

Automatic Toothpaste Dispenser

By

Renjie Fan

Yanbo Chen

Haoyu Tian

ECE445 Final Report, Spring 2019

Professor: Jing Jiang

TA: Soumithri Bala

Apr 30, 2019

Team No.38

Abstract
This report documents the design, implementation, testing, and verification of our

Automatic Toothpaste Dispenser project. The blueprint of our project is to build a

product that could replace those current toothpaste dispensers in the market. The

prototype we finally built has the following functions: automatically dispensing and

refilling toothpaste, identifying users through RFID tag, and uploading data to Android

Application.

1

Contents
1. Introduction 3

1.1 Purpose 3

1.2 Functionality 3

1.3 Subsystem Overview 4

2. Design 6

2.1 Control Unit 6

2.1.1 CYBLE-214015-01 Microcontroller 6

2.1.2 A4988 Motor Driver 14

2.1.3 RFID Reader 15

2.2 Bluetooth Module 15

2.3 Smartphone 17

2.4 Mechanical Unit 19

2.4.1 Syringe Container 19

2.4.2 Linear Actuator with Stepper Motor 19

2.5 Power Supply 20

2.6 RFID Tags 20

3. Design Verification 20

3.1 Syringe Airtightness and Air Leakage 20

3.2 Android Application Performance 21

3.3 Bluetooth Connection Performance 21

4. Cost & Schedule 21

4.1 Cost Analysis 21

4.2 Schedule 22

5. Conclusion and Ethics 25

5.1 Accomplishments 25

5.2 Uncertainties 25

5.3 Future Work 25

5.4 Ethical Considerations 26

References 27

Appendix A: Schematics 29

Appendix B: Requirements and Verifications Table 32

Appendix C: Code 36

2

1 Introduction

1.1 Purpose
Several kinds of manually operated toothpaste dispensers have been designed by

different manufacturers such as iLife Tech and ECOCO. In general, the mechanism

applied is based on the action that the user pushes the trigger inside the dispenser with

the toothbrush. This mechanism seems simple and user-friendly at the first look.

Unfortunately, the trigger will soon be covered by dry toothpaste. This major problem is

widely reflected in customer reviews. For example, a user named “William J Leep” said

that “the dispenser itself is fairly well made and easy to use. But, it dispenses too much

and misses the brush 1/2 of the time”[1]. In addition, these manual dispensers do not

have any mechanism to control the amount of toothpaste coming out of it and

functionality to record the usage of toothpaste.

To tackle this problem, we plan to design and implement an automatic toothpaste

dispenser based on the CYBLE-214015-01 EZ-BLE™ Creator Module, which supports

Bluetooth Low-Energy(BLE) wireless communication, Radio Frequency Identification,

and Android application with Bluetooth functionality, to provide a solution for the

problem stated above.

1.2 Functionality
Our project has three main functionalities: User recognition, Automatic Dispensing

Mechanism, and Smartphone Interaction.

User Recognition: The RFID reader of our automatic toothpaste dispenser is able to

identify 3 different users through 3 default RFID tags attached on toothbrushes and

dispense a certain amount of toothpaste which can be configured on our Android

application by users.

Automatic Dispensing Mechanism: After the RFID tag attached on a toothbrush is

detected by the RFID reader, the mechanical unit can accurately dispense 0.25mL(low) or
0.5mL(high) of toothpaste.

Smartphone Interaction: Our Android application allows users to choose between the

high and low amount of toothpaste and save their choices on the Android application. It

3

can also retrieve the amount of toothpaste used by different RFIDs from the dispenser

and display them as a chart so that parents can use it to monitor whether the children

are using their toothpaste with a correct amount.

1.3 Subsystem Overview

Figure 1: Block Diagram

Our design is divided into six components as shown in Figure 1. The control unit is the

center of our project and it controls many core process: read RFID Tag information and

identify different users, send PWM signal to the stepper motor driver and store the

user’s data at local storage. The mechanical unit will receive PWM signal from the

control unit and then the stepper motor driver can process the signal to drive the motor

in the linear actuator to dispense toothpaste from the syringe container or draw

toothpaste from the toothpaste tube to refill the syringe. The power supply will power

the whole system by connecting to a wall socket. The smartphone and the Bluetooth

module will work together to send signals to the control unit to configure different

users’ desired amount of toothpaste or send a refill request to the control unit. It will

4

also retrieve users’ usage data from the control unit when the user wants to update the

user usage on the application. The RFID tags in the toothbrushes module are used to

distinguish the users.

