
SydeKick

ECE 445 Final Document
Balasabapathi Chandrasekaran (bmchand2), Sam Feizi (feizi2), Rohan Mohapatra (rmohapa2)

Group #64
TA: David Hanley

Introduction 2
Purpose 2
Functionality 2
Subsystem Overview 3

Design 4
Design Methodology 4
Subsystem Diagrams & Schematics 5

Cost & Schedule 8
Cost 8
Schedule 8

Requirements & Verification 8

Conclusion 12
Accomplishments 12
Uncertainties 12
Future Work 14
Ethics 14

References 16

1

1. Introduction
1.1. Purpose

According to the Centers for Disease Control and Prevention (CDC) rates of autism have
increased from 1 in 150 newborns being diagnosed with autism in 2000 to 1 in 59 in the year
2018 [1]. Stanford University’s Lucile Packard Children’s Hospital found that ASD children tend
to have short attention spans [4]. Speech Language Pathologist, Beverly Vicker adds on by
saying “...students on the autism spectrum appear erratic in their ability to follow directions” [5].
Stanford University’s Lucile Packard Children’s Hospital did research into how to interact with a
child who has autism and found that the following methods were important to better the problem
of following directions and maintaining an attention span:

- Interact through physical activity
- Always stay positive (reward system)
- Show your love and interest[4]

Yale University conducted a study in August of 2018 where they witnessed significant
improvements in the social skills of children with autism after a month of working with robots[2].
Through our search we are motivated for this project is to build a therapeutic Sydekick for those
who have have autism.

Our intention with SydeKick was to create a robot that was a partial humanoid; this means it has
a torso, head, and two arm-like appendages that operate on one rotational axis. Sydekick has a
set of wheels to govern its translational and rotational motion and make it easier for the child to
interact. The robot can play Simon Says which was picked by our group cause we felt that it
best captured following directions and keeping attention spans.As discussed throughout the
semester, testing our product with an actual child with ASD was not feasible because of the
regulations in play. Instead, through our research, as discussed above, we have identified the
following : (1)The challenges that children with autism face and (2)The types of activities that
can help mitigate some of these challenges. With this information, our team created and verified
that we could accomplish these tasks.Through validating that SydeKick could perform these
tasks with anyone, our team created a theoretical product that could work with children on the
autism spectrum.

1.2. Functionality

Throughout our project there were three primary engineering objectives that our group worked
towards. The first was gamification, our goal was the following: Sydekick should be able to
reward 3 right answers through our reward system over a time period of 2 minutes through a
game of Simon Says with a user (TA/student). The second objective was focused around
proximity, our goal was the following: Sydekick should be able to stay in front of the test player
(TA/student) at all times maintaining a distance of 9 inches, this includes when Sydekick moves
its hands up or down. The final objective was centered around safety, our goal was: Sydekick
will not be able to drive past a certain average PWM (175 - 255); will all only be able to lift arms

2

from hips to shoulders (0 - 90 degrees). The aforementioned objectives were reached by
focusing on three main high-level project functionalities that summarize our Requirements &
Verifications: (1) Movement, (2) Game Interface and (3) Monitor Features. The Movement
functionality describes the movement of the motorized base which included two wheels in the
front powered by two DC motors and a castor wheel in the back. It also describes the arms
which moved in parallel from the hips to the shoulders which are powered by two Servo motors.
The Game Interface functionality describes our game Simon Says which entails the integration
the Raspberry Pi 3 Model B with the Force Sensitive Resistors. The Monitor Features describes
the two LCD displays that should have been on the robot. The first 7 inch LCD is mounted on
the torso and the other is a smaller LCD positioned as a head. The torso LCD is used as the
platform for which the user interacts with Sydekick and the head LCD is used for a positive
facial expression.

