

Parking Reservation System
Team 59

Manjesh Mogallapalli, Ojus Deshmukh, Vivek Calambur

TA: Kyle Michal

Final Report

ECE 445 - Spring 2019

May 1, 2019

Abstract 3

1 Introduction 4
1.1 Problem Statement 4
1.2 Solution 4
1.3 High Level Requirements 4

2 Hardware Design 5
2.1 System Overview 5
2.3 Power Supply Subsystem 6
2.4 Meter Subsystem 6
2.5 Microcontroller Code 9

3 Backend Design 11
3.1 Backend Overview 11
3.2 Firebase and Google Cloud 11
3.3 Wi-Fi Chip Code 12
3.3 Spot Assignment Algorithm 12
3.4 RFID Verification System 13
3.5 Reservation Enforcement System 14

4 Mobile App Design 15
4.1 Mobile App Overview 15
4.2 Mobile App Frontend Design 15
4.3 Mobile App Backend Design 16

5 Verification 17
5.1 Hardware Verification 17
5.2 Backend Verification 17
5.3 Mobile App Verification 17

6 Costs 18
6.1 Labor 18
6.2 Parts 18

7 Conclusion 19
7.1 Accomplishments 19
7.2 Challenges 19
7.3 Future Work 20
7.4 Ethical Considerations 20
7.5 Acknowledgements 20

8 References 21

1

Appendix A Requirements and Verification Table 22

Appendix B PCB Schematics 25

Appendix C PCB Layouts 27

Appendix D PCB Pictures 28

Appendix E Physical Design 30

Appendix F Mobile App Layout 32

Appendix G Schedule 36

Appendix H Project Data Flow 38

2

Abstract

With the advent of IOT and smart devices, many day-to-day devices now have the power to

connect to the internet. While certain devices such as smart refrigerators and thermostats are easily found

on the market today, parking meters have been largely unaffected by recent technology. The parking

reservation system detailed in this paper brings parking into the modern world. By building parking

meters that are capable of connecting to the internet, users will be able to view open parking spots,

reserve spots and pay for parking with a simple tap. The final product consists of parking meters that can

be sold to cities, private lots or garages, and a mobile app that users can download and use.

3

1 Introduction

1.1 Problem Statement

We have all been in situations where we find ourselves driving aimlessly looking for public

parking or having to park out of the way because no spots are available. This problem gets worse as cities

grow—drivers in London spend an average of almost eight minutes looking for parking every day[1]. In

the US, after accounting for time, fuel, and emissions, drivers lose over $70 billion[2] annually while

looking for parking. Additionally, users often overpay for their parking spot. The average driver in the US

spends “eight times more a year overpaying for parking than they do in parking tickets”[2]. These issues

stem from not having a comprehensive system for parking that allows a user to effectively find available

spots or to know that a spot will be saved for them on arrival.

1.2 Solution

Our solution is a comprehensive parking system that allows users to easily gauge the parking

availability in a certain area before they start driving or simply reserve a spot ahead of time for a set

window. Instead of having to deal with coin payment, garage systems, or blocked-access parking lots, the

system will rely entirely on a parking meter and a companion app. Users will also receive an RFID tag

they will use to check in to parking spots.

The system works as follows:

1. The user either reserves a spot, or finds an open spot on the mobile app

2. The user parks at that spot, and scans their RFID tag on the meter

3. When the user drives out of the spot, their account will immediately be charged for the time they

were parked at that spot.

1.3 High Level Requirements

✓ The meter will be able to verify users via RFID tags.

✓ The hub unit will be able to support at least 10 active meters

✓ The system will identify empty parking spaces with 90% accuracy

4

2 Hardware Design

2.1 System Overview

The system involves an array of meters, connected to mains, that all communicate with a backend

service. This backend service receives sensor data from the meter, and in turn communicates to the meter

what to display on its LCD screen. The mobile app also communicates with the backend in order to

obtain information on spot availability and to make reservations.

