll_l_state = HIGH;

32 bool roll_r_state = HIGH;

33 bool trim_rst_state = HIGH;

34

35 void setup()

36 {

30

37 Serial.begin(38400);

38 }

39

40 void loop()

41 {

42 yaw_ccw.update();

43 yaw_cw.update();

44 pitch_b.update();

45 pitch_f.update();

46 roll_l.update();

47 roll_r.update();

48 trim_rst.update();

49

50 if (yaw_ccw_state != yaw_ccw.state())

51 {

52 if (yaw_ccw.state() == HIGH)

53 {

54 yaw_ccw_count++;

55 yaw_ccw_state = HIGH;

56 }

57 else

58 {

59 yaw_ccw_state = LOW;

60 }

61 }

62

63 if (yaw_cw_state != yaw_cw.state())

64 {

65 if (yaw_cw.state() == HIGH)

66 {

67 yaw_cw_count++;

68 yaw_cw_state = HIGH;

69 }

70 else

71 {

72 yaw_cw_state = LOW;

73 }

74 }

75 if (pitch_b_state != pitch_b.state())

76 {

77 if (pitch_b.state() == LOW)

78 {

79 pitch_b_count++;

31

80 pitch_b_state = LOW;

81 }

82 else

83 {

84 pitch_b_state = HIGH;

85 }

86 }

87 if (pitch_f_state != pitch_f.state())

88 {

89 if (pitch_f.state() == LOW)

90 {

91 pitch_f_count++;

92 pitch_f_state = LOW;

93 }

94 else

95 {

96 pitch_f_state = HIGH;

97 }

98 }

99 if (roll_r_state != roll_r.state())

100 {

101 if (roll_r.state() == LOW)

102 {

103 roll_r_count++;

104 roll_r_state = LOW;

105 }

106 else

107 {

108 roll_r_state = HIGH;

109 }

110 }

111 if (roll_l_state != roll_l.state())

112 {

113 if (roll_l.state() == LOW)

114 {

115 roll_l_count++;

116 roll_l_state = LOW;

117 }

118 else

119 {

120 roll_l_state = HIGH;

121 }

122 }

32

123 if (trim_rst_state != trim_rst.state())

124 {

125 if (trim_rst.state() == LOW)

126 {

127 trim_rst_count++;

128 trim_rst_state = LOW;

129 }

130 else

131 {

132 trim_rst_state = HIGH;

133 }

134 }

135

136 Serial.print("yaw_ccw: ");

137 Serial.print(yaw_ccw_count);

138 Serial.print("\t");

139

140 Serial.print("yaw_cw: ");

141 Serial.print(yaw_cw_count);

142 Serial.print("\t");

143

144 Serial.print("pitch_b: ");

145 Serial.print(pitch_b_count);

146 Serial.print("\t");

147

148 Serial.print("pitch_f: ");

149 Serial.print(pitch_f_count);

150 Serial.print("\t");

151

152 Serial.print("roll_l: ");

153 Serial.print(roll_l_count);

154 Serial.print("\t");

155

156 Serial.print("roll_r: ");

157 Serial.print(roll_r_count);

158 Serial.print("\t");

159

160 Serial.print("trim_rst: ");

161 Serial.print(trim_rst_count);

162 Serial.println();

163

164 delay(50);

165 }

33

Listing 4: generalTest.ino

1 #include "MPU6050.h"

2 #include "Wire.h"

3 #include "customMadgwick.cpp"

4

5 MPU6050 gyro(0x69);

6 int gx, gy, gz, ax, ay, az;

7 SF gyro_filter;

8 float gyro_rpy[3];

9 float delta_t;

10 float gRes = 250.0 / 32768.0 * DEG_TO_RAD;

11 float aRes = 2.0 / 32768.0 * 9.8;

12

13 int startTime = 0;

14 int endTime = 0;

15

16 void setup()

17 {

18 Wire.begin();

19 do

20 {

21 gyro.initialize();

22 delay(250);

23 } while (!gyro.testConnection());

24 // Modify gyro offsets

25 gyro.setXAccelOffset(191);

26 gyro.setYAccelOffset(1205);

27 gyro.setZAccelOffset(573);

28 gyro.setXGyroOffset(-30);

29 gyro.setYGyroOffset(-16);

30 gyro.setZGyroOffset(10);

31 gyro.setRate(0);

32

33 Serial.begin(38400);

34 }

35

36 void loop() {

37 startTime = millis();

38 gyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);

39 delta_t = gyro_filter.deltatUpdate();

40 gyro_filter.customMadgwickUpdate(gx*gRes, gy*gRes, gz*gRes, ax*aRes, ay*

aRes, az*aRes, delta_t);

41 gyro_rpy[0] = gyro_filter.getRoll();

34

42 gyro_rpy[1] = gyro_filter.getPitch();

43 gyro_rpy[2] = gyro_filter.getYaw()-180;

44 endTime = millis();

45

46 Serial.print("Time(ms):");

47 Serial.print(endTime - startTime);

48 Serial.print("\t");

49

50 Serial.print("X Accel(m/s):");

51 Serial.print(ax*aRes);

52 Serial.print("\t");

53 Serial.print("Y Accel:");

54 Serial.print(ay*aRes);

55 Serial.print("\t");

56 Serial.print("Z Accel:");

57 Serial.print(az*aRes);

58 Serial.print("\t");

59

60 Serial.print("Roll(deg):");

61 Serial.print(round(gyro_rpy[0]));

62 Serial.print("\t");

63 Serial.print("Pitch:");

64 Serial.print(round(gyro_rpy[1]));

65 Serial.print("\t");

66 Serial.print("Yaw:");

67 Serial.println(round(gyro_rpy[2]));

68 }

35

	Introduction
	Design
	Power Subsystem
	Control Subsystem
	Sensor Subsystem
	Filtering

	Design Verification
	Power Subsystem
	Control Subsystem
	Sensor Subsystem

	Cost
	Parts
	Labor

	Conclusion
	Accomplishments
	Ethical Considerations
	Future work

	References
	Requirement and Verification Tables
	Schematics
	Compatible Products
	Software