1.3. Subsystem Overview

Figure 1: Block Diagram

* Force sensitive resistor block belongs in the sensors subsystem (Subsystem 3), but was relocated to the programming subsystem
(Subsystem 2) to more eloquently display I/O

3

2. Design

2.1. Design Methodology
2.1.1. Force Sensitive Resistor

Force Sensitive Resistor: Relationship Between Force v. Conduction v. Resistance

Figure 2: Force Sensitive Resistor Conductance (1/kΩ) vs Force (g)

The force sensitive resistors used for the shoulder sensors in the game demonstrate a positive
correlation between the force placed on the sensors and conductance (inverse correlation with
resistance)[7]. In order for a child to interact with the robot and play the game effectively, the
amount of force needed to trigger a response in the game would also need to be quite small to
detect a human touch. Hence, the threshold, as determined from playing the Simon Says game
multiple times, was set at 100 grams (g) of force or approximately 0.98 Newtons (N). At this
point, the force sensitive resistor that has the pressure applied on it will generate a resistance of
just over 5.00 kΩ allowing for an increase in current to the input pins and ultimately generating a
digital high on the Raspberry Pi 3 B input pins. Achieving this digital high, since the force
sensitive resistors are analog components, required the MCP3008 analog-digital converter with
the wiring configuration seen below in Figure 6.

2.1.2. DC Motor Power and Duty Cycle
The power necessary to move the robot back when the Ultrasonic sensor triggers a distance
below 9 inches is discussed below:

)()()() .32512 meters/second(1 minute
300 revolution 2.56 inches

1 revolution 1 inches
0.0254 meters 1 minute

60 seconds = 0

4

The reported velocity above is the maximum velocity at which Sydekick will be able to travel
backwards. In our arduino code, we check Ultrasonic readings every second so we want to be
able to correct the 9 inch threshold over the course of 1 second. Therefore the average velocity
is calculated below:

)() 0.2286 meters/second(9 inches
1 second 1 inch

0.0254 m =
 0.703125 0%0.2286

0.32512 = ≈ 7
The Pulse Width Modulation is maximized at 255. Taking 70% of 255 we arrive at 178.5 PWM.
When we tested this PWM we realized that this was not enough to move the robot which is
because we did not factor in the weight of the robot when calculating optimal PWM. We started
from 178.5 PWM and started testing higher values until we arrived at 255 being the optimal
PWM for DC_Motor_1 and 225 or 255 being the optimal PWM for DC_Motor_2. This variation in
PWM’s for identical DC motors is discussed further in the Uncertainties section of the paper. In
this section we discuss potential reasons for identical mechanical components functioning
differently as well as solutions that might mitigate these problems.

2.2. Subsystem Diagrams & Schematics

Figure 3: ATMega328P Schematic

Figure 3 shows the schematic used for much of the hardware portion of “Sydekick”. The
components involved in this schematic are the circuitry necessary for the ATMega to power up
and run, the motor driver (L293D), and wiring circuitry for all the other off board components.
This schematic was the hardware component of the ultrasonic sensor, both DC motors, both
servo motors, and powerlines needed to power the complete design.

5

Figure 4: ATMega328P Software Flowchart

Figure 4 represents the ATMega328P software flowchart. On startup of the robot the arms
swing up to 90 degrees to show that the robot has limited mobility from 0 degrees to 90
degrees. From then on, the Ultrasonic sensor is taking in readings every second to see if there
is an object closer than 9 inches. If there is an object then Sydekick drives back till it hits the
threshold of at least 9 inches. If the sensor does not get triggered then it stays in one place.

Figure 5: Raspberry Pi 3 B Schematic

6

Figure 5 represents the schematic for the Raspberry Pi 3 B and the game module of “Sydekick”.
The Raspberry Pi is interfaced with the MCP3008 analog-digital converter which takes in the
change in current from the force sensitive resistors and converts the analog value to a digital
high or low based on a predetermined threshold, noted in section 2.1.1.