This data flow can be seen in Figure 1:

Figure 1: System-Level Block Diagram

5

The hardware for each meter unit consists of a power supply subsystem, and the meter itself.

These meters can then be individually deployed at any parking spot to detect cars and communicate to the

backend service.

2.3 Power Supply Subsystem

Figure 2: Power Supply Subsystem

Each power supply subsystem is responsible for powering its own meter, and ensuring that it is

always connected and powered after the meter boots up. This system contains two components - an

AC/DC 5V converter and a 3.3V linear regulator.

Converter: This is a 5V, DC power source that can supply up to 2A to its respective meter.

Regulator: This is a 3.3V, DC power source that supplies 3.3V power to the WiFi module onboard the

meter.

2.4 Meter Subsystem

Figure 3: Parking Meter Subsystem

6

The meter subsystem contains 5 components:

1. An ATMega 328-P microcontroller, that controls and reads from all the other components and

sensors onboard the meter. This microcontroller was chosen because of its usage in Arduino

platforms, meaning that all Arduino libraries would be compatible with this microcontroller.

2. An ESP8266-01 WiFi Module, that connects the backend and the meter. The ESP8266 platform

has multiple boards that have more GPIO pins, and that could theoretically control the entire

meter on their own without the use of an ATMega. We chose the ESP-01 because it was

designed as an addon module to other microcontrollers such as the ATMega, thereby allowing us

to utilize Arduino libraries. This microcontroller had the biggest current draw, with around 67

mA in steady state with bursts of up to 435 mA while it connected to WiFi(see Fig.4). This WiFi

module also had a library that made it very easy to interface with our backend, the

Firebase-ESP8266 Client library[3].

3. An HC-SR04 Ultrasonic Sensor, that functions as a proximity sensor to detect cars parked in the

lot. Ultrasonic was cheap, reliable, and easy to implement, as well as allowing us to make many

quick measurements to reduce error.

4. An ID-12LA RFID Reader, that allows users to check in to parking spaces. We chose RFID as a

user identification method because it was reliable and very portable. We debated a mobile

verification method, but also wanted our system to be entirely viable without the use of a mobile

phone. This particular model of RFID reader also came with a built-in antenna, which simplified

our circuit and boosted our read range.

5. An NHD-0216K3Z-FSRGB-FBW-V3 LCD Screen, that allows the meter to display information

about the parking spot. We chose an RGB backlit screen because they would be easier to identify

at a distance in larger parking lots. It required I2C communication, which we did using the Wire

I2C library[4].

7

Component Voltage Current

Microcontroller(ATMega 328-P 5V 7-15 mA

Ultrasonic Sensor(HC-SR04) 5V 15 mA

RFID Reader(ID-12LA) 5V 15 mA

WiFi Module(ESP8266-01) 3.3V 67-500 mA

LCD Screen + RGB

Backlight(NHD-0216K3Z)

5 + 1.9,2.9,2.9 V 15 + 15,20,20 mA

Figure 4: Consumption Characteristics by Part

Figure 5: Circuit Diagram

8

Figure 5, above, shows the circuit diagram that shows how all the parts were connected. The

ESP8266 WiFi Module(top left) can be seen to be relatively simple, needing only a Tx/Rx connection to

the ATMega(center) for full functionality. In terms of circuit complexity, the LCD screen(top right) was

the most difficult, considering the 3 voltage dividers required for its RGB backlight and the pins needed

for I2C communication. The RFID chip(bottom), due to its built-in antenna, only needed power, ground,

and a data pin to relay any scanned RFID tags. The Ultrasonic sensor(middle left) needed only two

GPIOs to measure and read distances.

2.5 Microcontroller Code

The entire meter was controlled by two pieces of code: One that ran on the microcontroller, and

one that ran on the WiFi module and communicated with the backend. Section 3 discusses the latter piece

of code.

The microcontroller code was designed to have two constantly running functions:

● receiveFromESP

○ The backend, once it has received data, processes it and sends it back as LCD commands

to have the screen reflect data accordingly(e.g, a customer has not verified their car in a

spot. The backend processes that data and changes the meter’s screen from green to red).

