
BIRD BOX PROJECT FINAL REPORT

May 2, 2019

Kevin Chen, Maŕıa Nacenta Fernández, Michael Zhang
ECE 445 - Spring 2019
TA: Christopher Horn

Team 39

1 Abstract

The Bird Box Project is a project that is sponsored by University of Illinois at Urbana-
Champaign Graduate Student Researcher Shelby Lawson for the purpose of streamlining
trials conducted for bird behavior research. The project consists of both hardware and
software components. The hardware of this project is designed to both allow the bird to
provide responses to audio stimuli, reward/punish according to those responses, and monitor
the bird. The software of this project is designed as a user interface easy-to-use for the
researcher conducting the trials. It is designed to receive sound file inputs as well as trial
parameters to compile into a cohesive trial program. At the end of the trial, the software will
output a csv/excel sheet that records all the activities that occurred during the trial start.
The Bird Box Project is optimized to alleviate hours of extraneous work on the researcher
while maintaining cost-efficiency.

ii

Contents

1 Abstract ii

2 Introduction 1
2.1 Objective . 1
2.2 Background . 1
2.3 Experiment Procedure and Various Terminology 1
2.4 High Level Requirements . 2

3 Hardware Design 1
3.1 Control Module . 2

3.1.1 Microcontroller . 2
3.2 Power Module . 5
3.3 Sensor Module . 6
3.4 Peripheral Module . 7

4 Verification 8
4.1 Power Module verification . 8

5 Software Design 9
5.1 Back-end Structure . 10

5.1.1 Trial Class . 10
5.1.2 TrialSet Class . 11
5.1.3 Profile Class . 11

5.2 Front-end Structure . 12
5.2.1 Interface Components . 12
5.2.2 Distribution Method . 12
5.2.3 Consistency . 13

6 Cost 14
6.1 Cost of Labor . 14
6.2 Cost of Parts and Materials . 14

7 Conclusions 15
7.1 Accomplishments . 15
7.2 Uncertainties . 15
7.3 Ethical considerations . 15
7.4 Future work . 16

References 17

Appendix A. Requirements and Verifications Table 18

iii

2 Introduction

2.1 Objective

Observation of animal behaviors and responses to certain audio stimuli can become the
backbone for how our technologies are shaped or how our secret codes are constructed.
Researchers at the University of Illinois are working to uncover patterns from these behaviors
among birds through the means of conditioning. However, researchers are faced with a dire
problem - there is no existing system that would perfectly cater towards their research needs
and is cost-efficient. Thus, the need to build a system suitable for their research necessities
becomes increasingly apparent.

The solution would be a system comprised of a a hardware and software interface. The
software interface will accept parameters fed through a Graphical User Interface (GUI) to
construct a unique file (with a certain number of trials) set by the researcher. The hardware
would then respond to the data provided by the research in the GUI to play audio sounds
for the bird to respond to. The bird would provide responses though color-differentiated
buttons and trigger certain outcomes from the system. The bird would solely interact with
the hardware side of the system. The system will be designed to reward the bird with food
upon favorable action and punish the bird by turning the lights off upon unfavorable action.
At the end of the research period, an excel sheet wold be generated documenting the results
of each unique response that the bird provided.

2.2 Background

Modern technology has evolved at an incredible rate and digital signal processing is no
exception to this rapid growth. With this growth in technology, it is important to also
observe natural aspects regarding the field to draw more inspiration for advancements in
signal processing. Thus, the analysis of bird behavior and responses to certain audio stimuli
becomes a valuable observation for furthering knowledge in this field of study.

To highlight the problem, there will be varying tiers of impacts to provide emphasis on
the scale in which the project contribution can help with understanding this field. Creating
a product to suit the needs of researchers will unlock further contribution towards various
insights within the field. The trials the system would help conduct further enables under-
standing of bird communication, which can be applied to save certain endangered specifies
upon identifying a certain cry - from a bird, or, in a broader sense, this can contribute to-
wards how language is perceived among birds - how the communicate amongst each other
and how certain sounds are assigned meanings [1].

2.3 Experiment Procedure and Various Terminology

The experiment is composed of a variable amount of trials specified by the researcher.
Each trial can be classified according to if can be called a sham. A legitimate trial will
eventually play an audio track that differentiates from the background sound while a sham
trial will never play this differentiating cue and continue to play the background sound until
the next trial is started.

