

WIFI MOUSR

By

Marc Abraldes Velasco

Nicholas Thoele

Isabel Ugedo Perez

Final Report for ECE 445, Senior Design, Spring 2019

TA: Hershel Rege

May 1
st
 2019

Project No. 70

ii

Abstract

“WIFI Mousr” is an update of the automated cat toy “Mousr” by the start-up company Petronics.

This product is equipped with several presence and distance measuring sensors, which allow it to

successfully escape from a cat providing a game and distraction for your pet.

In the original version, all movements can be controlled with a phone application via Bluetooth.

“WIFI Mousr” is meant to completely recreate the functionality while implementing a WIFI

connection with the Smartphone through a new application. Moreover, we are going to design a

new functionality, the Auto-Schedule, which allows doing the Auto-Play mode with a designed

schedule.

For a successful project, we are going to replace the head microcontroller to the ESP32, which

includes WIFI and Bluetooth. We will also rewrite the most part of the drivers for the sensors

and main code and design our PCB to place all the sensors. Furthermore, we are going to design

a new app to implement the WIFI connection with the microcontroller.

iii

Table of Contents

1. Introduction ... 1

2. Design ... 2

2.1 Wireless Communication / Phone App Module.. 3

2.2 Control Unit .. 5

2.2.1 Microcontroller .. 5

2.2.2 Push Button .. 6

2.2.3 RGB LED ... 6

2.3 Sensor Module .. 7

2.3.1 TOF .. 7

2.3.2 IMU .. 8

2.3.3 IR LED and IR Receiver .. 9

3. Design Verification ... 10

3.1 Wireless Communication / Phone App Module.. 10

3.1.2 Application Communication .. 10

3.2 Control Unit .. 10

3.2.1 Microcontroller .. 10

3.2.2 Push Button .. 11

3.2.3 RGB LED ... 11

3.3 Sensor Module .. 11

3.3.1 TOF and IMU .. 11

3.3.2 IR LED and IR Receiver .. 11

4. Costs .. 12

4.1 Parts .. 12

4.2 Labor ... 13

5. Conclusion .. 14

5.1 Encountered difficulties .. 14

5.2 Accomplishments .. 14

5.3 Work methodology ... 14

5.4 Future work ... 14

References ... 15

iv

Appendix A. Requirement and Verification Table ... 16

Appendix B. Microcontroller Code .. 20

Appendix C. Phone Application Code .. 29

1

1. Introduction

 “WIFI Mousr “is meant to be an upgrade

of an existing product, “Mousr” [1] by

Petronics. This device is a combination of

several distance and acceleration sensors,

engines and a moving tail. Its intended

function is to serve as a cat toy/distraction,

by running around the room avoiding any

obstacles such as walls, or the cat itself. It

can be set to Auto-Play mode or controlled

in real time by the user through a mobile app, which relies on a Bluetooth connection.

Our role was to replace this Bluetooth bond by a WIFI connection, which should be implemented

via an IP address by the client’s specification. While this approach would result in a shorter

battery life, it has many advantages. First and foremost, WIFI creates a longest signal range

which means the user would not have to worry about maintaining proximity to the moving

device, which might prove inconvenient and even challenging. The only requirement would be

for the home router signal to be strong enough to reach both the smartphone and the Mousr

device.

Another advantage would be an increased data transfer rate between the microcontroller and the

phone. This is important to Petronics since they plan on adding data analytics to the toy in the

future, which makes accessing sensor readings and data in real time essential.

In order to develop the WIFI connection, we set out to recreate Mousr functionality in a new

chip, the ESP32 [2] suggested by Petronics. The reasoning behind this was that it is a very

popular choice for real time systems, and there was a lot of documentation available to us. It also

contains both Bluetooth and WIFI, which is necessary for the connection we aim for. All coding

was carried out through FreeRTOS, which is C based. This is Petronics’ environment of choice,

so we needed to use it to be able to integrate with them.

On the hardware aspect of the project, our work can be summarized as designing the power and

data circuits needed for Mousr to work, designing a viable PCB and soldering all components,

coding and debugging the I
2
C drivers, which is used by most of the sensors, and transmitting

instructions to the engines via UART connection. We also created a new app to manage the

WIFI connection, and set up a bidirectional bond between ESP32 and IP address as well as

between phone app and that same address.

Fig. 1 Mousr [1]

2

2. Design

The design aspect of our project is mostly centered on the PCB circuits, the components we

selected and the FreeRTOS behavioral code. The WIFI and Bluetooth protocols we worked with

are standardized and required no design input from us, as is the case with the I
2
C sensor drivers.

The full project integrations were mapped as shown in our block diagram, in Figure 2.

Fig.2 Block Diagram

3

2.1 Wireless Communication / Phone App Module

The first goal of the new Android application was to create a connection process that was as

quick and user friendly as possible without the need to leave the app’s interface during the

process. From the main menu, shown below in Figure 3, the user would select the connection

button, denoted by the standard WIFI symbol.

In the original design, this process required four different screens also known as activities, but

after some research we were able to reduce it to the single activity, shown in Figure 4, that

displayed a list of discoverable devices over Bluetooth. After selecting a device, the phone and

the device would pair and the user would input the password to the WIFI network they were

currently connected to and press a button to send it over. Luckily the Android WIFI libraries [3]

allow for the access of the SSID, also known as the network name, without the need for

searching for all the local networks and selecting the one the user is already on. After sending

this SSID and password the ESP32 would set-up the IP address for further communication.

Fig.3 App Main Screen

4

After this connection and communication set-up process has completed the rest of the app was to

be able to set the Auto-Schedule, change the color of the RGB LED, and set the Mousr into

Auto-Play mode with as little user interaction as possible in order to simplify and expedite the

user experience as well as the data transfer between the app and Mousr.

In order to set a play schedule the user would select the ‘Set Schedule’ button on the app’s main

menu. From here, four lists are shown containing the day of the week, the hour in a standard 12

hour setting, minutes from 0-55 in intervals of five minutes, and a selection of either A.M. or

P.M. After selecting from each list, the user would press the ‘Set’ button and the schedule would

be sent to the Mousr.

Similarly in order to set the RGB LED color, the user would select the ‘Set LED’ button from

the main screen. This would present the user with a list of six colors: red, green, blue, purple,

yellow, and white. The user would select one and it would be sent to the Mousr.

The Auto-Play functionality ran differently. The user would simply select the ‘Autoplay’ button

on the main menu, and the Mousr would be sent a code to run Auto-Play at that time if it was off

or it would turn off it was on.

Fig.4 App Paring Screen

5

Unfortunately, as explained later in Design Verification, much of this was unable to be

implemented due to lack of the communication channel being properly set up.

2.2 Control Unit

2.2.1 Microcontroller

For the design of the microcontroller, Petronics provides us two different microcontrollers, the

ESP32 Serial [4] and the ESP32 Wrover Kit [5]. The main difference between them is the

number of pins, so, we decided to use the Wrover Kit because it has more accessible GPIO pins

for all the connections that we need from the sensors.

For the power supply, we have 4.1V from the body battery, so we need a voltage regulator to get

3.3V, the voltage that we need for the microcontroller and most of the components of our circuit,

as we can see in Figure 5.

For the data connections, we needed to drive all digital inputs and outputs into the ESP32. Our

solution was to include through holes in the PCB which will be connected to the PCB by

soldering and to the microcontroller. This was meant to allow us to switch between the ESP32

Wrover Kit and the ESP32, of for changing the pins depending on the signal requirements that

we need.

Voltage Regulator

TOF

Voltage Regulator

TOF

Voltage Regulator

TOF
3.3V

TOF

1.8V

TOF

1.4V

TOF

ESP32

Kit
ToF

TOF

IMU

I/O

TOF

ToF

I/O
IMU IR

Receive

IR LED

Fig.5 Power Circuit Schematics

6

2.2.2 Push Button

For the correct functionality of the pushbutton with the microcontroller, we set an interrupt that

detects the falling edge in the GPIO. For doing that, we have to design an extra circuit for the

button, because if can create a short circuit in the microcontroller. The circuit implemented is in

Figure 6.