Figure 2: Physical Overview

Figure 2 is the physical overview of our project and each component is labeled on the

graph. Our dispenser prototype is easy to use. Once the user put the toothpaste tube at

the exit of the syringe and press refill button on our Android application, the linear

actuator will move backward to draw toothpaste from the toothpaste tube into the

syringe container. During the dispensing process, the linear actuator will move forward

and toothpaste will be pushed out of the syringe container.

5

2 Design

2.1 Control Unit
Our control unit includes CYBLE-214015-01 Microcontroller chip sponsored by Cypress

Semiconductor, A4988 Stepper Motor Driver Chip, and these two parts are directly

integrated on our PCB. RFID Reader module was bought online and it is able to

communicate with our microcontroller chip through UART protocol.

2.1.1 CYBLE-214015-01 Microcontroller

Schematic
Since we are using CYBLE-214015-01 microcontroller sponsored by Cypress

Semiconductor, we used their supporting software, PSoC Creator to program the

microcontroller.

Figure 3: Schematic on PSoC Creator

Figure 3 above is the overall schematic for the microcontroller. The schematic can be

roughly divided into three sections: BLE module, UART module, and motor control

module.

6

BLE Module
BLE is a wireless communication protocol defined by Bluetooth SIG. It has a protocol

stack to handle the data transmission as shown in figure 4.

Figure 4: BLE Protocol Stack

In our project, CYBLE-214015-01 has already provided a BLE stack for us. In a BLE

protocol stack, GAP defines whether the device role is slave or master and GATT defines

the methods to access the data defined in ATT.

Specifically, the microcontroller acts as a GAP peripheral which advertises itself to the

Android smartphone, the GAP central. In addition, the microcontroller acts as a GATT

server which contains toothpaste usage and settings and user’s Android smartphone

acts as a GATT client which reads data from the microcontroller.

 GAP GATT

Android Phone Central Client

CYBLE-214015-01 Peripheral Server (Database)

Table 1: GAP & GATT Device Role

7

After we established the BLE module, we tested with BLE connection by using a BLE

dongle as the GAP central and an evaluation board(same chip as our PCB) as the GAP

peripheral. As figure 5 shown, our evaluation board with a profile named “Find Me

Target” is found by the dongle.

Figure 5: Chip Advertisement Simulation

To provide data transmission between devices, GATT transactions are based on nested

objects called Profile, Service, and Characteristics shown in figure 6.

Figure 6: GATT Transaction Structure Figure 7: Our BLE Profile

For the project, we defined our own BLE profile named as “Find Me” shown in figure 7.

Under the service “Dispenser”, we have seven characteristics. The characteristic “Refill”

is used to indicate whether the refilling is processing: 1 means that the dispenser is

refilling and 0 means that the dispenser is not refilling. The next three characteristics are

used to indicate each user’s toothpaste amount setting: 1 stands for the high amount

and 0 stands for the low amount. The last three characteristics are three arrays of length

8

two that used to store each user’s toothpaste usage: index 0 stands for the number of

times that this user has been dispensed with a low amount and index 1 stands for the

number of times that this user has been dispensed with a low amount.

Figure 8: GATT Transaction Structure Simulation

From figure 8, we can see the simulation of our custom GATT transaction structure

which is exactly the same as we mentioned above.

UART Module
For the connection between the RFID reader and the microcontroller, we chose the

UART protocol because it is relatively easy to establish and configure.

In order to read the debug messages, we first set up the hardware so that the debug

messages can be transmitted out from the evaluation board and be displayed on the

terminal of our computer. In our final hardware setup, computer terminal and the wire

connecting Pin P0[5] and Pin P12[6] are removed because we do not need message

anymore. The hardware setup is shown in figure 9.

9

Figure 9: Hardware Setup for UART Connection Test

The basic configurations of the UART module are shown in figure 9. In addition, we

prepared three sample RFIDs for testing shown in figure 9.

Figure 10: UART module basic

Figure 11: Three Sample RFIDs

At the beginning of the test, the UART connection was able to transmit data but the last

three pairs of hex data are missed. Then we checked the wiring and increase the

oversampling rate but neither of them worked. After we increased the RX buffer size

from 8 bits to 16 bits, the problem was solved. To explain this weird behavior, our idea is

that the UART protocol runs faster than our firmware. In our firmware, we can only pull

out one byte from RX buffer at a time and need to push it onto the “printf” statement so

that the debug message can be displayed on the terminal. When we try to pull out the

next byte, the RX buffer might be overflowed already so the data at the end of the flow

are missed. The successful UART data transmission messages are shown in figure 12, 13,

and 14.