1

2.4 High Level Requirements

• The overall device must dispense food to the tested subject within a latency period of
2 seconds of successful trial completion - A trial is counted as successful if the trial is
not designated as a sham and the subject correctly presses the Trial Attempt Button
after a specified audio cue.

• The overall device must shut of cage lighting in the event that the tested subject failed
a trial. Trial failure is defined strictly as the subject pressing the Trial Attempt Button
during a trial specified as a sham.

• The device must not punish inaction from the subjects end, and, in the event of ex-
tended inaction, must alert the researchers that the trials have failed to initiate before
shutting itself off (leaving a light on to not stress the bird).

• The software must be capable of accepting .wav file inputs for audio signals and produce
an excel sheet briefing the results from the subject-system interaction as an output.

• The project must be cost-efficient and within a $500 budget as existing devices exist
for a far more extravagant price.

2

3 Hardware Design

The hardware component can be broken into four major modules as shown in Figure 1.
Additionally, all hardware, with exception of the computer speakers, will be inside of the
testing environment. It is assumed that a host-computer will always be within proximity of
the testing environment to support our block diagram. We have informed our sponsor of this
development and have reached an agreement with regards to this.

The connections in Figure 1 do not necessarily denote data buses for data connections or
the data and power outputs managed by a singular input. For the sake of simplicity and com-
pactness, the block diagram merely denotes a connection between one node to another with
the connection intent denoted. Specifics of each connection are purposefully left unspecified
and are detailed in greater length in each individual section via schematic diagram.

Figure 1: Block Diagram of Hardware Modules and Component Nodes

1

3.1 Control Module

The control module handles communication between the onboard devices as well as con-
nected devices and software. It is powered by the power module and will disable itself and
the device if voltage and current are significantly out of operation bounds or if device tem-
perature is not within safe levels for the chip. This module consumes approximately 50mA
± 5% between its blocks.

3.1.1 Microcontroller

This project is designed to be used with the microcontroller ATmega16U2 because of its
data retention (20yr 85C) as well as its ability to communicate with a USB 2.0 interface.
This chip contains two SPI interfaces for required peripherals and a singular UART inter-
face. Additionally, the microprocessor monitors onboard voltage and current and will disable
functionality if out of operational bounds. 16kB of on chip flash allows for programming
without an external NAND flash chip. But this microcontroller has a big inconvenient, it is
a TQFN package which means that this microcontroller instead of leads it has pads under it
and it is very small with a size of 9x9mm [4]. This makes soldering it really difficult and it
needs special tools that we did not have in our laboratory. The final schematic for the final
project will be as shown in Figure 2.

Figure 2: Final schematic of the PCB. Using ATmega16U2

2

The design of our final PCB will be the one shown in Figure 3. The PCB has a with of
10mil for all the wires because the current will not be higher than 1A in any party of the
circuit. This PCB has two layers and the vias used have a drill size of 13.77953 enough for
the width of the wires. Something important to know is that all the connections between the
USB and the microcontroller must be short, with similar lengths and near as possible. To
end with the PCB we have done an isolation of the PCB to ground with 50mil as it can be
seen in Figure 3.

Figure 3: Final design for the PCB

3

For our prototype we decided that the best way to demonstrate how our project would
work with the tools at our disposal was by using an ATmega328 [3]. This microcontroller
is able to handle processing commands from both input sensors from the sensor module,
as well as commands from software to active components in the peripheral module. The
communication with the sensor module is done with UART and the communication with
the peripheral module is done with SPI. It is because of this that we finally need to use
a protoboard instead of our PCB. The schematic of the cirtuit of the protoboard for the
prototype will be the one shown in Figure 4.

Figure 4: Final Schematic for the prototype. Using ATmega328

The problem with ATmega328 is that it does not have USB connection so it is only useful
as a prototype but not for the final product. In Figure 4 the pins PD0 and PD1 are connected
to two different wires that are going to help us to demonstrate how the signal from the host
computer to the microcontroller will work if we had the USB connection. When the signal
is 00 it means idle state, if it is 01 it means that we are playing a real audio and if it is 10 it
means that we are playing a sham audio. The LEDs in the control module indicate in which
state we are: yellow LED in idle state, red LED when a sham is playing and green LED when
a real audio is playing.

In the following sections we are going to explain each module of the final schematic more
deeply. The only difference between the final schematic and the prototype schematic aside
from the USB connection is the power module as is explained in the following section.