As we can see in Figure 6, each time we press the pushbutton, we put the input pin to low

voltage, and the interrupt occurs. If it is not pressed, the pin remains high and nothing happens in

the microcontroller.

2.2.3 RGB LED

Regarding the RGB LED, straightforward calculations were computed to obtain the required

resistor values for each color port. First, we obtained each diode internal resistance by looking at

the nominal values provided in the datasheet [6]:

 𝑅𝑖𝑛𝑡 =
𝑉𝑛𝑜𝑚

𝐼𝑡𝑦𝑝𝑖𝑐𝑎𝑙
 2.1

Since we knew the LED would be connected to a GPIO from the microcontroller, which

provides us a signal of 3.3V, we wrote a simple voltage divider:

 𝑉𝐿𝐸𝐷 =
𝑅𝑖𝑛𝑡

𝑅𝑖𝑛𝑡+ 𝑅𝑥
 2.2

Resulting values and corresponding parameters are displayed in Table 1:

Fig.6 Pushbutton Circuit

7

Table 1. LED Resistances

LED COLOR Rint (Ω) VLED (v) Rx (Ω)

Red 140 2.1 140

Green 270 2.7 270

Blue 300 3 300

2.3 Sensor Module

All the sensors that we are using for the project are going to be on the same PCB. As we

explained before, the battery of the Mousr body is providing 4.1V and we use a 3.3V voltage

regulator for stepping down the voltage. The problem is that some of the sensor needs less

voltage than that, so we are going to use two more voltage regulators to have 1.8V and 1.4V, as

we can see in Figure 5.

2.3.1 TOF

For the Time of Flight, we follow the schematic connection that the datasheet from the fabricant

recommends, which you can see in the Figure 7.

For the values of the pull-up resistors of Figure 7, we adapted respecting the required minimum

and maximum values given by the following equations:

Fig.7 TOF Circuit

8

 𝑅𝑚𝑖𝑛 =
𝑉𝑐𝑐− 𝑉𝑜𝑙

𝐼𝑜𝑙
 2.3

 𝑅𝑚𝑎𝑥 =
𝑡𝑟

0.8473∗ 𝐶𝑏
 2.4

Where: - Vcc is the sensors DC supply

 - Vol is the max voltage that can be interpreted as a digital low

 - Iol is the current which corresponds to this voltage.

 - tr is the maximum rise time

 - Cb the capacitive load for each bus line.

A lower resistor value would result in smaller power consumption, but also increased transfer

rate due to reduced RC delay. We settled on intermediate values since we did not have any

specific power consumption or speed specs.

2.3.2 IMU

For the IMU, the manufacturer provides us the values of the pull-up resistances in the datasheet

for the I
2
C protocol, so, we designed the PCB making the correct connections between the sensor

and the microcontroller, following the indications from Figure 8.

Fig.8 IMU Circuit

9

2.3.3 IR LED and IR Receiver

The IR LED is used to provide a reference value for the IR Receiver, which is designed to detect

variations in heat intensity, rather than presence of heat. The only requirement is that we have to

take care in the design the position, because the emitter and the receiver have to be separated by

a certain distance and it can not be any object between them.

For the power supply of each component, the IR LED needs a specific sequence of pulses for a

correct output in the IR Receiver, which we can see in Figure 9.

Fig.9 Signal Supply for IR LED and IR Receiver Response

10

3. Design Verification

Due to all the PCB issues we discussed throughout the design section of this paper, we were not

able to set up the TOF and IMU communication. Therefore, many of our block requirements

were not met, specifically those regarding sensors and integration. We will now discuss each of

the requirements and state weather it was successfully implemented in the prototype.

3.1 Wireless Communication / Phone App Module

3.1.2 Application Communication

There were four main parts of the phone application, connecting to the Mousr over Bluetooth

being the first of these. In order to show this we set both the phone and the Mousr into their

pairing modes. Unfortunately, the Mousr would not pair, and as we dug deeper found it was

discoverable but not connectable. This issue could not be resolved as setting the proper scan

codes for the preset microcontroller Bluetooth connection protocol resulted in a crashing of its

subroutine and made it undiscoverable entirely.

Not being able to do this, we settled for hardcoding the Mousr’s WIFI credentials and allowed it

to set its own IP address. This process was successful; however, in testing the connection in the

lab we realized the access to this IP address was specific to the user’s login in information,

meaning one could not access the IP address while logged in to Illinois Net with their login if it

was set up using someone else’s. In finding this out, we decided it easiest to develop a barebones

app designed specifically for this connection. This worked and allowed us to go on to the next of

the requirements by changing the RGB LED color from the app.

Using the new app, while connected we simply selected the color we wanted from the small list

we developed of red, green, and blue and the ESP32 set the RGB LED to that color. This being a

success our next requirement was to be able to set a schedule.

This was not developed due to time constraints, but seeing as the RGB LED color selection

worked, it is fair to say that given time to set up a function that worked with the ESP32’s Real

Time Clock, this would have been achievable. To show this, due to the errors in the PCB and

inability to use the Auto-Play functionality, we could simply have the RGB LED change to one

of the preset colors at the set time.

3.2 Control Unit

3.2.1 Microcontroller

To test all the ESP32 code we built a small circuit in a breadboard, which included several

LEDs and resistors. We also coded a screen display to print a message informing the user of the

11

battery status. To simulate a battery or power source we built a voltage divider and connected

our circuit to different voltage points, thus simulating full, empty and half charged battery.

3.2.2 Push Button

The push button receives current from the PCB circuit, so in order to test it we only needed to

connect the board to its input voltage and ground. We then displayed the output in the

oscilloscope. After ensuring it worked, we connected the output to the ESP32. We observed the

whole prototype was instantly shorted whenever the button was pressed, which led us to realize

we needed to connect a resistor between the button input and output ports.

3.2.3 RGB LED

The RGB led was easy to test. First, we recreated its functionality by using three LEDs on our

breadboard. After ensuring the code was appropriately handling the LEDs, we moved on to the

actual RGB LED inside the PCB, and had no issues with it.

3.3 Sensor Module

3.3.1 TOF and IMU

As we mentioned before, the PCB issues we encountered did not allow us to test the sensors. We

tried to download the FreeRtos drivers into the ESP32 and got an invalid architecture error. We

then switched to Arduino, which has a simplified I
2
C feature and tried the new drivers. We got

results from the TOF, but they didn’t change at all or show any response to outside activity.

After establishing the I
2
C connection, our first PCB had shortcuts. We took all the components

off and could not find the source. We decided to start over on a new PCB which we did not have

time to complete.

3.3.2 IR LED and IR Receiver

The IR LED was a very hard circuit to debug, which we had not foreseen in our design

document. The IR receiver did not respond to the LED when we set it up on the breadboard, and

we had no way to know if the LED was flashing. We tried measuring the voltage and current

going through the LED and comparing them to those on the datasheet specifications. However,

the datasheet only mentioned max current and voltage drop values, not standard ones. We did not

end up having enough time to get the system working.