Figure 6: Raspberry Pi 3 B Software Diagram

Figure 6 is the diagram of the software present on the Raspberry Pi B. The Raspberry Pi was
loaded with the Android Things operating system and consequently an Android application that
contains the game Simon Says within. Upon boot-up, the Raspberry Pi displays the operating
system name and then proceeds to enter the ‘Application Library’, which includes a set of
games for the user to choose between (for this proof-of-concept design, only one game is
present; Simon Says). The first time the software boots-up however, the game will ask the user
to enter their name and age to set up the ‘Users Class’ for that particular user. Once Simon
Says has been chosen as the game to play, the display gives a Simon Says command and with
the use of an on-screen button and the two force sensitive resistors will determine if the
command given was followed. If it has been followed, the game counts this as a correct mark,
and if not it does not. In the case the game does not determine a correct response, a dialog box
emerges allowing the user to try again or to generate a new command. This game can be
played for however long the user wants, but upon pressing ‘End Game’, the game will enter the
‘Game Calculations and Rewards’ portion of the diagram and display the performance of the
user on the LCD screen and reward the user with an emotionally positive response (i.e. “Good
Job!”).

7

3. Cost & Schedule

3.1. Cost

Table 1: Cost Breakdown

3.2. Schedule

Table 2: Timeline and Distribution of Work

4. Requirements & Verification

Subsystem 1 - Programming
ATMega328P

Requirements Verification Verification Status (Y or N)

1. PCB should have seamless tracing
with components and limit internal
interference

2. Microcontroller should be able to

1. No open or short circuits on the
PCB that cause the robot to not
run altogether

2. Raspberry Pi boots up within 1

1. Y
2. Y
3. Y
4. Y

8

program the Raspberry Pi auxiliary
device at a baud rate of 9600
bps(1)

3. Microcontroller should share a
power line with the Raspberry Pi,
therefore powering on when the
Raspberry Pi does as well.(1)

4. Microcontroller should be able to
receive input from motion-based
sensors and adjust distance and
speed by transmitting to the servo
arms and DC motor wheels(1)

5. Utilize on-board memory for sensor
data storage and code scripting(1)

6. UART, SPI, and I2C data lines run
with a latency of less than 50 ms(1)

minute of robot power-on
3. DC Motor and Servos are

functional when microcontroller is
powered.

4. Motion sensors respond to
changes in proximity and location
of the user.

5. Data from the storage and running
of code can be checked from a
console log of the microcontroller

6. Latency values can be displayed
and measured through a console
log

5. Y
6. Y

Raspberry Pi 3 Model B

Requirements Verification Verification Status (Y or N)

1. Receive power from the central PCB
of the robot and be able to also power on
the central LCD screen(1)
2. Compile and execute programs
related to the game specified by the
components of the Programming
sub-module (Android SDK and Google
Play Services)(1)
3. Be able to compute game progress
and reward system(1)

1. When the robot is powered on the
central LCD screen will be powered on
2. Game library will instantiate displaying
available game to play. Moreover, a
game can actually be played and
interacted with
3. Reward system and game progress
will be displayed on the central LCD
screen as an application in the
application library

1. Y
2. Y
3. Y

Rechargeable Battery

Requirements Verification Verification Status (Y or N)

1. Supply +5V +/- .25V to the PCB as
well as all components connected to the
battery as specified by the block
diagram(1)
2. The robot is able to power on and
everything using power is active and
working(1)
3. The battery can be recharged

1. Checking of amperage and voltage
along all power lines of the robot using
an oscilloscope to ensure power and
lack of interference
2. Power on the robot, verify the robot
can move, arms can move and game is
functional
3. Recharge the battery and see a
charge level on the central LCD screen
be in charging mode

1. Y
2. Y
3. Y

9

Subsystem 2 - Programming
Central LCD Screen

Requirements Verification Verification Status (Y or N)

1. Display the Application library for the
user(2)
2. Touch inputs work through capacitive
touch(2)
3. Torso LCD should switch to a“Good
Job” or“Try Again” based on how game
is going(2)

1. Power on the robot and check the
central LCD screen if the application
library is there
2. Touch the Apps/play a game/touch
anything on the interactive parts of the
LCD screens and see if it is working
3. Start up a game of Simon Says and
play the game and verify based on the
answer if the robot is displaying the
correct response.