4

3.2 Power Module

This module was created for the final design because the ATmega16U2 needs an input
voltage of 3.3V but with our prototype as we are using an ATmega328 the input is 5V so
we do not need the the voltage regulator. The power must convert standard USB 5V into
3.3V through a voltage regulator while still allowing a 5V channel to connect to the control
module to facilitate data transfer between the software and control module. To execute that
operation, the external power is supplied with USB 2.0 (we will assume that the device is
always connected to this power source during operation). With this design consideration in
mind, we eliminate the need for a battery or power storage component.

Our power consumption is averaged at around 2.325W with an average of 250mA at
3.3V and 300mA at 5.0V. The 3.3V consumption is justified because it is consistent with a
majority of our hardware, encompassing the peripheral, sensor, and control modules. The 5V
consumption is chosen to supply power to facilitate the data transfer between the software
and control module. These values adhere to the maximum load able to be drawn from a USB
2.0 port - 500mA at 5V or 2.5W.

The low dropout regulator supplies 3.3V for the corresponding components in which it is
required from an input voltage of 5.0 ± 0.25V. The classic LM1117 must be able to handle
an input voltage at the theoretical low for USB 2.0 (4.75V) as well as the maximum (5.25V)
at peak current draw (500mA) [2].

Figure 5: Circuit Schematic of the Power Module

Figure 5 outlines the external components needed to properly regulate this module to work
in accordance with the rest. Cin and Cout are set according to the datasheet requirements
for the LM1117 chip that we choose to utilize. CADJ helps improved ripple rejection when
set to its state capacitance. D1 helps prevent breakdown of our device if VDD is shorted due
to capacitative charge while D2 does the same in case if UVDD does the same.

5

3.3 Sensor Module

The sensor module primarily consists of the Trial Start button and the Trial Attempt
button. The functions for these two buttons are briefed below.

The Trial Start button is a green lever for the bird to peck to indicate interest in beginning
the trial. During this stage, there would be nothing happening in terms of food dispensing
or punishment. When the green lever is pressed, the trial will officially begin and re-pressing
the green lever will have no effect on future processes of the trial.

The Trial Attempt button is a red lever that takes in the birds input during the various
states. If the bird presses the red lever during a Sham state, the system will punish the
bird. And if the bird presses the lever during a reward state, the system will reward the bird.
Pressing the lever during the idle state will not result in anything.

Figure 6: Trial Start and Trial Attempt Buttons

6

3.4 Peripheral Module

The peripheral module consists of a stepper motor driven by a H-Bridge. The overall
design of the food dispenser additionally consists of an off-the-shelf Plastic PetSmart Bird
Feeder, a cylindrical gear, and a funnel-cut piece of Teflon.

The logic of the food dispenser design is as follows: The cylindrical gear would attach to
the stepper motor in a method similar to how an individual would put on a glove. Then,
in between the cogs of the gear would be just enough allotted space for one seed. Thus,
each full rotation of the stepper motor in theory would dispense exactly one seed. Next, the
Teflon funnel would slowly funnel exactly one seed down upon spinning of the gear (because
previous seeds would already be in the rotation).

Figure 7: Motor for the food dispenser with H-Bridge and 9V battery and Light connection

7

4 Verification

4.1 Power Module verification

In Figure 8 it is shown how we verified that our LM1117 works properly.For that the
LM1117 should provide a 3.3 ± 5% output from a 5.0 ± 5% input source. We used a voltmeter
and measure the voltage at the input and the output of the device as we established in the
our requirements and verifications in Table 3.

Figure 8: Verification of the input voltage of 5V(left) and output voltage of 3.3V(right) in
the power module

In Figure 8 we can see how the input voltage is 5.00V when we give 5V in other part of
the schematic with the same voltage. We can also see how the output voltage is of 3.310V.
This means an error of 0.303% which is lower than the 5% of our requirements.

8

5 Software Design

This section will follow suit and explain the design of the software components. The im-
portance of the module is in the fact that most of the processing and presentation is housed
within this subsystem. Thus, it is necessary to create a fully functioning and fleshed out
system while also being presentable to the user.