12

4. Costs

4.1 Parts

Table 2 Detailed Part Cost

Part Part Specification

/Manufacturer

Supplier Cost / Unit Quantity Prototype Cost Cost of

Manufacturing

ESP32Wrover

Kit V4.1

GC-ESP-WROVER-KIT /

Espressif

GridConnect $40.00 1 $40.00 $5.00

IMU LSM6DSLTR /

STMicroelectronics

Mouser $3.98 4 $15.92 $2.50

TOF VL53L0CXV0DH/1 /

STMicroelectronics

Mouser $4.5 4 $18.00 $2.83

RGB LED CLY6D-FKC

CK1N1D1BB7D3D3 m/ Cree

DigiKey $0.318 10 $3.18 $0.29

IR Receiver TSSP77038TT / Vishay

Semiconductors

Mouser $1.79 4 $7.16 $0.82

IR LED VSMB3940X01-GS08 /

Vishay Semiconductors

DigiKey $0.73 5 $3.65 $0.34

Pushbutton PTS810 SJG 250 SMTR LFS /

C&K

DigiKey $0.31 5 $1.55 $0.24

FCC Connector 687112183722 / Wurth

Electronics

Mouser $1.83 4 $7.32 $1.22

Voltage

regulator 3.3V

LM1117T-3.3/NOPB / Texas

Instruments

Mouser $1.54 4 $6.16 $0.89

Voltage

regulator 1.8V

LM1117MPX-1.8/NOPB /

Texas Instruments

DigiKey $2.78 4 $11.12 $0.68

Voltage

regulator 1.4V

NCP699SN14T1G / ON

Semiconductors

Mouser $0.47 4 $1.88 $0.14

PCB - PCBWay $5.00 1 $5.00 $0.50

Shipment Cost $42.97 -

TOTAL COST $163.91 $16.05

13

4.2 Labor

We obtained an approximation of cost of labor using the following equation:

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 =
(𝐴𝑣𝑔 𝑆𝑎𝑙𝑎𝑟𝑦 𝑜𝑓 𝐵𝑆 𝑖𝑛 𝐸𝐸) + (𝐴𝑣𝑔 𝑆𝑎𝑙𝑎𝑟𝑡 𝑜𝑓 𝐵𝑆 𝑖𝑛 𝐶𝐸)

2
∗

1 𝑌𝑒𝑎𝑟

𝐿𝑎𝑏𝑜𝑟 𝑊𝑒𝑒𝑘𝑠 ∗ 45 𝐻𝑜𝑢𝑟𝑠
∗ (𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 [ℎ]) ∗ (𝑁º 𝑇𝑒𝑎𝑚 𝑀𝑒𝑚𝑏𝑒𝑟𝑠) 4.1

The average salary data was obtained from the ECE website of UIUC. Total time was estimated

to be 110 hours per worker. The resulting value of the equation 4.1 is shown below.

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 =
$67000 + $84250

2
∗

1 𝑌𝑒𝑎𝑟

52 ∗ 45 𝐻𝑜𝑢𝑟𝑠
∗ (110) ∗ (3)

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = $10,665.06

14

5. Conclusion

5.1 Encountered difficulties

During the four weeks we worked on the project, we encountered several design issues. They

were the main reasons why we were not able to connect to our sensors, and we believe they

could have been fixed if we had had a bigger time frame. Our main takeaway is to give the

appropriate attention to timing and scheduling in large projects and to not underestimate the extra

time that might prove essential to address unforeseen problems.

We also learned a lot from our mistakes, and especially from coming up with ways to work

around them and debug the affected circuits. We now feel more prepared to face real world

projects than we did at the beginning of the semester, and have a better idea of what to expect

from teamwork.

5.2 Accomplishments

Our main accomplishments this semester are software related, particularly the WIFI, Bluetooth

and microcontroller FreeRTOS coding. The learning curve was very steep, since the ESP32

language was very low level as we mentioned before, and it was not conductive for debugging.

Once we were up to speed with the language, the work sped up considerably.

Overall, we became more skilled in several areas including Eagle PCB design, soldering,

creating android apps, setting up Bluetooth and WIFI connections which allow for data transfers

and managing UART connections.

5.3 Work methodology

The course is group work based, which we feel was a very efficient way to approach the project.

We managed to stay involved in all aspects of the project while splitting the workload and did

not have any issues. We also worked with Petronics and attended several meetings, which we

believe gave us real work experience in dealing with clients. It gave the project a whole other

aspect, which we very much enjoyed and learned from.

5.4 Future work

As we mentioned throughout the paper, our project failed due to PCB printing and design issues.

We would like to order a new PCB and try it out, provided we have enough time this semester.

This will allow us to test our drivers and integration code, and to see whether we were on the

right path.

15

References

[1] Petronics Inc, “Mousr”, 2019. [Online]. Available: https://petronics.io/mousr

[2] ESP32, “Features and Specifications, The internet of things with ESP32”, 2019. [Online].

Available: http://esp32.net/

[3] Android Developers, “Android.net.wifi”, 2019. [Online]. Available:

https://developer.android.com/reference/android/net/wifi/package-summary.html

[4] Espressif Systems, “ESP32 series Datasheet”, 2019. [Online]. Available:

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

[5] Espressif Systems, “ESP32-WROVER-B Datasheet”, 2019. [Online]. Available:

https://www.espressif.com/sites/default/files/documentation/esp32-wrover-

b_datasheet_en.pdf

 [6] CREE, “Cree® PLCC6 3 in 1 SMD LED CLY6D-FKC”, 2019. [Online]. Available:

https://www.cree.com/led-components/media/documents/ds-1321-CLY6D-FKC.pdf

https://petronics.io/mousr
http://esp32.net/
https://developer.android.com/reference/android/net/wifi/package-summary.html
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wrover-b_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wrover-b_datasheet_en.pdf
https://www.cree.com/led-components/media/documents/ds-1321-CLY6D-FKC.pdf

16

Appendix A. Requirement and Verification Table

Table 3 System Requirements and Verifications for Phone Application

Requirement Verification Status

(Y or N)

Able to establish WIFI

connection with Mousr with

reliability of 90%

1. From the home screen of the app, select the option that

shows the WiFi symbol

2. Initiate pairing state of Mousr

3. From phone app, select the Mousr device

4. Select the desired WiFi network to connect to

5. Enter the network’s password

6. Ensure both app and RGB LED indicate connection is

successful (app will show success screen. LED will

show turn green)

7. Repeat 9 more times, ensuring a connection 9/10

Y

Set schedule that Mousr auto

plays ± 5 minutes from

1. Assure app is connected to the Mousr

2. From home screen of app, select Set Schedule option

3. Set time and date to be within a minute of the time at

testing

4. Ensure that at the desired time the device begins

moving

N

Able to change color of RGB

LED

1. Assure app is connected to Mousr

2. From home screen of app, select LED color option

3. Select color from available options

4. Ensure RGB LED is bright and visibly the selected

color

Y

Able to set Mousr to auto-

play mode

1. Assure app is connected to Mousr

2. From home screen of app, select auto-play option

3. Ensure Mousr is moving

N

17

Table 4 System Requirements and Verifications for Microcontroller

Requirement Verification Status

(Y or N)

Analog/Digital/PWM pins to

make the connections.

1. Connect RGB LED circuit

2. Set PWM signal to 2.2 V for microcontroller to allow

red output of LED

3. Ensure LED is bright and showing red color

Y

Table 5 System Requirements and Verifications for Button

Requirement Verification Status

(Y or N)

Must be easy to press Press button without unnecessary amount of work Y

Table 6 System Requirements and Verifications for RGB LED

Requirement Verification Status

(Y or N)

Colored light must be

clearly visible, for all three

colors.

1. Connect RGB LED circuit

2. Set PWM signal to 2.2V from microcontroller to allow

red output of LED

3. Ensure LED is bright and showing red color

4. Repeat steps 2 & 3 for green and blue except instead

setting signal to 3.3V

Y

LED should be adjusted to

flash on a .5 ± .1 s period.

1. Connect RGB LED circuit

2. Generate 3.3V pulse signal from microcontroller to blue

pin of LED

3. Ensure LED is flashing and blue

Y

18

Table 7 System Requirements and Verifications for Time of Flight

Requirement Verification Status

(Y or N)

Performance should

accomplish a field of vision

of 20° ± 1°

1. Power TOF sensor on breadboard and connect to

oscilloscope

2. Measure out 20° area

3. Hold notebook 80cm away from sensor and sweep

through measured FOV

4. Ensure oscilloscope signal indicates an obstruction

N

Should reliably detect

between 800-900mm ±

50mm

1. Power TOF sensor on breadboard and connect to

oscilloscope

2. Measure out area 800-900mm away from sensor

3. Sweep a notebook through area

4. Ensure oscilloscope signal indicates an obstruction

N

Table 8 System Requirements and Verifications for IMU

Requirement Verification Status

(Y or N)

IMU is operating in

selected [by micro] power

consumption mode

1. For high performance mode: current input must be 0.65

mA ±10%

2. For normal mode: current input must be 0.45 mA ±10%

3. For low power mode: current input must be 0.29

mA±10%

N

Readings are 0g, 0g and 1g

±10% for axes X,Y and Z

respectively when placed

horizontally

1. Place sensor horizontally

2. Output must show a 0g force in both X and Y axes

3. Output must show a +1g±10% force in Z axis, which will

be in binary two’s complement.

