Temperature Sensor Network for Thermostat Control

ECE 445 Project Presentation Team 33

Haige Chen, Ryan Finley, Heming Wang

ILLINOIS Electrical & Computer Engineering COLLEGE OF ENGINEERING

Introduction

An easy-to-install add-on to most of the current HVAC system to solve uneven heating/cooling problem in homes

- Low-cost
- Easy-to-setup
- Fits on top of standard air vents

Design Overview - Three Modules

- 1. Temperature Sensor Module
- 2. Central Hub
- 3. Air Vent Actuator Module

Objective

- 1. Real-time temperature measurement
- 2. Air vent actions
- 3. Alerts and visualization

Block Diagram

Temperature Sensor Module

Dallas 18B20 Digital Temperature Sensor

- Read ambient temperature
- Convert readings to 9-bit digital word
- Measuring range: -67°F to +257°F
- Accuracy: ±0.9°F from 14°F to 185°F

ESP8266 WiFi Module

- VCC 3.3V
- Can be controlled by microcontroller through serial communication (Tx, Rx)
- Contains firmware that supports AT commands

Figure: ESP8266 Module Pin Diagram

ATMega328p

ECE ILLINOIS

] [9

PCB

5V Voltage Regulator Circuit

DS18B20 Temperature Sensor

Microcontroller Logic

 A robust system should detect loss of connection and auto-reconnect

Flowchart: Link Loss Detection and Auto-Reconnection Algorithm

Central Hub

- Gather temperature measurements
- Generate alerts
- Send commands to air vents
- Interface with clients through web-app

Central Hub

Communication between ESP and Web Server

GPIO Thread

- ESP8266 communication module
- handles incoming and outgoing messages simultaneously
- updates and pings connections

ESP message logging

Processing Thread

- bridge between message buffers and database
- increases modularity and crash resilience

Web Thread

- temperature data and alerts \rightarrow clients
- Customize alert parameters

Web Interface

Thermal Temperature Network							
Minimum Desired Temperature		74 Update					
Maximum Desired Temperature		76 Update					
Temperature over Time							
90							
85							
80							
75							
70							
65							
60							
55							
50							
		with delt					
		node0 node1					

Air vent Actuator Module

Futaba S3003 Actuator Servo

- Opening and closing the vents
- 3.2 kg-cm torque at 4.8V
- Microcontroller uses PWM signal to control the angle of the servo motor

Microcontroller Logic

 Again, a robust system should detect loss of connection and auto-reconnect

Flowchart: Link Loss Detection and Auto-Reconnection Algorithm

Results

- 1. Fully functional implementation with two sensors and two actuators
- 2. Fully functional web interface for settings, alerts and visualization

Testing-Temperature Sensor Accuracy

 Comparing sensor measurement to AC controller reading in ECEB

	Sensor 1	Sensor 2	Thermostat Reading	Accuracy
Room	74.75	75.09	75.5	0.7%

Testing-WiFi Range

Line of sight: able to cover the full length of ECEB hallway and reconnect; at least 50m

Indoors: about 10 meters with at least two walls in between (tested in ECEB)

Testing-Reconnection Time

 Measured the time between power-on and establishment of connection

	Sensor Module	Air Vent Module
Trial 1	20.10 s	14.31 s
Trial 2	15.88 s	14.41 s
Trial 3	16.21 s	13.19 s
Avg.	17.40 s	13.97 s

Potential Future Work

- 1. Scalability: more sensor modules and air vent actuators
- 2. User friendly: easy installation
- 3. Customizable: expose more configs to client
- 4. Cost and form factor: cheaper and smaller

Conclusion

SUCCESS!