As of now, most of the back-end components of our application are completed and are
mostly subjected to minor revision and commenting. The application is coded entirely in
Python, using various modules to create a functioning portable executable file for Windows
10. A object oriented approach was taken in regards to the entire component. Naturally, the
descriptions and documentation for the custom classes will be provided in the appropriate
sections

For the interface component of the program, we use a python package that is able to
suit the needs of our application. This is currently the main focus of development until
the developer for the microprocessor is able to specify how specific information is encoded.
The package is also heavily object-oriented with a heavy emphasis on abstract elements and
classes and thus, requires the developed to create custom classes suited to the needs specified.
The user interface is a simple drop-down file selection with custom dialog boxes akin to those
present in older versions of Microsoft Office. Additional details on the graphical interface
along with consistency requirements are detailed further on.

Lastly, the connection between the software and the hardware components is specified
to be a USB 2.0 B-port connection. Originally, this was intended to be the sole connection
between the operating machine and the hardware, however additional requirements from the
sponsor have changed the requirements slightly and thus a standalone USB 2.0 connection
would not meet our power consumption needs. Thus, additional connecting elements were
asked to be connected to the host machine. Unfortunately, specifics behind the commu-
nication process are still quite hazy, however, they will still be outlined in the respective
section.

9

5.1 Back-end Structure

The majority of the back-end coding and architecture is in place and is mostly subject
to minor revisions and commenting or simple additions. The functional components of this
portion of the subsystem revolve mostly around an object that contains a list of another
object used to represent an individual trial.

5.1.1 Trial Class

The most fundamental and basic unit of the testing procedure is of course the individual
trial.

This object is mostly an information dump for the testing procedure. A variety of param-
eters are fed during the generation process that is further detailed in the following section
and stored as parameters to avoid directly interfacing with the variables and to enforce con-
straints on the various inputted values. A few of the parameters are specified to read-only
such as the name of the researcher who performed the trial and the date said event was
undergone to avoid modification of data and fabrication

Aside from the necessary initialization, getters and setter functions, the trial object only
has one main method to run itself. The running process consists of effectively six stages
detailed below.

• A continuous loop of the background sound until a trial is requested

• The delay period outlined in the trial generation until the target sound can be played

• The first instance of the target sound and the corresponding response window outlined
as a parameter

• A buffer background sound between the first and second target sounds

• The second instance of the target sound and the final response window

• Return to the continuous background loop while recording results

This was the approach to programming the trialing procedure and is done so such that
multiple trials can be done in relatively quick succession. Additionally, during the continuous
looping described in the first and final steps, the user can specify a desired timeout duration
that if exceeded, will terminate the trialling process while also alerting the user.

10

5.1.2 TrialSet Class

The trialset object contains architecture and functions to properly manage the trial ob-
jects described in the previous section.

This object should be the only method in which trials are generated as per our spon-
sor’s specifications as trials are generated by block. The user specifies the number of blocks
that they wish to generate or add as well as the block size if the task is initial generation or
the previously specified block size. From this, each block is required to contain at least one
instance of each specified target sound of which, the user can specify a number up to the block
size for. The remaining spaces in the block, if any, are they randomly assigned a target sound.

The generation process also requires the probability for a sham trial as well as a minimum
number of sham trials. If the entire process doesn’t generate the necessary number of sham
trials, then the entire procedure is repeated.

If the trialset meets the specified parameters and constraints, then the contained trials
are randomly sorted such that the resulting target sounds do not follow a specified pattern
outlined by the generation process. An option to reseed the probability distribution is then
given to the user if they are dissatisfied with the generated set, and if so, the entire set is
iterated and only the boolean denoting trial legitimacy is changed

5.1.3 Profile Class

Must like the trial class, this object is mostly a parameter dump for the running statistics
for a testing subject. It contains mostly integer values regarding to trial completion and other
such metrics as well as a comprehensive table of trials undertook by the subject. Naturally,
the class contains a method to both load and save but does not allow direct modification to
the parameters.

The parameters of this class are set to read only essentially to avoid potential tampering
and are only modifiable by the main program’s run function

11

5.2 Front-end Structure

This portion of the software is the current subject of much of the development time. Most
of the components are currently either being actively developed, planned for development
after more pressing components are integrated, or subjected to revisions and debugging.
Nevertheless, a general outline of the components and relative progression is detailed as well
as distribution methods and interface consistency guidelines.

5.2.1 Interface Components

We choose to use WxPython to power the interface. The program consists of a single
ancestor frame that contains elements that allow the user to interact and modify back-end
data via specified function by dialog or menu items.