N

19

Reading in Z axis changes

from +1g ±10% to -1g

±10% when sensor is

flipped.

1. Put the device on a straight surface and read output with

oscilloscope

2. Flip device and read output again, converting from two’s

complement

3. Change in Z axis output should be indicative of 180

degree turn

N

Table 9 System Requirements and Verifications for IR LED

Requirement Verification

Status

(Y or N)

Must emit IR reference

frequency

1. Set up IR receiver and IR LED circuits

2. Probe IR receiver output pin

3. Ensure that pin produces signal verifying a wavelength of

940 ± 20nm is detected

Y

Table 10 System Requirements and Verifications for IR Receiver

Requirement Verification Status
(Y or N)

The directivity angle should

allow for a tolerance of 40°

± 5°

1. Power sensor on breadboard and connect to oscilloscope

2. Measure out 40° area

3. Sweep a notebook through area

4. Ensure oscilloscope signal indicates an obstruction

Y

20

Appendix B. Microcontroller Code

/*Define Libraries*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <sys/time.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_sleep.h"
#include "esp_log.h"
#include "rom/uart.h"
#include "driver/rtc_io.h"
#include "driver/gpio.h"
#include "sdkconfig.h"
#include "driver/ledc.h"
#include "esp_err.h"
#include "esp_system.h"
#include "nvs_flash.h"
#include "freertos/semphr.h"
#include "driver/adc.h"
#include "esp_adc_cal.h"
#include "driver/uart.h"
#include "soc/uart_struct.h"
#include "string.h"

/*Define Constants*/
/*Constants for TIMERS -> PWM SIGNAL and LEDs OUTPUT PIN*/
#define LEDC_HS_TIMER LEDC_TIMER_0
#define LEDC_HS_MODE LEDC_HIGH_SPEED_MODE
#define LEDC_HS_CH0_GPIO (18) /*GREEN*/
#define LEDC_HS_CH0_CHANNEL LEDC_CHANNEL_0
#define LEDC_HS_CH1_GPIO (19) /*BLUE*/
#define LEDC_HS_CH1_CHANNEL LEDC_CHANNEL_1
#define LEDC_HS_CH2_GPIO (4) /*RED*/
#define LEDC_HS_CH2_CHANNEL LEDC_CHANNEL_2
#define LEDC_TEST_CH_NUM (3) /*Number of LED*/
#define LEDC_DUTY_BLINK (4000) /*Bright BLINK*/
#define LEDC_DUTY_CSTN (8000) /*Bright CONSTANT*/
#define LEDC_DUTY_ZERO (0) /*Bright OFF*/

/*Button PIN and level to compare*/
#define BUTTON_GPIO_NUM_DEFAULT 13
#define BUTTON_WAKEUP_LEVEL_DEFAULT 0 /*Button connected to high, compare with low = 0*/

21

#define DEFAULT_VREF 1100 //Use adc2_vref_to_gpio() to obtain a better estimate
#define NO_OF_SAMPLES 100 //Multisampling

#define TXD_PIN (GPIO_NUM_16)
#define RXD_PIN (GPIO_NUM_5)

struct LEDs{
 int LED_number;
 int blink;
};

static esp_adc_cal_characteristics_t *adc_chars;
static const adc_channel_t channel = ADC_CHANNEL_6; //GPIO34 if ADC1
static const adc_atten_t atten = ADC_ATTEN_DB_11;
static const adc_unit_t unit = ADC_UNIT_1;

static const int RX_BUF_SIZE = 1024;

void LED_control_ON(ledc_channel_config_t ledc_channel[], struct LEDs LED_number){
 if(LED_number.blink){
 /*LED ON*/
 ledc_set_duty(ledc_channel[LED_number.LED_number].speed_mode,
ledc_channel[LED_number.LED_number].channel, LEDC_DUTY_BLINK); /*Set PWM signal*/
 ledc_update_duty(ledc_channel[LED_number.LED_number].speed_mode,
ledc_channel[LED_number.LED_number].channel); /*Update PWM signal*/
 }
 else{
 /*LED ON*/
 ledc_set_duty(ledc_channel[LED_number.LED_number].speed_mode,
ledc_channel[LED_number.LED_number].channel, LEDC_DUTY_CSTN); /*Set PWM signal*/
 ledc_update_duty(ledc_channel[LED_number.LED_number].speed_mode,
ledc_channel[LED_number.LED_number].channel); /*Update PWM signal*/

 }
}
void LED_control_OFF(ledc_channel_config_t ledc_channel[], struct LEDs LED_number){
 /*LED OFF*/
 int i;
 for(i=0; i<3; i++){
 LED_number.LED_number = i;
 ledc_set_duty(ledc_channel[LED_number.LED_number].speed_mode,
ledc_channel[LED_number.LED_number].channel, LEDC_DUTY_ZERO); /*Set PWM signal*/
 ledc_update_duty(ledc_channel[LED_number.LED_number].speed_mode,
ledc_channel[LED_number.LED_number].channel); /*Update PWM signal*/
 }
 vTaskDelay(pdMS_TO_TICKS(500));
}
static void check_efuse(){

22

 //Check TP is burned into eFuse
 if (esp_adc_cal_check_efuse(ESP_ADC_CAL_VAL_EFUSE_TP) == ESP_OK) {
 printf("eFuse Two Point: Supported\n");
 } else {
 printf("eFuse Two Point: NOT supported\n");
 }

 //Check Vref is burned into eFuse
 if (esp_adc_cal_check_efuse(ESP_ADC_CAL_VAL_EFUSE_VREF) == ESP_OK) {
 printf("eFuse Vref: Supported\n");
 } else {
 printf("eFuse Vref: NOT supported\n");
 }
}
static void print_char_val_type(esp_adc_cal_value_t val_type){
 if (val_type == ESP_ADC_CAL_VAL_EFUSE_TP) {
 printf("Characterized using Two Point Value\n");
 } else if (val_type == ESP_ADC_CAL_VAL_EFUSE_VREF) {
 printf("Characterized using eFuse Vref\n");
 } else {
 printf("Characterized using Default Vref\n");
 }
}
int get_battery_level(){
 uint32_t adc_reading = 0;
 //Multisampling
 for(int i = 0; i < NO_OF_SAMPLES; i++){
 if(unit == ADC_UNIT_1){
 adc_reading += adc1_get_raw((adc1_channel_t)channel);
 }
 else{
 int raw;
 adc2_get_raw((adc2_channel_t)channel, ADC_WIDTH_BIT_12, &raw);
 adc_reading += raw;
 }
 }
 adc_reading /= NO_OF_SAMPLES;
 //Convert adc_reading to voltage in mV
 uint32_t voltage = esp_adc_cal_raw_to_voltage(adc_reading, adc_chars);
 return voltage;
}

int wifi_connection(){
 int64_t t_before_us = esp_timer_get_time();
 int64_t t_after_us = esp_timer_get_time();
 do {
 vTaskDelay(pdMS_TO_TICKS(10));
 t_after_us = esp_timer_get_time();

23

 } while ((t_after_us - t_before_us)<5000000);
 static int i=0;

 if(i==0){
 i = 1;
 }
 else{
 i = 0;
 }
 return i;
}
void init() {
 const uart_config_t uart_config = {
 .baud_rate = 115200,
 .data_bits = UART_DATA_8_BITS,
 .parity = UART_PARITY_DISABLE,
 .stop_bits = UART_STOP_BITS_1,
 .flow_ctrl = UART_HW_FLOWCTRL_DISABLE
 };
 uart_param_config(UART_NUM_1, &uart_config);
 uart_set_pin(UART_NUM_1, TXD_PIN, RXD_PIN, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);
 // We won't use a buffer for sending data.
 uart_driver_install(UART_NUM_1, RX_BUF_SIZE * 2, 0, 0, NULL, 0);
}

int sendData(const char* logName, const char* data){
 const int len = strlen(data);
 const int txBytes = uart_write_bytes(UART_NUM_1, data, len);
 ESP_LOGI(logName, "Wrote %d bytes:\t%s", txBytes, data);
 return txBytes;
}