10

Figure 12: No.1 Sample RFID

Figure 13: No.2 Sample RFID

Figure 14: No.3 Sample RFID

Motor Control Module
Since we are using a stepper motor to drive the linear actuator, we need to feed the

stepper motor a certain number of pulses so that the linear actuator can move for the

desired length.

Figure 15: Schematic of the Motor Control Module

11

In addition to the PWM module, which generates PWM signals for the stepper motor

through Pin_pwm, we also added a Counter module so that it can generate an interrupt

to stop both the PWM and itself once a certain number of PWM pulses has been

generated.

We used two control registers to feed ENABLE and DIR of our stepper motor. When DIR

= 0, the linear actuator push forward; when DIR = 1, the linear actuator retract

backward. ENABLE is always fed with 1.

For the basic settings of PWM, we set the period value to 20000 and the compare value

to 10000 which means that the output PWM signal is of 10000/20000 = 50% duty cycle.

To calculate the output frequency of PWM, we use the following formula shown in

figure 16. The value of output clock frequency is just the reciprocal of time per pulse.

Figure 16: Formula to calculate PWM output frequency(reciprocal of time per pulse)

PWM(50% duty cycle, prescaler = 1) Time(sec, per 10 mL)

Clock(MHz) Period value Output Pulse(Hz)

3 20000 150 22.61s

1.5 20000 75 44.57s

0.75 20000 37.5 89.66s

Table 2: Test Data of Stepper Motor

After testing with the stepper motor, we derived data shown in table 2. The last column

labeled as “Time” stands for the time used for the linear actuator to dispense 10 mL of

toothpaste. We tried three different input clock frequency. In order to avoid any

possible leap of the plunger which can lead to error in amount dispensed, we selected

the last row as our final setting for PWM to stabilize the dispensing speed. The final

period value of Counter is calculated by the equation shown in figure 17.

12

Figure 17: Equation to Determine the Period Value of Counter

Workflows
There are three main workflows in the program of our microcontroller: dispensing

workflow, refilling workflow, and usage data update workflow respectively shown in

figure 18, 19, and 20.

Dispensing workflow are very similar to refilling workflow: set related flags to prevent

weird behavior, start and stop PWM and Counter, and reset all related flags. The only

difference is that DIR is set to 1 for the linear actuator to retract back and then set to 0

after refilling is completed.

For the usage data update, the usage data in local storage will be upload to GATT

database only when the Android application sends a read request to the

microcontroller.

13

 Figure 18: Dispensing Workflow Figure 19: Refilling Workflow

Figure 20: Usage Data Update Workflow

2.1.2 A4988 Stepper Motor Driver Chip
We use A4988 to build our own step motor control on PCB. Our step motor is 24 V and

this chip can supply up to 35V. The power of our motor is 40W so its maximum input

current is about 1.7 A and this A4988 chip can supply up to 1.5 A current. The figure

below is a typical implementation and our wire connections are almost the same except

we directly connect SLEEP and RESET pin together so the driver can always work. We

connect step motor to OUT1AB,2AB and use the default step mode which is the full

mode. And when our microcontroller sends one pulse to the STEP pin of the chip will

make the step motor move about 1/200 turns and in this way, we can very precisely

control the movement of our stepper motor.

Figure 21: Typical implementation of A4988[8]

There is a problem we find out later after we have our prototype build in the machine

14

shop. Because our mechanical design requires the motor to provide a big amount of
force, we have to input at least 1.5A to the motor so that the refill or dispensing process
can work. However, the design of the A4988 chip itself has a flaw on heat dissipation.
Even with the heat sink, the A4988 chip will burn with a 1.5A output after relatively long
time usage and our refill process takes a long time to finish. In fact, we have burned two
A4988 modules when we test the final product. Since we directly implemented the
A4988 chip on our PCB with our microcontroller, I have to replace A4988 stepper motor
driver with a 4A current rating stepper motor driver. The code we use is exactly the
same and the wire connection is the same for this backup driver (see figure 22).

Figure 22: Backup stepper motor driver[6]

2.1.3 RFID Reader Module
The RFID reader module, Y13R, is capable of reading an S50 high-frequency RFID tag and
its maximum reading distance is 6 cm. The actual read distance depends on the size of
RFID tag and bigger RFID tag has longer read distance. It has UART, IIC and RS232
interface and we are using UART to connect with our microcontroller. The RFID reader
can automatically read the ID information inside the RFID tags and send to the
microcontroller. It takes 2 seconds for the RFID reader to trigger next read command so
there will be no multiple reading problem. The working current of the RFID reader is
20mA and the sleep current of the RFID reader is 1mA so the power consumption is low
and it is safe to use (The reading distance require us to put this reader close to the user).