The central frame contains a scrolling panel to display a loaded or generated trialset.
It displays the information in a grid and allows the user to modify its contents via combo-
boxes and check-boxes as well as modifier buttons to its right. Currently, this section of the
main frame is mostly complete with only supplementary additions and revisions subject to
addition such as right-clicking capabilities as opposed to the button menu. A few optimiza-
tion revisions will most likely be performed should time allow it as the panel tends to hand
should the user scroll through the contents too quickly for an extended time.

In addition to the information display, the main frame also contains a general statistics
panel for the loaded trialset containing information such as number of probability reseeds
and sham trials, separated according to the various target sound assigned upon generation.
Likewise there is a corresponding panel for the statistics of the loaded profile, display total
runs and other useful numbers.

Several dialog boxes are completed such as the ones required for generating new trials
and running them. More will be developed as features are requested from the sponsor.

5.2.2 Distribution Method

We use the Pyinstaller module to distribute an executable file. The convenience behind
this method is great as it’s akin to deploying a normal executable using C/C++ code. The
executable that the packager makes contains the necessary python packages needed to run
the original code. Thus, the resulting file is self sufficient as well as portable.

12

5.2.3 Consistency

In order to preserve a presence of professionalism and order in our software, some guide-
lines were designated for future elements. For example, in the back-end components, consis-
tency mainly revolves around the object oriented approach to development and the adherence
to parameters instead of public attributes that can be directly modified. Likewise, in the
front-end, we strive to meet the same end goal.

Before outlining the various guidelines we set for now, a few metrics were taken since
they are rather unintuitive. Buttons in our interface package strangely have a horizontal and
vertical buffer row and columns for some reason and thus must be centered (-1, -1) relative to
the desired position. Additionally, the specified frame resolution includes the various menu
items and default windows taskbar but fails to mention this properly in the documentatation.
As such, the guidelines are as follows:

• The total pixel space of the taskbar at the top is 49px and directly subtracts from the
vertical resolution of our window.

• The total pixel span of the various borders provided by windows totals to around 8px
and directly subtracts from the horizontal resolution

• Dialog boxes should prioritize horizontal spacing over vertical spacing in the sense that
dialog box frames should attempt to adhere to the relative resolution

• Sizers used for the default frame should prioritize horizontal layout over horizontal
flexibility. Borders should be preserved as well

• Accelerators in the table should adhere to traditional bindings

• Dialog buttons should be of size (80, 26)px, check-boxes of (16, 16)px and square
buttons (26, 26)px. Other UI elements must have appropriately sized features

13

6 Cost

The total cost of the project would be $13,858.78 which is the sum of the Labor costs
and Parts costs.

6.1 Cost of Labor

We assume that the labor costs of the design would be $45 USD per partner and 10 hours
a week. We will consider 63% of the semesters weeks into this calculation. Thus, labor costs
for each partner in this project would be encompassed with the following calculation:

$45/Hour · 3 partners · 10 hours/week · 0.63 · 16 weeks = $13, 608

6.2 Cost of Parts and Materials

Below is a table of the cost of our components

Table 1: Cost of the materials

Part Cost Cumulative Total

Female USB Input $5.79 $5.79
LM1117 Voltage Regulator $1.10 $6.89
ATMEGA16U2A2
Microprocessor

$2.52 $9.41

OrionFan OD4020 Series $4.74 $14.15
Vifa Compact HiFi
Bluetooth Speaker

$229.00 $243.15

Passive Components $7.63 $250.78

14

7 Conclusions

7.1 Accomplishments

The final project displayed incredible accuracy with the peripheral module. Having seed-
by-seed accuracy helps increase the flexibility of food dispensed for any subject (granted that
different species of birds consume different portions of food).

The software of this project followed a user-oriented design and improved on week-by-
week iterations of collaborations between the team and the sponsor, building out various
additional functionalities requested by the sponsor, such as trial reseeding and bird profiles.

7.2 Uncertainties

Moving forward with the project, because the microcontroller choice was ultimately aban-
doned due to time, it was undetermined whether or not the microcontroller we chose would
be able to communicate via USB to the final software interface.

7.3 Ethical considerations

Following the ACM code of ethics section 2.3: “Know and respect existing rules pertaining
to professional work”, we need to learn existing guidelines and construct our project around
and according to them [12]. Before any work with animals, it is mandatory to submit IACUC
protocols and they adhere to nationwide rules for animal care and research. Our project fulfils
all these requirements and has been approved already [11].