/*Main Function*/
void app_main(){
/*Define Variables*/
 int status = 1, voltage, connected = 0, succes;
 struct LEDs LED_contoller;
 int no_change=1, tof=0, IMU=0, turn=0;

 /*Configure the button GPIO as input, enable wakeup */
 const int button_gpio_num = BUTTON_GPIO_NUM_DEFAULT;
 const int wakeup_level = BUTTON_WAKEUP_LEVEL_DEFAULT;
 gpio_config_t config = {
 .pin_bit_mask = BIT64(button_gpio_num),
 .mode = GPIO_MODE_INPUT
 };
 ESP_ERROR_CHECK(gpio_config(&config));
 gpio_wakeup_enable(button_gpio_num,

24

 wakeup_level == 0 ? GPIO_INTR_LOW_LEVEL : GPIO_INTR_HIGH_LEVEL);

 int ch;
 /*Prepare and set configuration of timers that will be used by LED Controller*/
 ledc_timer_config_t ledc_timer = {
 .duty_resolution = LEDC_TIMER_13_BIT, // resolution of PWM duty
 .freq_hz = 38000, // frequency of PWM signal
 .speed_mode = LEDC_HS_MODE, // timer mode
 .timer_num = LEDC_HS_TIMER // timer index
 };
 // Set configuration of timer0 for high speed channels
 ledc_timer_config(&ledc_timer);

 /*Prepare individual configuration for each channel of LED Controller by selecting:
 * - controller's channel number
 * - output duty cycle, set initially to 0
 * - GPIO number where LED is connected to
 * - speed mode, either high or low
 * - timer servicing selected channel
 * Note: if different channels use one timer, then frequency and bit_num of these channels will be
the same*/
 ledc_channel_config_t ledc_channel[LEDC_TEST_CH_NUM] = {
 {
 .channel = LEDC_HS_CH0_CHANNEL,
 .duty = 0,
 .gpio_num = LEDC_HS_CH0_GPIO,
 .speed_mode = LEDC_HS_MODE,
 .hpoint = 0,
 .timer_sel = LEDC_HS_TIMER
 },
 {
 .channel = LEDC_HS_CH1_CHANNEL,
 .duty = 0,
 .gpio_num = LEDC_HS_CH1_GPIO,
 .speed_mode = LEDC_HS_MODE,
 .hpoint = 0,
 .timer_sel = LEDC_HS_TIMER
 },
 {
 .channel = LEDC_HS_CH2_CHANNEL,
 .duty = 0,
 .gpio_num = LEDC_HS_CH2_GPIO,
 .speed_mode = LEDC_HS_MODE,
 .hpoint = 0,
 .timer_sel = LEDC_HS_TIMER
 },
 };
 // Set LED Controller with previously prepared configuration

25

 for (ch = 0; ch < LEDC_TEST_CH_NUM; ch++) {
 ledc_channel_config(&ledc_channel[ch]);
 }

 //Check if Two Point or Vref are burned into eFuse
 check_efuse();

 //Configure ADC
 if (unit == ADC_UNIT_1) {
 adc1_config_width(ADC_WIDTH_BIT_12);
 adc1_config_channel_atten(channel, atten);
 } else {
 adc2_config_channel_atten((adc2_channel_t)channel, atten);
 }

 //Characterize ADC
 adc_chars = calloc(1, sizeof(esp_adc_cal_characteristics_t));
 esp_adc_cal_value_t val_type = esp_adc_cal_characterize(unit, atten, ADC_WIDTH_BIT_12,
DEFAULT_VREF, adc_chars);
 print_char_val_type(val_type);

 printf("\t\tMOUSR SYSTEM INITIAL --> STATUS : POWER ON\n");
 LED_contoller.LED_number = 0; /*LED 0*/
 LED_control_ON(ledc_channel, LED_contoller);

 esp_sleep_enable_gpio_wakeup(); /*Configuration WAKE_UP*/

 init(); /*Initialize UART*/
 static const char *TX_TASK_TAG = "TX_TASK";
 esp_log_level_set(TX_TASK_TAG, ESP_LOG_INFO);

 while(true) {
 if(connected){
 LED_contoller.LED_number = 0;
 LED_contoller.blink = 0;
 LED_control_ON(ledc_channel, LED_contoller);

 if(no_change){ /*No detection --> Move Forward*/
 printf("MOVE FORWARD\n");
 sendData(TX_TASK_TAG, "L+5");
 sendData(TX_TASK_TAG, "R+5");
 vTaskDelay(1000 / portTICK_PERIOD_MS);
 no_change = 0;
 }
 else{
 if(tof){
 printf("TURN\n");

26

 if(turn){
 sendData(TX_TASK_TAG, "L+3");
 sendData(TX_TASK_TAG, "R+7");
 vTaskDelay(1000 / portTICK_PERIOD_MS);
 no_change = 1;
 turn = 0;
 }
 else{
 sendData(TX_TASK_TAG, "L+7");
 sendData(TX_TASK_TAG, "R+3");
 vTaskDelay(1000 / portTICK_PERIOD_MS);
 no_change = 1;
 turn = 1;
 }
 }
 else{
 if(IMU){
 printf("STOP MOTORS\n");
 sendData(TX_TASK_TAG, "L+0");
 sendData(TX_TASK_TAG, "R+0");
 vTaskDelay(5000 / portTICK_PERIOD_MS);
 no_change = 1;
 }
 }
 }
 }
 else{
 LED_contoller.LED_number = 0;
 LED_contoller.blink = 1;
 LED_control_ON(ledc_channel, LED_contoller);
 }
 if(rtc_gpio_get_level(button_gpio_num) == wakeup_level){
 /* Get timestamp before entering sleep */
 int64_t t_before_us = esp_timer_get_time();
 do {
 vTaskDelay(pdMS_TO_TICKS(10));
 } while (rtc_gpio_get_level(button_gpio_num) == wakeup_level);
 /* Get timestamp after waking up from sleep */
 int64_t t_after_us = esp_timer_get_time();

 /*MODES*/
 printf("%lld\n", (t_after_us-t_before_us));

 if((t_after_us-t_before_us) >= 100000 && (t_after_us-t_before_us) < 1000000 && status){
 printf("\t\tUPDATE STATUS: MODE BATERRY STATUS\n");
 voltage = get_battery_level();
 LED_control_OFF(ledc_channel, LED_contoller);

27

 if(voltage <= 1100){
 printf("\t\tLOW BATTERY --> PLEASE CHARGE");
 LED_contoller.LED_number = 2;
 LED_contoller.blink = 1;
 LED_control_ON(ledc_channel, LED_contoller);
 vTaskDelay(pdMS_TO_TICKS(1000));
 LED_control_OFF(ledc_channel, LED_contoller);
 }
 else{
 if(voltage <= 2200 && voltage > 1100){
 printf("\t\tMEDIUM BATTERY");
 LED_contoller.blink = 1;
 LED_contoller.LED_number = 2;
 LED_control_ON(ledc_channel, LED_contoller);
 LED_contoller.LED_number = 0;
 LED_control_ON(ledc_channel, LED_contoller);
 vTaskDelay(pdMS_TO_TICKS(1000));
 LED_control_OFF(ledc_channel, LED_contoller);
 }
 else{
 if(voltage > 2200){
 printf("\t\tFULL BATTERY");
 LED_contoller.LED_number = 0;
 LED_contoller.blink = 1;
 LED_control_ON(ledc_channel, LED_contoller);
 vTaskDelay(pdMS_TO_TICKS(1000));
 LED_control_OFF(ledc_channel, LED_contoller);
 }
 }
 }
 printf("\nVoltage: %dmV\n", voltage);
 }
 else{
 if((t_after_us-t_before_us) >= 1000000 && (t_after_us-t_before_us)< 2500000){ /*PARING
MODE*/
 printf("\t\tUPDATE STATUS : PARING MODE\n");
 LED_control_OFF(ledc_channel, LED_contoller);
 LED_contoller.LED_number = 1;
 LED_contoller.blink = 1;
 LED_control_ON(ledc_channel, LED_contoller);
 succes = wifi_connection();
 if(succes){
 printf("WIFI CONNECTED\n");
 connected = 1;
 LED_control_OFF(ledc_channel, LED_contoller);
 LED_contoller.LED_number = 0;
 LED_contoller.blink = 1;
 LED_control_ON(ledc_channel, LED_contoller);