1. Y
2. Y
3. Y

Android SDK + Google Play Services + Custom Game

Requirements Verification Verification Status (Y or N)

1. Android applications are able to be
programmed and ran through the
Raspberry Pi(3)
2. Game is able to launch and run
seamlessly (2)
3. The Simon Says app displays in the
application library, functional in terms
that the user can play the game and
have their progress tracked and the
robot displays the correct responses
depending on the users input(5)

1. Game selected is successfully loaded
and can be played through the central
LCD screen
2. In playing a game, the game can run
without crashing until completion
3. Start up a game of Simon says and
have someone play it for 2 minutes and
see if the robot displays the correct
response as well as tracks the user’s
score

1. Y
2. Y
3. Y

Movement & Dynamics Control Program + Facial Expression Interaction

Requirements Verifications Verification Status (Y or N)

1. The robot goes a set speed with
marginal error (within 2% of the set
speed) (3)
2. Face LCD should be able to display
facial expressions on the screen when
the game is not being played but robot is
on (1)

1. Run code that activates DC motors
and notice robot moves at a steady/safe
speed without any jerking motions. This
can be logged by registering the value of
the DC motor on the console of the
microcontroller
2. Power on the robot but don’t start a
game and check the face LCD

1. Y
2. N; Face LCD was not

incorporated due to a lack of
time on project. With an extra
day to work we would have
been able to integrate the LCD
with the ATMega328P

Subsystem 3 - Sensors
Left & Right Force Sensitive Resistors + Ultrasonic Sensor

Requirements Verification Verification Status (Y or N)

10

1. Pressure sensor should respond to a
force on the right or left shoulder by
projecting a“Good Job” onto the LCD on
the torso(1)
2. Fail state: after Simon Says gives
prompt and no pressure data is read in
for a period of 15 seconds LCD will
display a“Try Again”(1)
3. Detects a minimum of 9 inches
separation from user through proximity
sensor and will maintain this minimum
distance in front of the user when arms
are pointing downwards(2)
4. Detects a minimum of 9 inches
separation from user through proximity
sensor and will maintain this minimum
distance in front of the user when arms
are pointing towards user(2)
5. Given a distance of less than 9 inches
separation from user, Sydekick will
reverse till at least 9 inches away(2)

1. Start up Simon Says game and wait
for“Simon Says, touch my shoulder”
command. Put pressure on
corresponding shoulder and wait for LCD
reaction
2. Start up Simon Says game and wait
for“Simon Says, touch my shoulder”
command. Don’t put pressure and wait
for time out and LCD to play“Try again”
3. Sydekick should not move forward
based on proximity sensor data which
will give distance from user of approx. 9
inches
4. Sydekick will lifts arms up and will
move backwards until proximity data
once again is at least 9 inches away
5. Place Sydekick less than 9 inches
from user and then given proximity
sensor data Sydekick will reverse

1. Y
2. Y
3. Y
4. Y
5. Y

Subsystem 4 - Arms
Left & Right Arm Servos

Requirements Verification Verification Status (Y or N)

1. Arms should be able to move up from
0 degrees(pointing downwards) to 90
degrees(pointing at user)(1)
2. Arms should always be stopping at 90
degrees based on safety measures our
team desires(2)

1. Start up robot and watch arms moves
from 0 to 90 degrees and stop at 90
degrees
2. Run code to move from 0 to 180
degrees and note that it stops at 90

1. Y
2. Y

Subsystem 5 - Wheels
Wheels

Requirements Verification Verification Status (Y or N)

1. Wheels should be able to move
backwards and forwards based on data
from proximity sensor in order to
maintain distance(3)
1. Wheels should be able to make robot
move