2.2 Bluetooth Module

All BLE operations (our project only has Read/Write the GATT database) are triggered by

the Android side, and the Microcontroller side program is interrupted by BLE operations

and then handle them.

When the user triggers a BLE operation, the Application firstly requests to switch on the

smartphone’s Bluetooth. Then its back-end BLE protocol interface initializes and scans

15

for other BLE device services. Once the device with the correct service UUID is found,

the Application begins to build a connection between the smartphone and the

microcontroller. The last step of establishing the BLE connection is discovering all GATT

characteristics (databases) by UUIDs. The Application then interacts with GATT

characteristics to executes the Read/Write operations. The last step is disconnecting

with the microcontroller and closing the Bluetooth[11]. The code of the BLE interface is

given in Appendix C.

Figure 23: Android Side BLE Flowchart

16

We set the maximum device scanning time to 20 seconds to prevent the program from

deadlocking. All Read/Write operations are queued to maintain thread safety because a

BLE operation can only be executed after the previous one has called back. The code of

the BLE operation queue is given in Appendix C.

Figure 24: Read/Write Operation Queue Flowchart

2.3 Smartphone
The Android Application is the product’s user interface. The Application contains the

main page, which includes button navigator to subpages, and three subpages with

different functions, and the back-end BLE protocol interface.

Figure 25: Application Main Page Figure 26: Manage User Page

17

Figure 27: Refill Toothpaste Page Figure 28: Historical Data Page

The Manage User page (figure 26) allows the user to set the amount of dispensing

toothpaste. The High amount corresponds to 0.50 mL, and the Low amount represents

0.25 mL. The Refill Toothpaste page (figure 27) has a button to trigger the refilling

process. The Historical Data page (figure 28) contains a table of user history data, in

which each row represents how many times the dispenser has dispensed a certain

amount of toothpaste for a user. The buttons on the three pages are the triggers of

establishing BLE connection with microcontroller and sending data to or retrieving data

from its GATT database. The Manage User save button triggers the write operations to

the userOneAmount, userTwoAmount, userThreeAmount characteristics. If the user sets

the amount to High, the value would be 1, otherwise, the value is 0. The refill button

writes a 1 to the Refill characteristic when the user hits it. The update data button reads

the user history data, size 2 arrays, from the userOneData, userTwoData, userThreeData

characteristics.

The Application is compatible with all Smartphones that run Android OS of version 6.0

or higher. We originally planned to use the mobile database framework as the solution

of data storage, but after we calculated the required volume of storage space is small,

we realized that the Android built-in internal storage is the more appropriate choice.

18

Each user has 3 pieces of data

Name: At most 10 characters -> 10 bytes

Toothpaste Amount: Boolean -> 1 byte

History Data: Integer array (size = 2) -> 2 bytes

Total Volume Required = (10 + 1 + 2) * 3 = 39 bytes

The Android internal storage is the best solution for a small amount of data because it’s

secure (not accessible to other Applications) and can be fast read or updated[10].

Edge cases are fully considered and handled, for example, when the Save button on the

Manage User page is clicked, new user settings will be updated to both the internal

storage data file and the microcontroller GATT database. We set a protective

mechanism to avoid the data file being updated when the Bluetooth connection fails,

therefore, we guarantee that the Application and the microcontroller always have the

same user settings.

2.4 Mechanical Unit

2.4.1 Syringe Container
The main mechanical component is a syringe, which functions as the buffer between the

toothpaste tube and the users’ toothbrushes. The plunger of the syringe is controlled by

the linear actuator. To dispense toothpaste, the linear actuator will move forward and

put toothpaste out of the syringe. To refill toothpaste, we first put a toothpaste tube on

the exit of the syringe. Then the step motor on the linear actuator rotates inversely so

linear actuator can move backward and draw toothpaste into the syringe. There is also a

cap to prevent any toothpaste leak from the syringe. For the refill process, it is very

important to make sure only a small volume of air can get inside the syringe otherwise

the dispensing process would only push air out of the syringe instead of toothpaste.

2.4.2 Linear Actuator with stepper motor
We use the Linear Actuator to push and pull the plunger of the syringe. The length of

the actuator is about 80mm and this is the same number as the maximum moving

length of the plunge. The stepper motor on this Linear Actuator is 24V and the linear

actuator can provide about 200 N force with 1.7A input to the stepper motor. The force

needed to draw toothpaste into the syringe is equal to the force needed to lift a 10 kg

stuff so 200 N force is a safe choice. The maximum moving speed of the linear actuator

19

is roughly 5 mm/s and our designed speed during the operation is about 1 mm/s. We

can easily control the turns of stepper motor through our A4988 motor control chip so

we can precisely control the output toothpaste.