28

 vTaskDelay(pdMS_TO_TICKS(1000));
 LED_control_OFF(ledc_channel, LED_contoller);
 }
 else{
 printf("WIFI NO-CONNECTED\n");
 connected = 0;
 LED_control_OFF(ledc_channel, LED_contoller);
 LED_contoller.LED_number = 2;
 LED_contoller.blink = 1;
 LED_control_ON(ledc_channel, LED_contoller);
 vTaskDelay(pdMS_TO_TICKS(1000));
 LED_control_OFF(ledc_channel, LED_contoller);
 }
 }
 else{
 if((t_after_us-t_before_us) >=2500000 || status){
 if(status){
 LED_control_OFF(ledc_channel, LED_contoller);
 LED_contoller.LED_number = 2;
 LED_control_ON(ledc_channel, LED_contoller);
 vTaskDelay(1000 / portTICK_PERIOD_MS);
 LED_control_OFF(ledc_channel, LED_contoller);
/*Delay 1 second*/
 printf("\t\tUPDATE STATUS : POWER OFF\n");
 status = 0;
 /* Enter sleep mode */
 uart_tx_wait_idle(CONFIG_CONSOLE_UART_NUM);
 esp_light_sleep_start();
 printf("\t\tUPDATE STATUS : POWER ON\n");
 status = 1;
 }
 else{
 printf("\t\tUPDATE STATUS : POWER ON\n");
 status = 1;
 }
 }
 }
 }
 }
}
}

29

Appendix C. Phone Application Code

Main Code:

package com.example.mousrapp;

import android.content.Intent;

import android.os.AsyncTask;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.util.Log;

import android.view.View;

import android.widget.Button;

import android.widget.ImageButton;

import android.widget.Toast;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.OutputStreamWriter;

import java.io.PrintWriter;

import java.net.InetAddress;

import java.net.ServerSocket;

import java.net.Socket;

public class MainActivity extends AppCompatActivity {

 private static Socket sock;

 private static ServerSocket serversock;

 private static PrintWriter printWriter;

 private static final String SERVER_IP = "170.20.10.9"; //ESP IP address

 public static final int SERVER_PORT = 1234;

 TcpClient client;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 new ConnectTask().execute("");

 /*

 array for the return messages

 0: color

30

 1: Day

 2: Hour

 3: Minute

 4: AM/PM

 5: Connect Messages

 */

 String[] messages = new String[6];

 //get returned messages

 Bundle extras = getIntent().getExtras();

 if (extras != null) {

 for (String key : extras.keySet()) {

 switch(key){

 case "color":

 messages[0] = extras.getString(key);

 break;

 case "Day":

 messages[1] = extras.getString(key);

 break;

 case "Hour":

 messages[2] = extras.getString(key);

 break;

 case "Minute":

 messages[3] = extras.getString(key);

 break;

 case "ampm":

 messages[4] = extras.getString(key);

 break;

 case "connect":

 messages[5] = extras.getString(key);

 default:

 break;

 }

 }

 }

 // send messages to ESP

 for(int key=0; key<messages.length; key++){

 if(messages[key] != null) {

 Log.d("MainActivity","making sure IP is connected");

 Log.d("MainActivity", "Sending message");

 client.sendMessage(messages[key]);

 }

 }

31

 }

 /** Called when the user taps Connection Button */

 public void setWiFi (View view){

 ImageButton btn = (ImageButton) findViewById(R.id.connection_button);

 btn.setOnClickListener(new View.OnClickListener(){

 @Override

 public void onClick(View v) {

 //Launch WiFi Connection Setup

 Intent intent = new Intent(MainActivity.this, connectActivity.class);

 startActivity(intent);

 //startActivityForResult(intent,REQUEST_CODE_WIFI);

 }

 });

 }

 /** called when the user taps Set Schedule Button */

 public void setSchedule(View view){

 Button btn = (Button) findViewById(R.id.sched_button);

 btn.setOnClickListener(new View.OnClickListener(){

 @Override

 public void onClick(View v) {

 //Launch WiFi Connection Setup

 Intent intent = new Intent(MainActivity.this, SetScheduleActivity.class);

 startActivity(intent);

 //startActivityForResult(intent,REQUEST_CODE_SCHED);

 }

 });

 }

 /** called when the user taps Set LED Button */

 public void setLED(View view){

 Button btn = (Button) findViewById(R.id.led_button);

 btn.setOnClickListener(new View.OnClickListener(){

 @Override

 public void onClick(View v) {

 //Launch WiFi Connection Setup

 Intent intent = new Intent(MainActivity.this, SetLEDActivity.class);

32

 startActivity(intent);

 }

 });

 }

 /** called when the user taps Autoplay Button */

 //public void autoPlay(){

 // Button btn = (Button) findViewById(R.id.autoplay_button);

 // btn.setOnClickListener(new View.OnClickListener(){

 // @Override

 // public void onClick(View v) {

 // //Launch WiFi Connection Setup

 // //Intent intent = AutoActivity.makeIntent(MainActivity.this);

 // // startActivityForResult(intent,REQUEST_CODE_AUTO);

 // }

 // });

 //}

 private void showToast(String msg){

 Toast.makeText(this,msg,Toast.LENGTH_SHORT).show();

 }

 public class ConnectTask extends AsyncTask<String, String, TcpClient> {

 @Override

 protected TcpClient doInBackground(String... message) {

 //we create a TCPClient object

 client = new TcpClient(new TcpClient.OnMessageReceived() {

 @Override

 //here the messageReceived method is implemented

 public void messageReceived(String message) {

 //this method calls the onProgressUpdate

 publishProgress(message);

 }

 });

 client.run();

 return null;

 }

 @Override

33

 protected void onProgressUpdate(String... values) {

 super.onProgressUpdate(values);

 //response received from server

 Log.d("test", "response " + values[0]);

 //process server response here....

 }

 }

}

Connect Activity:

package com.example.mousrapp;

import android.Manifest;

import android.app.Activity;

import android.bluetooth.BluetoothAdapter;

import android.bluetooth.BluetoothDevice;

import android.bluetooth.BluetoothManager;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.content.IntentFilter;

import android.os.Build;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.util.Log;

import android.view.View;

import android.widget.AdapterView;

import android.widget.ArrayAdapter;

import android.widget.Button;

import android.widget.EditText;

import android.widget.ListView;

import android.widget.Toast;

import java.nio.charset.Charset;

import java.util.ArrayList;

import java.util.List;

import java.util.Set;

import java.util.UUID;

public class connectActivity extends AppCompatActivity implements

AdapterView.OnItemClickListener{

34

 private static final String TAG = "connectActivity";

 BluetoothAdapter mBluetoothAdapter;

 Button sendbutton;

 EditText editpassword;

 public ArrayList<BluetoothDevice> mDevices = new ArrayList<>();

 public DeviceListAdapter mDeviceListAdapter;

 ListView newDevices;

 private static final UUID MY_UUID_INSECURE = UUID.fromString("8ce255c0-200a-11e0-ac64-

0800200c9a66");

 //BluetoothConnectionService mBluetoothConnection;

 BluetoothDevice mDevice;