1. Run code that shows movement of the
robot based on proximity sensor data.
Give position of robot in front of user,
proximity sensor data should make the
robot move forward or backwards or stay
still
2. Run code that makes robot move
forward, backward and turn

1. Y
2. Y

Subsystem 5 - Misc.
Top LCD Screen + Facial Expression Interaction

Requirements Verification Verification Status (Y or N)

11

1. Receive power from microcontroller
and receive data from the ‘Facial
Expression Interaction’ software on the
microcontroller(2)

2. Face LCD should be able to display
facial expressions on the screen when
game is not being played but robot is
on(1)

1. Turns on when robot is powered on

2. Displays a particular facial expression
depending on game reward system

3. Power on the robot but don’t start a
game and check the face LCD

1. N; Face LCD was not built into
the robot because of lack of
time.

2. N; Face LCD was not built into
the robot because of lack of
time.

5. Conclusion

Accomplishments

Our group is very proud of how far we have come with Sydekick. When compared to what we
had originally promised at the start of the semester we were able to accomplish almost every
requirement that we promised.

In terms of our high-level project functionalities, we were able to successfully accomplish the
Movement of Sydekick. This involves Sydekick being able to autonomously drive with the two
DC motors and the castor wheel. Sydekick was able to drive at a safe speed after testing and
also go in straight lines as well as make turns and drive backwards. Additionally, the arms also
functioned correctly and aligned with our requirements of being able to swing from 0 degrees to
90 degrees and no further. The second high-level project functionality was the Game Interface.
A user was able to successfully play a game of Simon Says with Sydekick without any hiccups.
This involves all the Force Sensitive Resistors operating properly as well as Android Things
functioning accurately on Raspberry Pi. The last high-level project functionality was the LCD
monitors. The torso LCD worked as planned and acted as the platform where Users could
interact with the robot and play Simon Says. The head LCD was not completely finished but that
will be covered in the “Uncertainties “ section.

5.1. Uncertainties

There were a few issues that our group ran into through the development of Sydekick.

The first error that we ran into when debugging the drivetrain was the DC motors were not
operating correctly when we set them to work at certain PWM’s. For example, our group thought
that setting both DC motors to a PWM of value of 150 would lead to the wheels spinning. This
did not end up being the case; through testing random PWM’s our group realized that the
PWM’s for motors worked when either both motors were set to 255 or one was set to 225 and

12

the other was set to 255. Any other values than the ones aforementioned would not result in the
robot moving.

Through some research of how DC motors worked we realized that DC motors will almost
always run at different speeds especially if they are not mechanically connected on an axis. Our
drivetrain was created by leveraging a L293D Motor Driver Controller and we connected both
DC motors in parallel but detached without using an axis to connect the two motors. From
research, it seems like the best solution to fixing the problem where we have unpredictability
from DC motors is by adding an extra motor driver controller and operating each DC motor
through its own driver as well as making a mechanical connection between the two motors.
Another temporary solution is to keep the one motor driver controller design for both DC motors
but create some sort of switching arrangement where the driver controls each motor a
percentage of the time and ignores the other motor. This is problematic though because each
motor would be getting maximum 50% of coverage[6].

The second error that we ran into was with the mechanical design of the base. The back of our
robot was controlled by a castor wheel. During the building phase this reduced the mechanical
work that we had to do because attaching the castor wheel was a simple addition to the robot.
However, during the actual testing phase we realized that having the castor wheel forces
Sydekick to give up its sense of direction when driving backwards. If the castor wheel is slightly
at an angle than the robot will automatically start biasing at an angle and will not drive
backwards straight. This was only observed when the Ultrasonic was triggered for safety
reasons and never happened when the robot drove straight because the front of the robot was
steered by two wheels. The simple fix to this problem would be to remove the castor wheel and
have un-motored wheels in the back. This would allow Sydekick to drive in straight lines easier
without having to physically correct th castor wheel.