2.5 Power Supply
We have a 110V AC to 24V DC power adaptor and a 24V to 5V module. The power

adaptor is connected to a wall socket to power the entire project. Since our stepper

motor driver requires 1.5A and the microcontroller and RFID reader require less than

300mA, the 10A current rating for this power adaptor is a very safe value. The 24V to 5V

module is used to power the microcontroller and RFID reader. The 2A current rating of

this module is also big enough because the total current consumption of this module is

less than 300 mA.

2.6 RFID Tags
We used the sticker type RFID tag and I chose the S50 type tag with 13.56 Mhz working
frequency (refer as a high-frequency RFID tag) and its size is 15mm*30mm. I use this
type of RFID Tags because only this type of RFID tag can be small enough to stick on a
toothbrush. Our RFID tags have 2.5cm reading distance and this is a desirable value
because we don’t want any miss read if the toothbrush with RFID tag is put close to the
dispenser.

3 Design Verification

3.1 Syringe Airtightness and Air leakage
In our mechanical design, the syringe airtightness is a very important factor because we

are trying to draw toothpaste from the toothpaste tube into the syringe through the

small nozzle. During the refilling process, some air might enter the syringe. Another

source of air is the toothpaste tube, which usually contains a small portion of air due to

the manufacturing technique. Therefore, after refilling, some air is always trapped inside

the syringe. When the RFID reader identifies the user and starts the dispensing process,

the air inside syringe comes out first. In result, we set the maximum air leakage inside

the syringe can be no more than 15 ml when the refilling process is complete. We have

tested the refilling process many times to make sure of that and the below chart is the

result.

20

Refilling Speed (ml/second) Volume of Air Gap (ml)

0.25 13.5

0.5 14.3

1 14.8

2 16.4

Table 3: Relationship between Refilling Speed and Airtightness

After testing different refilling speed, we know that the longer time the refilling process

takes, the less air leak into the syringe. Besides, when we tested with a more expensive

toothpaste, the air gap inside the syringe decreased, and we speculate that it happens

because the quality of the expensive toothpaste is higher and thus contains less amount

of air.

3.2 Android Application
Our requirement of the Android Application loading time is within 3 seconds. We tested

its performance by two tools: electronic stopwatch and Android Studio Debugger

system performance evaluation tool. The testing process is launching the APP for ten

times (killing background process first) and calculating the average loading time. The

actual loading time is 0.92 second in normal mode and 1.78 seconds in low battery level

mode.

3.3 Bluetooth Module

The initial requirement on the longest time of Bluetooth connection is within 30

seconds. We first tested the Bluetooth performance extrinsically by an electronic

stopwatch, but we then realized that the connection speed was too fast to be identified

by human eyes. So we then set breakpoints at the code of BLE callback functions to

measure the length of the system pending. The actual connection time is not strictly

stable and is between 1~3 seconds, which is much shorter than our expectation.

21

4 Cost & Schedule
4.1 Cost Analysis
We have 3 people in our group and use 40$/ hour as our hourly salary. We will put 10

hours/week into this project and there are about 16 weeks for us to do this project.

Total labor cost: 3*(40*12*16)*2.5=$57,600 in total.

Component Cost

CYBLE PSoC 4 BLE pioneer board $30*1=$30

CYBLE MiniProg3 $99*1=$99

CYBLE 214015-01 microcontroller chip $18*2=$36

Sticky RFID tags $0.24*16=$3.84

Y13R RFID reader $6.66*1=$6.66

USB to TTL line $1.15*1=$1.15

110V AC to 24V DC Power adaptor $20*1=$20

24V to 5V module $9.95*1=$9.95

Linear Actuator with stepper motor $80*1=$80

Connection wire $0.1*20=$2

Syringe $2.99*2=$5.98

Colgate toothpaste (Pack of 12) $12.99 *1 = $12.99

Labor $57600

Total $57907.6

4.2 Schedule
Week Member Task

2.11 Haoyu Tian Start writing the design document and buy the necessary
components.

22

Renjie Fan Start writing the design document and buy the necessary
components.

Yanbo Chen Start writing the design document and buy the necessary
components.

2.18 Haoyu Tian Detailed Mechanical part design.

Renjie Fan Learn to develop with CYBLE BLE Pioneer Baseboard.

Yanbo Chen Learn to develop with CYBLE BLE Pioneer Baseboard.