● sendToESP

○ This function first collects UltraSonic and RFID data, then sends that data to the WiFi

Module to send to the backend. Since sending data to the backend was an expensive

operation, we elected to only send data to the backend if something had changed. For

example, if a car entered the spot/left the spot, or once an RFID tag was scanned.

However, we would not update the backend if nothing had changed. This meant that we

had to detect any possible changes as fast as possible, so that the backend would not miss

any data.

“sendToESP” was the function responsible for actually collecting the Ultrasonic and RFID data.

Unfortunately, the Ultrasonic sensor was not as reliable as we’d expected. Although on average, it

returned the correct distance, it would occasionally return a minimum or maximum distance(10 or 400

cm). Because of this, we would take 10 measurements over 3 seconds, and only use that set of

measurements if all 10 agreed on the status of the car(present in the spot/not present at the spot,

represented as over/under 80 cm). Figure 6 (below) shows this algorithm in flowchart form.

9

Figure 6: Ultrasonic Algorithm

10

3 Backend Design

3.1 Backend Overview

In the overall context of our system, the backend is essential for handling storage and most logic

based operations. Specifically, the backend is the layer that operates between the app and the physical

parking meter. There are a few different actions that trigger the backend logic: user interactions on the

mobile app, users parking in a metered parking spot, and user scan of RFID tag. Additionally, there are

functions that run on a time-based schedule. Appendix G provides a high level overview of the data

communication between modules.

3.2 Firebase and Google Cloud

Firebase[9] and Google Cloud Platform[10] were what we chose as our backend technology

stack. We chose Firebase because it links seamlessly with the Android mobile app that we designed for

our project. Additionally, the FirebaseArduino library for the ESP8266 Wi-Fi chip was simple to use, and

gave us the flexibility to use event listeners in our Wi-Fi chip code. We used the Firebase Realtime

Database to store all of the data pertaining to our project. The database is stored in a NoSQL format,

which means that the entire database can essentially be treated as a nested dictionary. We had three main

tables in the database: Lots, Reservations, and Users. Each of the tables are structured as depicted below:

Figure 7: Database Table Structure

11

3.3 Wi-Fi Chip Code

Much like the microcontroller code that runs on the ATMega chip, the ESP8266 Wi-Fi chip has

two constantly running functions. One function receives data through serial communication with the

ATMega microcontroller and transmits this information to Firebase. The other function uses event

listeners on certain Firebase paths to detect changes and send the changed information to the

microcontroller. A more in-depth description of these two functions is detailed below.

● sendToFirebase

○ The sendToFirebase function is a constantly running function that has two main purposes.

First, it receives data through serial communication from the microcontroller.

Specifically, there are two different types of data that can be sent from the

microcontroller to the Wi-Fi chip - ultrasonic sensor readings and RFID codes. Using

specific start and end characters to indicate start and end of transmission [11], we were

able to parse the data sent. Once the data is parsed, the appropriate Firebase datapath is

updated using the FirebaseArduino library.

● receiveFromFirebase

○ The receiveFromFirebase function is another constantly running function that is needed

to detect meter LCD color changes and update accordingly. To accomplish this, we used

event listeners from the FirebaseArduino library on each meter’s LCD color datapath.

When these LCD color fields were changed by backend logic (reservation made, spot

violation etc.), our event listeners would fire. At this point, we would pick up the new

data from the database and send the updated color information to the microcontroller.

Once again, we used start and end of transmission characters to communicate this data

through serial.

3.3 Spot Assignment Algorithm

The spot assignment algorithm is a necessary element of our system, as it allows us to efficiently

optimize the number of spaces that are reserved at any given point of time. During the creation of a

reservation, a user only selects a particular lot. Users are not given the option to select a specific spot in

this lot. Instead, a spot is assigned to the user at least an hour prior to the start of the reservation. For the

purposes of our demo, we had the system assign a spot as soon as a reservation was created.