 //String ssid = getWiFiName(this);

 private final BroadcastReceiver enableReceiver = new BroadcastReceiver() {

 @Override

 public void onReceive(Context context, Intent intent) {

 String action = intent.getAction();

 if(action.equals(mBluetoothAdapter.ACTION_STATE_CHANGED)){

 final int state =

intent.getIntExtra(BluetoothAdapter.EXTRA_STATE,mBluetoothAdapter.ERROR);

 switch(state){

 case BluetoothAdapter.STATE_OFF:

 Log.d(TAG, " OnReceive: STATE OFF");

 break;

 case BluetoothAdapter.STATE_TURNING_OFF:

 Log.d(TAG, " OnReceive: STATE TURNING OFF");

 break;

 case BluetoothAdapter.STATE_ON:

 Log.d(TAG, " OnReceive: STATE ON");

 break;

 case BluetoothAdapter.STATE_TURNING_ON:

 Log.d(TAG, " OnReceive: STATE TURNING ON");

 break;

 }

 }

 }

 };

35

 private final BroadcastReceiver discoverReceiver = new BroadcastReceiver() {

 @Override

 public void onReceive(Context context, Intent intent) {

 final String action = intent.getAction();

 if(action.equals(BluetoothAdapter.ACTION_SCAN_MODE_CHANGED)){

 final int mode =

intent.getIntExtra(BluetoothAdapter.EXTRA_SCAN_MODE,BluetoothAdapter.ERROR);

 switch(mode){

 case BluetoothAdapter.SCAN_MODE_CONNECTABLE_DISCOVERABLE:

 Log.d(TAG, " discoverReceiver: Discoverability Enabled");

 break;

 case BluetoothAdapter.SCAN_MODE_CONNECTABLE:

 Log.d(TAG, " discoverReceiver: Discoverability Disabled. Able to receive connections");

 break;

 case BluetoothAdapter.SCAN_MODE_NONE:

 Log.d(TAG, " discoverReceiver: Discoverability Disabled. Not able to receive

connections");

 break;

 case BluetoothAdapter.STATE_CONNECTING:

 Log.d(TAG, " discoverReceiver: Connecting...");

 break;

 case BluetoothAdapter.STATE_CONNECTED:

 Log.d(TAG, " discoverReceiver: Connected");

 break;

 }

 }

 }

 };

 private final BroadcastReceiver discoveryReceiver = new BroadcastReceiver() {

 @Override

 public void onReceive(Context context, Intent intent) {

 String action = intent.getAction();

 if(action.equals(BluetoothDevice.ACTION_FOUND)){

 BluetoothDevice device = intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);

 mDevices.add(device);

 Log.d(TAG, "OnReceive: " + device.getName() + ": " + device.getAddress());

 mDeviceListAdapter = new DeviceListAdapter(context, R.layout.device_adapter_view,

mDevices);

 newDevices.setAdapter(mDeviceListAdapter);

36

 }

 }

 };

 private final BroadcastReceiver bondReceiver = new BroadcastReceiver() {

 @Override

 public void onReceive(Context context, Intent intent) {

 final String action = intent.getAction();

 if(action.equals(BluetoothDevice.ACTION_BOND_STATE_CHANGED)){

 BluetoothDevice device = intent.getParcelableExtra((BluetoothDevice.EXTRA_DEVICE));

 //device is already bonded

 if(device.getBondState() == BluetoothDevice.BOND_BONDED){

 Log.d(TAG, "bondReceiver: BOND_BONDED");

 }

 //device is bonding

 if(device.getBondState() == BluetoothDevice.BOND_BONDING){

 Log.d(TAG, "bondReceiver: BOND_BONDING");

 }

 //device is breaking bond

 if(device.getBondState() == BluetoothDevice.BOND_NONE){

 Log.d(TAG, "bondReceiver: BOND_NONE");

 }

 }

 }

 };

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_connect);

 mBluetoothAdapter = BluetoothAdapter.getDefaultAdapter();

 newDevices = (ListView) findViewById(R.id.deviceLv);

 mDevices = new ArrayList<>();

 sendbutton = (Button) findViewById(R.id.passwordbutton);

 editpassword = (EditText) findViewById(R.id.editpassword);

 final Intent ret = new Intent(connectActivity.this, MainActivity.class);

37

 //check if device has Bluetooth capabilities

 if(mBluetoothAdapter == null){

 ret.putExtra("connect","Device does not have Bluetooth");

 startActivity(ret);

 }

 //make sure device is Bluetooth enabled

 if(!mBluetoothAdapter.isEnabled()){

 Intent enable = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);

 startActivity(enable);

 IntentFilter enableIntent = new IntentFilter(BluetoothAdapter.ACTION_STATE_CHANGED);

 registerReceiver(enableReceiver, enableIntent);

 }

 //make device discoverable

 Intent discoverable = new Intent(BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE);

 discoverable.putExtra(BluetoothAdapter.EXTRA_DISCOVERABLE_DURATION,300);

 startActivity(discoverable);

 IntentFilter discoverableIntent = new

IntentFilter(mBluetoothAdapter.ACTION_SCAN_MODE_CHANGED);

 registerReceiver(discoverReceiver,discoverableIntent);

 //begin scanning for devices

 if(mBluetoothAdapter.isDiscovering()){

 mBluetoothAdapter.cancelDiscovery();

 }

 mBluetoothAdapter.startDiscovery();

 IntentFilter discoveryIntent = new IntentFilter(BluetoothDevice.ACTION_FOUND);

 registerReceiver(discoveryReceiver, discoveryIntent);

 //pairing

 newDevices.setOnItemClickListener(this);

 sendbutton.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 //get WiFi SSID and password

 String password = editpassword.getText().toString();

 //convert to byte packets

38

 //byte[] ssidbytes = ssid.getBytes(Charset.defaultCharset());

 byte[] passbytes = password.getBytes(Charset.defaultCharset());

 //send values

 //mBluetoothConnection.write(passbytes);

 startActivity(ret);

 }

 });

 }

 @Override

 public void onItemClick(AdapterView<?> adapterView, View view, int i, long l){

 //cancel discovery

 mBluetoothAdapter.cancelDiscovery();

 Log.d(TAG, "onItemClick: device clicked");

 String deviceName = mDevices.get(i).getName();

 String deviceAddress = mDevices.get(i).getAddress();

 Log.d(TAG, "onItemClick: deviceName = " + deviceName);

 Log.d(TAG, "onItemClick: deviceAddress = " + deviceAddress);

 //pair device

 if(Build.VERSION.SDK_INT > Build.VERSION_CODES.JELLY_BEAN_MR2){

 Log.d(TAG, "Trying to pair with " + deviceName);

 mDevice = mDevices.get(i);

 mDevice.createBond();

 /*

 //start bluetooth communication thread

 mBluetoothConnection = new BluetoothConnectionService(this);

 startConnection(mDevice,MY_UUID_INSECURE);

 //get password with alert dialog

 //send over wiFi information

39

 //bytes = password.getBytes(Charset.defaultCharset());

 //mBluetoothConnection.write(bytes);

 */

 }

 }

 //starts communication thread to send WiFi credentials over

 public void startConnection(BluetoothDevice device, UUID uuid){

 Log.d(TAG,"startConnection: Initialize RFCOM Bluetooth Connection");

 //mBluetoothConnection.startClient(device,uuid);

 }

}

Device List Adapter:

package com.example.mousrapp;

import android.bluetooth.BluetoothDevice;

import android.content.Context;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.ArrayAdapter;

import android.widget.TextView;

import org.w3c.dom.Text;

import java.util.ArrayList;

public class DeviceListAdapter extends ArrayAdapter<BluetoothDevice> {

 private LayoutInflater mLayoutInflater;

 private ArrayList<BluetoothDevice> mDevices;

 private int mViewResourceId;

 public DeviceListAdapter(Context context, int tvResouceId, ArrayList<BluetoothDevice> devices){

 super(context,tvResouceId,devices);

 this.mDevices = devices;

 mLayoutInflater = (LayoutInflater)

context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);

 mViewResourceId = tvResouceId;