2.25 Haoyu Tian Finish Mechanical part design and order mechanical part
prototype from the machine shop.

Renjie Fan Complete mobile App UI design.

Yanbo Chen Build a sample Bluetooth connection between
smartphone and board successfully.

3.4 Haoyu Tian Develop the connection between the CYBLE board and the
motor control board.

Renjie Fan Develop mobile App framework.

Yanbo Chen Work on RFID module.

3.11 Haoyu Tian Enable CYBLE Board to control the movement of the
motor and start to develop RFID reader connection.

Renjie Fan Develop mobile App database function and learn Android
Bluetooth programming.

Yanbo Chen Start working on data transfer between the smartphone
and the board.

3.18 Haoyu Tian Spring break

Renjie Fan Spring break

Yanbo Chen Spring break

3.25 Haoyu Tian Develop CYBLE board to change the configuration for the
corresponding RFID.

23

Renjie Fan Build Bluetooth communication between mobile App and
CYBLE board.

Yanbo Chen Finish data transfer function between smartphone and
board

4.1 Haoyu Tian Test and debug the whole project without the mobile App.
Make sure RFID reader and mechanical part work correctly
when using CYBLE board to control.

Renjie Fan Test mobile App’s User Interface and function of users’
settings.

Yanbo Chen Enable user to configure the amount of toothpaste
dispensed through the mobile App

4.8 Haoyu Tian Assembly all the components on a platform and improve
product appearance.

Renjie Fan Collaborate with Yanbo on general software testing and
debugging.

Yanbo Chen Collaborate with Renjie on general software testing and
debugging.

4.15 Haoyu Tian Collaborate with teammates on general
software-hardware testing and debugging.

Renjie Fan Collaborate with teammates on general
software-hardware testing and debugging.

Yanbo Chen Collaborate with teammates on general
software-hardware testing and debugging.

4.22 Haoyu Tian Write final reports and demo project

Renjie Fan Write final reports and demo project

Yanbo Chen Write final reports and demo project

4.29 Haoyu Tian Group presentation

Renjie Fan Group presentation

24

Yanbo Chen Group presentation

5 Conclusion and Ethics
5.1 Accomplishments
All requirements are tested and verified, and we have successfully demonstrated all the

required functionality. We have integrated the CYBLE-214015 microcontroller chip and

the A4988 Stepper Motor Driver Module on our PCB. The microcontroller is perfectly

soldered and programmable. The RFID module can sense RFID tags within the range of 5

cm. The device can identify user by the RFID tag attached on the toothbrush, and then

dispense the preset amount of toothpaste to the user. The mechanical unit is able to

dispense a different amount of toothpaste and retract the syringe plunger to refill

toothpaste. The bug-free Android Application has all expected function, user can set

toothpaste dispensing amount, trigger refilling process, and viewing the history data.

The loading time of the Application is within 2 seconds. The performance of BLE

connection is beyond our expectation and a GATT operation can usually be executed

and finished within 1~3 seconds.

5.2 Uncertainties

We are unsatisfactory that we have such a time-consuming refilling process, which takes

89.66 seconds to refill 10 mL of toothpaste. See Table 2, we set the clock frequency to

0.75 MHz, which results in a relatively low pulse frequency. The reason that we have to

slow down the process control is a faster refilling process leads to a larger amount of air

gap inside the syringe container. See Table 3, there is a trade-off between the refilling

speed and the volume of the air gap. Considering that the quality is more important

than the speed, we decided to choose the securer plan.

We initially planned to collect the user usage data on a daily, monthly, and yearly basis

rather than just the number of times of dispensing. The original plan requires the

microcontroller to maintain a real-time clock so that it can record the exact time of each

dispensing. However, we tried several times to implement the real-time clock and didn’t

succeed. Ultimately, we used the backup plan that the microcontroller only updates the

number of time of dispensing to each user.

5.3 Future Work

25

As an electronic device that will be mainly used in bathrooms, our product prototype is

too big and not waterproof. Therefore, the most crucial improvement is shrinking its size

and adding a waterproof cover.

Another potential design alternative is improving the airtightness of the toothpaste

container. Our current design is lack of an effective method to reduce the volume of air

trapped inside the syringe after the refilling process. One possible way is to design a

new refilling mechanism to prevent air from entering the syringe, for example, screwing

toothpaste tube onto the container instead of simply plugging the syringe nozzle into

the toothpaste tube. Another feasible method is pushing the syringe plunger forward

after refilling to squeeze the air out. On the other hand, a container with better

airtightness allows us to shorten the length of the refilling process, which would be a

great improvement to our project.