To assign spots, we deployed a Google Cloud Function[12] that is triggered by an HTTP POST

request from the mobile app. That is, on submission of a reservation, the mobile app hits an endpoint

called makeReservation. The POST request from the mobile app will carry a payload that contains a few

12

different fields necessary for the processing of a reservation. The contents of the payload include fields

such as user ID, lot, date, start time and end time.

Once this POST request is received, there are a series of checks that are done to ensure that the

reservation is valid. First, the cost of the reservation is computed and we check to see whether the

specified user has enough account balance. If the user does not have sufficient funds, an error message is

returned to the app. Next, the lot is checked for availability during the selected time period. If the lot is

unavailable, an error message is returned to the app. If both of these checks pass, the system moves on to

finding a spot for the reservation. The flowchart below describes how spots are assigned for a reservation.

Figure 8: Spot Assignment Algorithm Flowchart

3.4 RFID Verification System

Another key component of our system was the RFID authentication module. In real world usage,

each user would be mailed an RFID tag linked to their account. This RFID tag can be used to check in to

a parking spot. With the RFID check in process, there are a few different scenarios that could play out.

a) The user has a reservation, and is checking in to the reserved spot.

b) The user does not have a reservation, and is parking in an open spot.

c) The user is parking in a reserved spot, but does not have a reservation for that spot.

d) The user never scans in to the spot (reserved or open)

13

To handle these different cases, we implemented a system that would correlate arrival time into

the parking spot with RFID readings. Once a car has parked in a spot, the ultrasonic sensor picks up this

change and changes spot status from open to closed. An event listener on this data path in Firebase then

picks this change up and triggers the RFID verification system. For purposes of a shorter demo, we gave

users 30 seconds to scan into the meter before the spot is marked as being in violation. The flowchart

below illustrates how this system works.

Figure 9: RFID Verification Flowchart

3.5 Reservation Enforcement System

The final piece of our backend was a reservation enforcement system. The reservation

enforcement system runs on a time-based schedule, and is currently set to execute every minute.

While fairly simple, this system was required to cover two edge cases:

● Reservation overstay - When a user stays in a reserved spot past their reservation end time, the

enforcement system automatically changes the status of the specified spot to being in violation.

● Reservation no-show - If a user does not check-in to their reserved spot within 30 minutes of their

start time, the system deletes the reservation from the system and frees up the spot for parking.

14

4 Mobile App Design

4.1 Mobile App Overview

The mobile app was a central component to our project. The app allows users of the Parking

Reservation System to sign up for the service, update user information, make/view reservations, and view

parking spot availability. The app is designed for Android devices[5] and is written in Java. We chose to

design the app for Android devices because Android applications integrate well with our backend service,

Firebase.

4.2 Mobile App Frontend Design

There are four pages in the mobile app: Login, User Profile, Reservation, Open Spots. The user

can interact with the app as depicted below:

Figure 10: App Interaction Flowchart

The Login page has two functions, it allows users to login and it allows users to create an

account. The User Profile page contains all of the user’s personal information such as their name and

address. In addition, this page allows users to add more balance to their account and sign out of the app to

end their session. The Reservation page allows users to make and view reservations. Users can make

reservations by selecting a lot and specifying a start and end time using the time pickers that appear upon

clicking the respective fields on the page. When a user submits their reservation request, they receive

feedback saying: “Reservation Successful”, “No Spots Available”, or “Insufficient Balance”. If the

reservation is successful, it appears on the table in the bottom of the page along with the spot number

15

once it has been assigned by the system. The Open Spots page allows users to view spot availability at

the lot of their choice. Once the user has selected the lot, they can view that status of each meter whether

it is “OPEN”, “RESERVED”, or “OCCUPIED.”

Images of all of the pages are included in Appendix E.