The birds are rewarded with specific amount of food for successful trials, and, we shut off
the cage light in an ethical way to not harm the subject either physically or mentally. The
light shut off is transient and only serves as an indicator that the subject has done something
wrong, and as such, does not frighten or stress the subject. The timeout function ensures
that the subject does not necessarily have to undergo testing if it does wish to do so in
accordance with ACM code of ethics section 1.2: “Avoid harm”, we are treating the subjects
in such a manner that we avoid any potential harm that may befall them otherwise [12].

In the design of our project, we will follow the guidelines set by the IEEE code of ethics
section 6: To maintain and improve our technical competence and to undertake technological
tasks for others only if qualified by training or experience, or after full disclosure of pertinent
limitations [13]. So we will follow every guideline that the doctorate responsible of this project
tell us to be sure that we give the right amount of food to the bird and how much time the
bird can be with the light off. Following this code, we need to make sure that we have an
user friendly interface that everyone without programming knowledge can understand. We
need to make sure that our project works seamlessly and without error because the integrity

15

of our system will also reflect the reputation of those who use it, following the IEEE code of
ethics section 9.

Our design must account for certain ethical risks. All the wires must be outside the
cage and hidden such that the bird will not be subject to electrical damage. If any wires
are required within the cage, they must be concealed by opaque material to guarantee risk
aversion. All hardware that the bird interacts with must be attached in a manner in which is
irremovable by the bird. A proper speaker frequency range is paramount to ethical hardware
design with the bird. Given that bird songs typically range from 1,000Hz to 8,000Hz, our
design will adhere to that range to avoid any stress on the bird [15].

7.4 Future work

USB Communication

Our software will have to communicate with the microprocessor we selected via USB.
As such, we must construct a module that will handle this method. Other existing methods
may also work such as Python USB packages, but need to be testing when the control module
becomes constructed. That aside, threads will be used to communicate between the main
program and the data poll.

Training Program

Our sponsor has previously hinted that a training module for the birds would be ap-
preciated. However, this is currently treated as a luxury that can be developed after core
features have been fully fleshed

Logging Method

A thread devoted to logging program progression will be created at a future date. It
is not an immediate concern as we have easy debugging tools as a developer, however, before
delivering the product, a proper logging thread will be constructed.

16

References

[1] R. O. Davis Computer Methods and Programs in Biomedicine. Digital signal processing
in studies of animal acoustical communication, including human speech. Volume 23, Issue
3, December 1986, Pages 171-196

[2] Texas Instruments, LM1117 800 mA Low-Dropout Linear Regulator, LM1117 datasheet,
February 2000. [Revised January 2016].

[3] Microchip Technologies, 8 bit AVR Microcontroller with 32K bytes In-System Pro-
grammable Flash, ATMega328P. Datasheet, 2009.

[4] Microchip Technologies, 8 bit AVR Microcontroller with 16K bytes of ISP Flash and USB
Controller, ATMega16U2 Datasheet, 2010.

[5] Orion Fans, OD4020 Series, OD4020 Datasheet, Publishing Date Unknown.

[6] eswitch, LP11 Series Pushbutton Switch, LP11EE1NCSRGB Datasheet. September 5,
2018.

[7] eswitch, LP11 Series Pushbutton Switch, LP11EE1NASRGB Datasheet. September 5,
2018.

[8] Broadcom, 4mm Oval Precision Optical Performance LED, HMLPLG71XD0DD
Datasheet. March 30, 2012.

[9] VCC 4303F Series Solid State LED T1 (3mm), 4303F5 Datasheet. Publishing Date
Unknown.

[10] Sparkfun, 4UCON Technology Inc, Audio 3.5mm Datasheet. August 2004. [Revised in
May 2005].

[11] Illinois Institutional Animal Care and Use Committee (IACUC). Regulatory Compli-
ance & Safety, 2016. Available at: http://research.illinois.edu/regulatory-compliance-
safety/research-integrity-and-ethics

[12] ACM.org ACM Code of Ethics and Professional Conduct, 1992. [Online]. Available at:
https://www.acm.org/code-of-ethics

[13] IEEE.org IEEE Code of Ethics, 2016. [Online]. Available at
https://www.ieee.org/about/corporate/governance/p7-8.html. (Accessed February
4, 2019).