5.4 Ethical Considerations
Our design includes using power adaptors with high current and this toothpaste needs

to place in the restroom so we must prevent any water leak into our project otherwise it

might hurt the users of this dispenser. This may be a violates of IEEE # 1 code that “to

hold paramount the safety, health, and welfare of the public, to strive to comply with

ethical design and sustainable development practices, and to disclose promptly factors

that might endanger the public or the environment.”[4] We will try our best to improve

the physical design of this project to overcome this potential risk.

Our design of mechanical components might refer to the mechanical design of manual

dispenser on the Internet. Therefore, this would potentially be a violation of #2 of the

IEEE code of ethics - to avoid real or perceived conflicts of interest whenever possible

[4]. We currently come up with a mechanism that is significantly different from those

manual dispensers. In the following modifications of our design, we will try to avoid

using the ideas that appeared in the existing products.

26

Reference
[1]William J Leep, Amazon Product Review, ‘Messy!’, 2018. [Online]. Available:

https://www.amazon.com/iLifeTech-Toothpaste-Dispenser-Automatic-Squeezer/produc

t-reviews/B00NRW4LAS/ref=cm_cr_dp_d_hist_1?ie=UTF8&filterByStar=one_star&revie

werType=all_reviews#reviews-filter-bar [Accessed Feb 2019].

[2] John-he-928, GitHub project, Tencent/WCDB, 2019. [Online]. Available:

https://github.com/Tencent/wcdb [Accessed Feb 2019].

[3]Krishnaprasad MV, ‘Getting Started with PSoC® 4 BLE’, 2018. [Online]. Available:

https://www.cypress.com/file/141171/download [Accessed: Feb 2019].

[4]IEEE, ‘IEEE Code of Ethics’, 1990. [Online]. Available:

http://ewh.ieee.org/cmte/substations/posted_documents/ieee_codeofethics.pdf

[Accessed Feb 2019].

[5]Amazon, ‘Frienda 4 Pack Large Plastic Syringe for Scientific Labs and Dispensing

Multiple Uses Measuring Syringe Tools (60 ml and 100 ml)’, 2019. [Online]. Available:

https://www.amazon.com/gp/product/B07KY5K58W/ref=ppx_yo_dt_b_asin_title_o00_

_o00_s00?ie=UTF8&psc=1 [Accessed Feb 2019].

[6]Taobao, ‘步进电动推杆机’, 2019. [Online]. Available:

https://detail.tmall.com/item.htm?spm=a230r.1.14.6.3530440e95tKya&id=5207898359

15&cm_id=140105335569ed55e27b&abbucket=19 [Accessed Feb 2019].

[7]Taobao, ‘RFID 读写器 Y13R’, 2019. [Online]. Available:

https://item.taobao.com/item.htm?spm=a230r.1.14.1.36532633L3NxDm&id=55751342

0947&ns=1&abbucket=19#detail [Accessed Feb 2019].

[8]Pololu,’DMOS Microstepping Driver with Translator And Overcurrent Protection’,

2019. [Online].

Available:https://www.pololu.com/file/0J450/a4988_DMOS_microstepping_driver_with

_translator.pdf [Accessed Feb 2019].

27

[9]cypress,’CYBLE-214015-01: EZ-BLE™ Creator Module’, 2019. [online].

https://www.cypress.com/documentation/datasheets/cyble-214015-01-ez-ble-creator-

module [Accessed Feb 2019].

[10] Google, Android documentation, Data and File Storage Overview, 2019. [Online].

Available:

https://developer.android.com/guide/topics/data/data-storage [Accessed

09-Mar-2019].

[11] Google, Android documentation, Bluetooth Low Energy Overview, 2019. [Online]

Available:

https://developer.android.com/guide/topics/connectivity/bluetooth-le.html [Accessed

11-

Mar-2019].

28

Appendix A: Schematic and PCB Layout

 Figure 29: CYBLE-214015 control chip schematic

29

 Figure 30: A4988 stepper motor driver chip schematic

30

 Figure 31: PCB layout

31

Appendix B: Requirements and Verifications Table
Smartphone Application

Requirement Verification Verified? (Y/N)

The APP’s loading time is
about 3±0.5 seconds.

Start the APP ten times (kill its
background process each time before
starting it). Calculate the average time
spent on loading by using an
electronic stopwatch.

Y

Bluetooth Module

Requirement Verification Verified? (Y/N)

The Bluetooth connection
provided by the module
should enable user
smartphone to connect in
30 seconds after the
Bluetooth module on PCB
starts working. After the
connection is established,
the data can be transferred
between the board and the
smartphone.