4.3 Mobile App Backend Design

Some of the backend processing is handled on the app itself. The app handles all of the

processing when a user creates an account. Once an account is created, the app passes the information on

to Firebase where the userid and password are stored in the user database until the account is deleted. In

addition, the app verifies if a given user ID and password pair match their respective pair in the database

and allows the user to login. If a user updates any of their personal information or reloads their account

balance on the User Profile page the change is reflected immediately in the database.

On the Open Spots page, the app reads the color value for each meter from the database and

displays the appropriate text whether it is “OPEN”, “RESERVED”, or “OCCUPIED.” On the Make

Reservation page, the app makes a POST request to the Google Cloud Function upon the user submitting

their reservation request and displays the response received from the function to the user. In addition the

app reads the database for reservations corresponding to the user and displays them row by row in a table.

The app also displays the spot number in the table once it has been assigned by the Google Cloud

Function and updated in the database.

16

5 Verification

During the build phase of the project, each component was tested to ensure proper and full

functionality. The components were all integrated with no (unsolvable) issues, and the final product now

functions properly. All of the verification tests can be seen below in Appendix A: Requirements and

Verification Table.

5.1 Hardware Verification

The entire circuit was built out and rigorously tested on a breadboard prior to even designing the

PCB. Due to that, the PCB was relatively bug-free after it was actually printed. With the exception of

routing one trace on the front PCB (see Appendix D: PCB Boards), the PCB worked perfectly and did not

need any changes.

5.2 Backend Verification

The backend of our system is fairly complex and has many moving pieces that need to work

together in unison for everything to work as expected. Rigorous verification of each individual piece of

code was absolutely necessary for debugging.

The first module that was tested was the Wi-Fi module. There were two main tests that were run

on the Wi-Fi chip. First, we checked to see whether we could receive basic text through serial. Once we

were able to confirm that the microcontroller to Wi-Fi chip code was fully functional, we then moved

over to the Firebase communication side. On the Firebase end, we verified that we could push data to a

specified datapath and also checked that our event listeners fired on modification of data values.

To test that our Google Cloud Functions were working, we first tested that the logic worked

locally. To accomplish this, we listed all possible edge cases and ran through expected functionality

versus actual functionality. Once this code was deployed, most of our code worked right out of the box.

There were a few issues with regards to server timezone, but that was easily fixed.

5.3 Mobile App Verification

The mobile app verification tests consisted of performing actions on the app and seeing if the

database and meter responded appropriately. A series of simple queries [6] were ran to see if new data

created by the app was present in the database and to see if any updates to user data on the app was also

reflected in the database. In addition, we ran multiple tests to see if reservations made on the app reserved

the appropriate meter. We also ran multiple tests to see if the app was accurately displaying the current

meter status, occupied or available.

17

6 Costs

6.1 Labor

Person Hours Hourly Rate Total

Manjesh Mogallapalli 30 $50 $1500

Ojus Deshmukh 30 $50 $1500

Vivek Calambur 30 $50 $1500

6.2 Parts

Part Qty Total Cost($)

ESP8266-01 Wifi Module 4 $13.98

ATMega 328-P 4 $12.99

ID-12LA RFID Reader 3 $89.85

32-Bit RFID Tags 6 $23.70

HC-SR04 Ultrasonic Sensor 3 $11.85

LCD Screen 3 $62.64

680 Ω Resistor 3 $1.00

1000 Ω Resistor 3 $1.00

Ceramic Resonator 3 $2.85

3.3V Regulator 3 $7.48

5V AC/DC Converter 3 $29.97

Total $257.31

18

7 Conclusion

7.1 Accomplishments

We were able to accomplish everything that we had planned for over the course of the semester.

We met all of the high-level requirements that we set in the Design Review, and we designed a

completely functional product that solves a relevant problem.

Our Parking Reservation System allows users to view parking spot status in realtime, it allows

users to make reservations using the mobile app, the system takes care of verifying reservations via RFID

tag and backend processing, and the system accurately enforces reservations and payment without any

hassle to the user.