 }

40

 public View getView(int position, View convertView, ViewGroup parent){

 convertView=mLayoutInflater.inflate(mViewResourceId, null);

 BluetoothDevice device = mDevices.get(position);

 if(device != null){

 TextView deviceName = (TextView) convertView.findViewById(R.id.deviceNameTv);

 TextView deviceAddress = (TextView) convertView.findViewById(R.id.deviceAddressTv);

 if(deviceName != null){

 deviceName.setText(device.getName());

 }

 if(deviceAddress != null){

 deviceAddress.setText(device.getAddress());

 }

 }

 return convertView;

 }

}

Set LED Activity:

package com.example.mousrapp;

import android.content.Context;

import android.content.Intent;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;

import android.widget.AdapterView;

import android.widget.ArrayAdapter;

import android.widget.ListView;

import android.widget.TextView;

import android.widget.Toast;

public class SetLEDActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_set_led);

41

 //create list of colors

 String[] myColors = {"Red", "Green", "Blue", "Yellow", "Purple", "White"};

 //Build Adapter

 ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,

android.R.layout.simple_list_item_1, myColors);

 //Configure ListView

 ListView colorlist = findViewById(R.id.colorsLv);

 colorlist.setAdapter(adapter);

 colorlist.setOnItemClickListener(

 new AdapterView.OnItemClickListener() {

 @Override

 public void onItemClick(AdapterView<?> parent, View view, int position, long id) {

 Intent ret = new Intent(SetLEDActivity.this, MainActivity.class);

 String color = String.valueOf(parent.getItemAtPosition(position));

 ret.putExtra("color",color);

 startActivity(ret);

 }

 }

);

 }

}

Set Schedule Activity:

package com.example.mousrapp;

import android.content.Intent;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;

import android.widget.AdapterView;

import android.widget.ArrayAdapter;

import android.widget.Button;

import android.widget.ListView;

42

public class SetScheduleActivity extends AppCompatActivity {

 String day,hour,minute,ampm;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_set_schedule);

 //create lists of Days, Hours, Minutes,and AM/PM

 String[] myDays = {"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",

"Saturday"};

 String[] myHours = {"1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"};

 String[] myMinutes = {"00", "05", "10", "15", "20", "25", "30", "35", "40", "45", "50", "55"};

 String[] myAMPM = {"AM", "PM"};

 //Build Adapters

 ArrayAdapter<String> day_adapter = new ArrayAdapter<String>(this,

android.R.layout.simple_list_item_1, myDays);

 ArrayAdapter<String> hours_adapter = new ArrayAdapter<String>(this,

android.R.layout.simple_list_item_1, myHours);

 ArrayAdapter<String> minutes_adapter = new ArrayAdapter<String>(this,

android.R.layout.simple_list_item_1, myMinutes);

 ArrayAdapter<String> ampm_adapter = new ArrayAdapter<String>(this,

android.R.layout.simple_list_item_1, myAMPM);

 //Configure ListViews

 ListView day_list = findViewById(R.id.DayList);

 ListView hour_list = findViewById(R.id.HourList);

 ListView minute_list = findViewById(R.id.MinuteList);

 ListView ampm_list = findViewById(R.id.AMPMList);

 day_list.setAdapter(day_adapter);

 hour_list.setAdapter(hours_adapter);

 minute_list.setAdapter(minutes_adapter);

 ampm_list.setAdapter(ampm_adapter);

 day_list.setOnItemClickListener(

 new AdapterView.OnItemClickListener() {

 @Override

 public void onItemClick(AdapterView<?> parent, View view, int position, long id) {

 day = String.valueOf(parent.getItemAtPosition(position));

 }

 }

);

43

 hour_list.setOnItemClickListener(

 new AdapterView.OnItemClickListener() {

 @Override

 public void onItemClick(AdapterView<?> parent, View view, int position, long id) {

 hour = String.valueOf(parent.getItemAtPosition(position));

 }

 }

);

 minute_list.setOnItemClickListener(

 new AdapterView.OnItemClickListener() {

 @Override

 public void onItemClick(AdapterView<?> parent, View view, int position, long id) {

 minute = String.valueOf(parent.getItemAtPosition(position));

 }

 }

);

 ampm_list.setOnItemClickListener(

 new AdapterView.OnItemClickListener() {

 @Override

 public void onItemClick(AdapterView<?> parent, View view, int position, long id) {

 ampm = String.valueOf(parent.getItemAtPosition(position));

 }

 }

);

 final Button set = findViewById(R.id.sched_button);

 set.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 Intent ret = new Intent(SetScheduleActivity.this, MainActivity.class);

 ret.putExtra("Day",day);

 ret.putExtra("Hour",hour);

 ret.putExtra("Minute",minute);

 ret.putExtra("ampm",ampm);

 startActivity(ret);

 }

 });

 }

}

44

Top Client:

package com.example.mousrapp;

import android.util.Log;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.InputStreamReader;

import java.io.OutputStreamWriter;

import java.io.PrintWriter;

import java.net.InetAddress;

import java.net.Socket;

public class TcpClient {

 public static final String SERVER_IP = "192.168.0.100"; //your computer IP address

 public static final int SERVER_PORT = 4444;

 // message to send to the server

 private String mServerMessage;

 // sends message received notifications

 private OnMessageReceived mMessageListener = null;

 // while this is true, the server will continue running

 private boolean mRun = false;

 // used to send messages

 private PrintWriter mBufferOut;

 // used to read messages from the server

 private BufferedReader mBufferIn;

 /**

 * Constructor of the class. OnMessagedReceived listens for the messages received from server

 */

 public TcpClient(OnMessageReceived listener) {

 mMessageListener = listener;

 }

 /**

 * Sends the message entered by client to the server

 *

 * @param message text entered by client

 */

 public void sendMessage(String message) {

 if (mBufferOut != null && !mBufferOut.checkError()) {

 mBufferOut.println(message);

45

 mBufferOut.flush();

 }

 }

 /**

 * Close the connection and release the members

 */

 public void stopClient() {

 // send mesage that we are closing the connection

 sendMessage(Constants.CLOSED_CONNECTION+"Kazy");

 mRun = false;

 if (mBufferOut != null) {

 mBufferOut.flush();

 mBufferOut.close();

 }

 mMessageListener = null;

 mBufferIn = null;

 mBufferOut = null;

 mServerMessage = null;

 }

 public void run() {

 mRun = true;

 try {

 //here you must put your computer's IP address.

 InetAddress serverAddr = InetAddress.getByName(SERVER_IP);

 Log.e("TCP Client", "C: Connecting...");

 //create a socket to make the connection with the server

 Socket socket = new Socket(serverAddr, SERVER_PORT);

 try {

 //sends the message to the server

 mBufferOut = new PrintWriter(new BufferedWriter(new

OutputStreamWriter(socket.getOutputStream())), true);

46

 //receives the message which the server sends back

 mBufferIn = new BufferedReader(new InputStreamReader(socket.getInputStream()));

 // send login name

 sendMessage(Constants.LOGIN_NAME+"Kazy");

 //in this while the client listens for the messages sent by the server

 while (mRun) {

 mServerMessage = mBufferIn.readLine();

 if (mServerMessage != null && mMessageListener != null) {

 //call the method messageReceived from MyActivity class

 mMessageListener.messageReceived(mServerMessage);

 }

 }

 Log.e("RESPONSE FROM SERVER", "S: Received Message: '" + mServerMessage + "'");

 } catch (Exception e) {

 Log.e("TCP", "S: Error", e);

 } finally {

 //the socket must be closed. It is not possible to reconnect to this socket

 // after it is closed, which means a new socket instance has to be created.

 socket.close();

 }

 } catch (Exception e) {

 Log.e("TCP", "C: Error", e);

 }

 }

 //Declare the interface. The method messageReceived(String message) will must be implemented in the

MyActivity

 //class at on asynckTask doInBackground

 public interface OnMessageReceived {

 public void messageReceived(String message);

 }

}