If the connection between the
smartphone and the board is
successfully established, the
smartphone should display
“Connected”. If the board is then
turned off, the smartphone should
display “Disconnected”.

Y

Control Unit
CYBLE-214015-01 EZ-BLE™ Chip

Requirement Verification Verified? (Y/N)

1. The input voltage to the
VDD is about 4.7±0.5V.

1. Use a multimeter to measure the
voltage supply of the VDD input of the
PCB to see if it falls in 4.7±0.5v.

Y

RFID Reader

Requirement Verification Verified? (Y/N)

32

1. Operating voltage
between 4.7±0.5V.

2. It can read the RFID tag
within 2±1 cm and output
the corresponding ID.

1. Use a multimeter to measure the
voltage supply of the VDD input of the
PCB to see if it falls about 4.7v.

2. We have software to test the
function of the RFID reader. The RFID
reader part on PCB can be directly
connected to our computer with USB
wire (TTL). Put the RFID tag close to
our PCB and see if the ID is displayed
on our computer.

1.Y

2.Y

A4988 Stepper Motor Driver

Requirement Verification Verified? (Y/N)

1. The input Voltage to the
VDD pin should be about
5±0.5V.

2. The chip can keep
working for 150±20
seconds without burning
the a4988 chip.

1. Use a multimeter to measure the
input voltage of this A4988 module.
Also, we can directly connect this a
4988 part of our PCB to a stepper
motor and send a signal to STEP pin
to see if the motor can move
correctly.

2. Also, we can directly connect this a
4988 part of our PCB to a stepper
motor and keep sending a signal to
STEP pin for 3 minutes to see if it will
burn.

1.Y

2.Y

Mechanical Part
Linear Actuator with Linear Actuator

Requirement Verification Verified? (Y/N)

1. The Actuator can
provide about 200 N (+

1.A. Connect the motor to our a4988
motor control PCB and send a signal

1.Y

33

infinite / -10N) torque to lift
things up.

2. The pushing length of
the actuator should be
about 80±2 mm.

to the step input and see if the linear
actuator can start moving.
B. Put a 20 kg stuff on top of the
actuator and see if it can push up. If it
does, then it can provide about 200N
torque.

2. We use motor control to move the
push rod inside the actuator to its
maximum position and measure the
length of it. The error of this number
will only affect the capacity of our
syringe.

2.Y

Mechanical Components

Requirement Verification Verified? (Y/N)

1. After completely fill the
syringe with toothpaste,
the air inside the syringe
should be less than
15±2ml.

2. The syringe should be
airtight when the front cap
is on the syringe and the
input hole is blocked.

.

1. We manually fill the syringe with
toothpaste. After that, we start
pushing the plunge until toothpaste
starts to come out. Because the air
will be pushed out first so we can
check the scale on the syringe to see
if the volume of the air gap is about
15ml.

2. Block the input hole of toothpaste
on the syringe. Put the cap on the
syringe and pull the plunger. An
airtight syringe should allow the
plunger to bounce back to the original
position after being released.

1.Y

2.Y

Toothbrushes(RFID)

Requirement Verification Verified? (Y/N)

34

The RFID can be read
within 3 cm by our RFID
reader with the correct
value.

A. Connect the RFID reader to a
computer and use a software
(provided by seller) to read the signal
from the RFID reader.
B. Put RFID on a toothbrush and hold
the toothbrush to approach the
reader.
C. Check software to identify the
maximum range that the RFID reader
can sense RFID tags.

Y

2.8 Power supply

Requirement Verification Verified? (Y/N)

1. The power adapter
supplies 24±0.5V voltage
for the motor.

2. The power adapter can
supply 10±0.5A current.

3. The 24V to 5V voltage
reduction module can
supply about 5±0.5V.

1. Connect the power adapter to the
wall socket and use a multimeter to
measure the output voltage of the
power adapter.

2. Use a multimeter to measure the
output current of the power adapter.
Also, directly connect the power
adapter to the motor to see if the
motor works correctly.

3. Use a multimeter to measure the
output voltage of the voltage reduction
module.

1.Y

2.Y

3.Y

35

Appendix C: Code
BLE Protocol Interface

https://github.com/jamesfrj/Android-BLE-Project/blob/master/app/src/main/java/com/

example/dispenserhelper/BluetoothLowEnergyService.java

BLE Operation Queue

https://github.com/jamesfrj/Android-BLE-Project/blob/master/app/src/main/java/com/

example/dispenserhelper/CharacteristicQueueObject.java

36