7.2 Challenges

During our time working on this project we encountered a few major challenges. One of the

challenges we faced was a bug regarding the ultrasonic sensor. The ultrasonic sensor would time-out if no

new activity happened after a couple of minutes, and it would retain whatever the last value it had. We

believe this happened due to the quality of the ultrasonic sensor, as it is very inexpensive, a lot of other

users were complaining about experiencing a similar issue on online forums.

We also experienced an issue with the FirebaseArduino library that we used on our WiFi chip. On

the day before the demo, we were experiencing issues connecting our WiFi chip to the database, and we

couldn’t figure out why as all of our code was working before. After looking at various online forums, we

found that the issue was the FirebaseArduino library that we were using refers to the Firebase website

certificate and whenever the library gets updated the certificate changes. So once we changed the

certificate key to the updated one, we were once again able to connect to the database.

Another challenge that we faced was listening for changes that occured in the database, “events.”

In Firebase, PUT and PATCH are two events that write to the database. PUT writes a new entry to the

database whereas PATCH overwrites and existing entry with updated information. Initially we were only

checking for PUT events, but once we checked for PATCH events, which happened any time we wanted

to update the LCD screen based on the backend logic, we encountered bugs in the FirebaseArduino

library where the information associated with a PATCH event was empty. In order to work around this

bug, we had to write a workaround that retrieved the LCD color value from the DB every time we

received a PATCH event. This color code was then sent to the microcontroller to update the screen color.

We also experienced problems with getting the our code for the Wifi chip to stay on the chip once

we disconnected it from the breadboard. We realized to program the wifi chip GPIO pin must be set to

19

low and for the program to stay on the chip the GPIO pin must be set to high. This discovery was only

made after looking through some online forums, as the documentation didn’t specify anything about this.

A big challenge for our group was building the mobile application. While all of us have some sort

of software experience, none of us have ever worked on mobile development. So we had to learn how to

build a mobile app from scratch, which required reading a lot of documentation and online forums.

7.3 Future Work

There are a few improvements that we would like to make to our project in the future. We would

like to look into pivoting from the current ultrasonic sensor as it has the issues that we described above.

We would either move on to a higher quality ultrasonic sensor or look into using an infrared sensor.

In addition, there were a few modifications we would like to make to the software component of

our project. We would like to look into transitioning from Firebase to a commercial backend service such

as AWS. While Firebase served as the perfect backend service for what we were trying to accomplish for

this course, AWS is considered to be the backend service of choice in the tech industry. We also want to

develop a mobile app for Apple devices as it would allow our product to be used by many more users.

Finally, we also want to modify our physical design to make it a completely waterproof product.

Our current design has a wire routed through the outside of the pole to the ultrasonic sensor, and we

would like to change that so all of the wires are contained within the casing for the meter.

7.4 Ethical Considerations

There were initially two overarching ethical considerations that we discussed in our design

document - physical safety and data privacy. In terms of physical safety, our project addresses the concern

of mobile phone usage when driving. We assign spots well ahead of user arrival giving users no extra

incentive to use their mobile phones while driving. In terms of data privacy, all private user information is

encrypted and stored on Firebase. Additionally, Firebase provides built-in security features that restrict

access to the database without an access key. We believe that our project is well aligned with the IEEE

Code of Ethics[7] as well as the ACM Code of Ethics[8].

7.5 Acknowledgements

We would like to thank TAs Kyle Michal and Soumithri Bala for all of their assistance

throughout our time working on this project.

20

8 References

[1] P. Sawer, “Motorists spend four days a year looking for a parking space,” The Telegraph,
01-Feb-2017. [Online]. Available:
http://www.telegraph.co.uk/news/2017/02/01/motorists-spend-four-days-year-looking-parking-space/.
[Accessed: 02-May-2019].

[2] “Searching for Parking Costs Americans $73 Billion ... - INRIX.” [Online]. Available:
http://inrix.com/press-releases/parking-pain-us/. [Accessed: 01-May-2019].