The third area of concern was the battery distribution amongst the robot. Our original
engineering plan was to have an external battery pack that would power the entire robot. This
would include all sensors, motors as well as the Raspberry Pi which controls the game.
Unfortunately, when we started testing we realized that the battery pack was only capable of
powering either the game or the sensors and motors. This was because the battery pack had
two ports. The first port had 5V and 2.1A and the second port at 5V and 1A. In order for all
sensors and motors to be powered this required the 2.1A source and in order for the game to
run properly it required a 2.1A source. Attempting to power both of these modules with the same
2.1A source proved to be not enough. During the demonstration, our group showcased the
sensors and motors and then unplugged the battery and then plugged it into the Raspberry Pi to
boot up the game. The solution to this was an easy fix because our group could either add
another external battery which would have the appropriate amperage or switch battery sources
all-together.

The last issue that we ran into was primarily due to time constraints. The original design of the
robot incorporated a small LCD where the head of the robot would be to integrate a happy facial

13

expression. Unfortunately, although we had the resources we ran out of time to finish this
portion. If given another day to finish then this portion of the project could definitely have been
finished.

5.2. Future Work

If we had more time to work on this project the future work would be divided into the following
portions: (1) mechanical build, (2) drivetrain, (3) battery and (4) Simon Says.

Due to the way we timelined the project our group had to build the mechanical portion of the
robot on our own instead of utilizing the ECE machine shop. Due to this the robot looked a lot
less humanlike then we had imagined. Additionally, we had to saw off large chunks of the robot
in order for the DC motor to be able to carry the robot. Given time in the future, our group would
love to rebuild the mechanical portion of this robot so that it is lighter and looks more human-like
as well as pick out better DC motors that would be able to handle heavier weight so we do not
have to sacrifice aesthetics of the robot. Iterating on the drivetrain, our group would like to add
two more wheels as mentioned before and remove the castor wheel. This would allow for more
control of the direction of the robot.

The crucial problem that we did not expect in the project was the power supply for the entire
robot. As mentioned in the “Uncertainties” section a quick fix to the lack of battery power would
be to introduce a new external battery. The byproduct of this is making the robot heavier
because each external battery pack is rather heavy. A more engineering driven solution to this
that could be introducing a Li-Poly battery instead of the external mobile battery packs all
together. A Li-Poly battery would be able to offer more power, depending on the demand of
power, and not be restricted by the current (voltage would still be 5V) limitations of a USB port.

The biggest changes that we would like to work on in the future would be in the Simon Says
game. It would be more engaging if we were able to add more prompts so that each game
becomes more challenging. Some examples of this include, utilizing the arms for commands
and adding for Force Sensing Resistors. This would be an easy add-on but something a little
more complicated might be adding a completely new game. This would include research to
figure out what other types of games specialize in helping children learn to follow directions as
well as maintain attention spans.

5.3. Ethics

As a preface, “SydeKick” had to be built with extra precaution because of the children that
theoretically could be using it, in this case that would be children that have ASD. This section
will be divided into robotic specific hazards and then hazards related users interfacing with the
robot.

During development it was important to take into consideration the overall appearance of the
robot and making sure that we took care of our parts. The first being the mechanical build, with

14

all parts being smoothed and soldered to avoid live wires and splinters. The second concern is
the wiring, integrating the perforated breadboard with the ATMega and Raspberry Pi with the
humanoid design with heavy wiring that was all soldered and we used shrink wrap to cover the
live wires. Our group was extra careful in making the appearance of the product ready in order
to make it as safe as possible for the child. That meant as little danger as possible to the child
with the mechanical side of Sydekick.To best solve the wiring and soldering problem it was
important as a team to make every part modularly perfect. During usage of the robot it was
important to take in to account the the arms and motorized base. Both units were tested to
ensure they would not harm the user interacting with Sydekick. Our group solved this by using
an ultrasonic sensor that Sydekick uses to detect the user and maintain a safe distance. There
will be a safety precaution in the arms so that they don’t raise to quickly or too high in order to
avoid any harm to the user as well. The restriction we decided was to prevent Sydekick from
raising above 90 degrees. Additionally, the motorized base was also fine tuned so that it always
stays 9 inches away from the user.