[14] Ritchison, G. (n.d.). Retrieved February 20, 2019, from
http://people.eku.edu/ritchisong/birdbrain2.html

[15] All About Birds, Do Bird Songs Have Frequencies Higher Than Humans
Can Hear? https://www.allaboutbirds.org/do-bird-songs-have-frequencies-higher-than-
humans-can-hear/

17

APPENDIX A. Requirements and Verifications Table

Table 2: System Requirements and Verifications

Requirements Verifications

Verifica-
tion
status(Y
or N)

- Control Module. Shutoff at
nonstandard voltages and currents

- Use a voltage generator and set
voltage out of bounds (> 5.25V)
and ensure nono power is supplied
by the microcontroller to other
components

- Use a current generator and set
current out of bounds (> 500mA)
and ensure no power is supplied by
the microcontroller

N

- Control Module.Can accurately
transfer 32 bits of data via USB
within 10ms

- Connect the microcontroller with
a host computer and open a
terminal on said host

- Send a 32 bit character from
computer

- Using the computer, Request a 32
bit character from the
microcontroller

Check the data’s accuracy as well
as the time stamps

N

- Control Module. All LEDs must
be visible from 3m away

- Drive each LED circuit with an
equivalent 3.3V source

- Stand a distance of 3m form the
LED and ensure it is visible

Y

18

Table 3: System Requirements and Verifications. Continuation

Requirements Verifications

Verifica-
tion
status(Y
or N)

- Power Module. Outputs a
maximum of 500mA at
5 ± 0.25V at all times when
connected to an external device

- Attach equivalent load to when
device is at peak power
consumption to USB port

Measure current using an ammeter
is series

- Measure open circuit voltage

Y

- Power Module. Provides a 3.3 ±
5% output from a 5.0 ± 5% input
source

- Use a voltmeter and measure the
voltage at the input and the output
of the device

Y

- Power Module. Operates with a
current draw between 0 - 300mA

- Using an oscilloscope as a resistive
sweep, measure the current with a
varying resistance until it reaches
the lowest that the device does
naturally

Y

- Power Module. Maintains a
temperature below 80C during
trialing

- Use an IR thermometer to ensure
device temperature is below upper
bound after a standard testing
session (About an Hour).

Y

- Sensor Module. Buttons
distinguishable between them

- Place in separate environment
with the Trial Attempt Start

- Reward subject if they can
distinguish between the two buttons

Y

- Sensor Module. Sized
appropriately such that the test
subject can identify and press

- Place button alone with subject in
separate environment and reward if
button is successfully pressed

Y

- Food dispenser. Delivers expected
food mass set within 5% error upon
trial success

- Simulate a successful trial, weight
the output of the dispenser

Y

- Food dispenser. Test subject must
not be able to tamper with the
dispenser and obtain food at any
time

- Reward subject in separate
environment and note through
camera is subject is able to tamper
with the dispenser to obtain
additional reward.

Y

19

Table 4: System Requirements and Verifications. Continuation 2

Requirements Verifications

Verifica-
tion
status(Y
or N)

- Food dispenser. Delivers
absolutely no reward under any
other outcome other than a success

- Simulate a failure and both
inaction clauses and note if any
food is dispensed

Y

- Cage Speaker. Accurately
reproduce hi-fidelity audio with less
than 10% difference between given
and played spectrograms when
noise is filtered

- Create spectrogram of audio sent
through 3.5mm line out

- Record playback audio from
speakers and compare to previous
spectrogram and ensure that it is
accurate enough

—

- Cage Speaker. Must have a
standby noise of less than 10dB

- Set speakers to desired volume
used in trials

- Measure the standby playback of
the speakers.

Ensure standby is less than 10dB
after filtering noise and accounting
for recording errors

—

- Cage Speaker. Speakers must
have a relatively uniform
amplification in the frequency band
of 100Hz to 20kHz

- Using a function generator, sweep
the input signal from 100Hz to
20kHz and record the output
waveform from the speaker

- Compare the resulting Fourier
Transforms of the recorded signals
and ensure that the spectral peaks
all have relatively the same height
after accounting for recording
microphone bias.

—

- Cage Light. Brightness of the
light must not affect the subjects
ability to correctly perform the test

- Progressively increase resistance
of series resistor stopping when
subject first displays signs of
discomfort or limit imposed by
sponsor as to not harm subject

Y

- Audible from a 10m distance
- Play a preset audio file and ensure
that it is audible from a distance of
10m

Y

20