[3] FirebaseExtended, “FirebaseExtended/firebase-arduino,” GitHub, 19-Apr-2019. [Online].
Available: https://github.com/FirebaseExtended/firebase-arduino. [Accessed: 02-May-2019].

[4] “Wire,” Arduino. [Online]. Available: https://www.arduino.cc/en/Reference/Wire. [Accessed:
02-May-2019].

[5] “Meet Android Studio | Android Developers,” Android Developers. [Online]. Available:
https://developer.android.com/studio/intro. [Accessed: 02-May-2019].

[6] “Query | JavaScript SDK | Firebase,” Google. [Online]. Available:
https://firebase.google.com/docs/reference/js/firebase.database.Query. [Accessed: 02-May-2019].

[7] “IEEE Code of Ethics,” IEEE. [Online]. Available:
http://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 02-May-2019].

[8] “Code of Ethics,” ACM Ethics, 29-Jul-2016. [Online]. Available:
https://ethics.acm.org/code-of-ethics/. [Accessed: 02-May-2019].

[9] “Firebase,” Google. [Online]. Available: https://firebase.google.com/. [Accessed:
02-May-2019].

[10] “Google Cloud Platform,” Google. [Online]. Available: https://cloud.google.com/.
[Accessed: 02-May-2019].

[11] “Cloud Functions - Event-driven Serverless Computing | Cloud Functions | Google
Cloud,” Google. [Online]. Available: https://cloud.google.com/functions. [Accessed: 02-May-2019].

[12] Serial Input Basics - updated. [Online]. Available:
https://forum.arduino.cc/index.php?topic=396450.0. [Accessed: 02-May-2019].

21

Appendix A Requirements and Verification Table

Component Requirement Verification

Power Supply Subsystem The power subsystem should be
able to fully power all
components on the meter, at all
times.

✓ Check if the meter can be
powered by the Power Supply
subsystem, and carry out all
tasks required(retrieve sensor
data, communicate using WiFi
module

3.3V Regulator The 3.3V regulator should be
very close (+/- 5%) to 3.3V to
avoid burning out the WiFi
module

✓ Test the 3.3V regulator with
a multimeter to see if it regularly
reads within 5% of 3.3V

Ceramic Resonator The resonator should allow the
ATMega to function at 16 MHz.

✓ Measure the frequency of the
two legs of the resonator with a
multimeter to check the
frequency

WiFi Module The WiFi module should be able
to connect to the backend.

✓ Have the WiFi module
randomly generate a number
between 1 and 5. Have the
onboard LED blink that many
times, then upload that same
number to a table in Firebase.
Check to see that the two values
are the same.

WiFi Module The WiFi module should be able
to pass commands to the meter

✓ Pass commands from
Firebase through the WiFi
module to change the color/text
on the LCD

WiFi Module The WiFi module should be able
to receive sensor data from the
meter

✓ Print Ultrasonic
measurements on the serial
monitor, while also passing
them through the WiFi module
to Firebase. Check to see that
the two values are the same.

RFID Module The RFID reader should be able
to read RFID tags and pass their
RFID codes over serial.

✓ Use serial monitor to read
and print RFID codes scanned
from tags

22

Ultrasonic Sensor The Ultrasonic Sensor should be
able to accurately measure
distances(+/- 15 cm)

✓ Have the Ultrasonic
measurements print over the
Serial monitor. Using
measuring tape, place a box at
different distances from the
sensor. Confirm printed and
placement distances are the
same

LCD Screen The LCD screen should be able
to be controlled over I2C and
change its screen color.

✓ Print multiple messages and
colors on the LCD screen.

RGB Backlight The RGB Backlight needs 3
voltage dividers supplying
1.9,2.9,and 2.9V, respectively.

✓ Use a multimeter to confirm
the voltage divider is built
properly.

Mobile App Users must be able to create an
account

✓ Check database with a simple
query to see if new user is
present.

Mobile App Users must be able to login to
account with their credentials

✓ Check mobile application to
see if it allows users to login
with correct credentials.
✓ Check mobile application to
see if it allows users to login
with incorrect credentials.