An ethical issue that we could see coming into play is whether or not it makes sense to leave a
child with autism to play with a robot. Robotics is a very fast-paced and constantly advancing
area of study which is not always fully understood. With this being said it creates an ethical
puzzle of whether or not it's okay to push the responsibilities of people to nurture kids to a robot.
I think this problem is shown in IEEE Code of Ethics (#5) where the goal of IEEE as a whole is
to help improve the understanding and capabilities of individuals when it comes to new and
emerging technologies[3]. The best way “SydeKick” will avoid this issue is to create an
environment where parents need to be around with the child while they are playing and having
therapy sessions but allow enough space to where their full attention is not commanded. As an
emerging technology continues to grow its important to start giving more responsibility to
technology while also not completely unlatching. IEEE Code of Ethics (#9) will be another really
important code to keep in mind because safety has to be the paramount priority. Throughout
building as well as usage by consumers this project will take every precaution necessary to
maintain safety standards. This will include following lab safety trainings as well as taking the
best care of our equipment and documenting our processes.

Testing the product will be another ethical issue that we have considered. Getting authorization
to work with children with autism is very tricky and the liabilities that surround it make the
environment difficult. Because of this, our team found literature that shows in theory playing
these kinds of games with children on the spectrum does indeed improve their following
direction skills as well as increased attention span.

15

References:

[1] “Data & Statistics on Autism Spectrum Disorder | CDC .” Centers for Disease Control and
Prevention, Centers for Disease Control and Prevention, www.cdc.gov/ncbddd/autism/data.html

[2] Weir, William. “Robots Help Children with Autism Improve Social Skills.” YaleNews, 22 Aug.
2018, news.yale.edu/2018/08/22/robots-help-children-autism-improve-social-skills.

[3] “IEEE Code of Ethics.” IEEE - Advancing Technology for Humanity,
www.ieee.org/about/corporate/governance/p7-8.html.

[4] “Default - Stanford Children's Health.” Stanford Children's Health - Lucile Packard Children's
Hospital Stanford,
www.stanfordchildrens.org/en/topic/default?id=interacting-with-a-child-who-has-autism-spectru
m-disorder-160-46.

[5] “Comprehension of the Message: Important Considerations for Following Directions.” IIDC -
The Indiana Institute on Disability and Community at Indiana University,
www.iidc.indiana.edu/pages/Comprehension-of-the-Message-Important-Considerations-for-Follo
wing-Directions.

[6] Gsdaemon, et al. “2 DC Motors Connected in Parallel to H-Bridge Move with Different
Speed.” Electrical Engineering Stack Exchange,
electronics.stackexchange.com/questions/331263/2-dc-motors-connected-in-parallel-to-h-bridge
-move-with-different-speed.

[7] “Force Sensor.” Force Sensor [Robotic & Microcontroller Educational Knowledgepage -
Network of Excellence], 27 Dec. 2018, home.roboticlab.eu/en/examples/sensor/force.

16

http://www.cdc.gov/ncbddd/autism/data.html
http://www.ieee.org/about/corporate/governance/p7-8.html
http://www.stanfordchildrens.org/en/topic/default?id=interacting-with-a-child-who-has-autism-spectrum-disorder-160-46
http://www.stanfordchildrens.org/en/topic/default?id=interacting-with-a-child-who-has-autism-spectrum-disorder-160-46
http://www.iidc.indiana.edu/pages/Comprehension-of-the-Message-Important-Considerations-for-Following-Directions
http://www.iidc.indiana.edu/pages/Comprehension-of-the-Message-Important-Considerations-for-Following-Directions