Mobile App Mobile application will display
open parking spots

✓ Cross check open spots on
mobile application with those on
database to ensure the same
spots are being shown as open

Mobile App User is able to edit personal
information

✓ Check database with simple
query to see if new changes are
reflected for the specific user

Mobile App User is able to edit account
balance

✓ Check database with simple
query to see if account balance
is present in the database

Mobile App User can make a reservation. ✓ Check database with simple
query to see if reservation is
present in the database

Backend Reservations are stored in
database

✓ Use Postman to send a POST
request and see if reservation is
created in Firebase

23

Backend RFID scan is reflected in
database

✓ Scan an RFID tag and ensure
that the correct RFID code
shows up in the database

Backend User is charged appropriately
when user parks in open spot

✓ Check account balance of
specified user and ensure that
the correct amount was deducted

Backend User is authenticated correctly
when user has an active
reservation for the spot

✓ Ensure that screen turns off
when user parks in spot
corresponding to reservation

Backend Spot is in violation when
unauthorized user parks in
reserved spot

✓ Scan RFID tag of user who
does not have an active
reservation and check if LCD
screen turns red

Backend Spot is in violation when user
overstays the reservation

✓ Ensure that screen turns red
when user stays in spot after
reservation end time

24

Appendix B PCB Schematics

Figure 11: Main PCB Schematic

Figure 12: Front PCB Schematic

25

Appendix C PCB Layouts

Figure 13: Main PCB Layout

Figure 14: Front PCB Layout

26

Appendix D PCB Pictures

Figure 15: Main PCB Board

Figure 16: Front PCB Board

27

Appendix E Physical Design

Figure 17: Full Physical Design

28

Figure 18: Zoomed-in Physical Design

29

Appendix F Mobile App Layout

Figure 19: Login and user profile pages

30

Figure 20: Reservations and open spots pages

31

Appendix G Schedule

Week Manjesh Vivek Ojus

2/25/19 Prepare for Design
Review.

Prepare for Design
Review.

Prepare for Design
Review.

3/4/19 Begin the framework
for the mobile
application.

Set up AWS
environment and write
the framework for DB
connection

Begin testing and
verification for all
components.

3/11/19 Finish writing mobile
application. Help Ojus
with PCB Design

Begin writing firmware
code for data
transmission to/from
PCB.

Complete verification
of all components.
Design and order PCB.

3/18/19 (Spring Break) Perform initial testing
on mobile application.
Comment and clean up
existing code.

Perform initial testing
on firmware and
backend connection.
Comment and clean up
existing code.

Collaborate with others
to ensure software is
ready for integration.

3/25/19 Work with Vivek on
assembling physical
and electrical
components. Help Ojus
with PCB testing.

Assemble all physical
components and
electrical components.

Ensure ordered PCBs
meet functionality
requirements and order
additional PCB if
necessary.

4/1/19 Help Ojus with
physical and electrical
component integration.
Integrate software with
all hardware
components.

Complete the final
firmware code for the
final PCB design.

Complete physical and
electrical components
integration.

4/8/19 Begin final testing of
the complete system.
Focus on issues
regarding mobile
application.

Begin final testing of
the complete system.
Focus on issues
regarding Firmware.

Begin final testing of
the complete system.
Focus on issues
regarding PCB
performance.

4/15/19 Fix all mobile
application issues.
Ensure mobile
application meets
requirements.

Fix all Firmware issues.
Ensure that all
firmware meets
requirements.

Fix all PCB issues.
Ensure that all physical
components of project
are functional.

32

4/22/19 Ensure entire parking
reservation system is
complete and begin
Final Report.

Ensure entire parking
reservation system is
complete and begin
Final Report.

Ensure entire parking
reservation system is
complete and begin
Final Report.

4/29/19 Final Report &
Presentation

Final Report &
Presentation

Final Report &
Presentation

33

Appendix H Project Data Flow

Figure 23: Complete Project Data Flow

34

