

Indoor noise monitor

ECE 445 Final Report - Spring 2019
 William Xu, Ziyao Li and Quan Liu

Team 50
TA:Zhen Qin

4/27/19

Abstract

Our device was created with the intention of controlling noise levels in urban apartments. Studies have

shown that noise levels in our living environments greatly affects our health and productivity. Our device

aims to solve that problem with a noise sensor that can give dynamic feedback to residents based on

their noise level. It also expedites the process of noise complaints by directly sending notifications to

landlords or building administrators. Our device is also convenient and portable because it can operate

on battery power, charge safely and is small in size. Overall our device was successful because we could

measure dB SPL with an accuracy of +-5 dB SPL from 200 Hz to 5000 Hz, and our notification and

warning systems worked correctly.

1

Contents
1 Introduction 4

1.1 Objective 4

1.2 Background 4

1.3 High-Level Requirement 5

2 Design 5

2.1 Power Supply 6

2.1.1 Battery Management and Charging 6

2.1.2 Battery/DC Power Adaptor Circuit Separation and Voltage Control 7

2.2 WIFI Module 8

2.2.1 Connecting to WIFI 8

2.2.2 Sending text message notifications 9

2.3 Noise Sensor 9

2.4 Microcontroller 10

2.4.1 Increasing Sampling Rate 11

2.4.2 Converting ADC values to dB SPL 11

2.4.3 Finding the Threshold 12

2.4.4 Sending Warnings and Notifications 12

2.5 Alert System 12

3. Design Verification 13

3.1 Power Supply 13

3.1.1 Battery Management and Charging 13

3.1.2 Battery/DC Power Adaptor Circuit Separation and Voltage Control 14

3.2 Wifi module 14

3.2.1 WIFI IC 14

3.3 Noise Sensor 15

3.3.1 Microphone 15

3.3.2 Amplifier 16

3.4 Alert System 16

3.4.1 Speaker 16

3.4.2 LED lights 17

2

3.5 Control Unit 17

3.5.1 Microcontroller 17

4. Costs 18

4.1 Parts 18

4.2 Labor 18

4.3 Schedule 19

5. Conclusion 19

5.1 Accomplishments 19

5.2 Uncertainties 20

5.3 Ethical considerations 20

5.4 Future work 20

References 21

3

1. Introduction

1.1 Objective
It is significant to maintain acceptable noise levels in crowded areas such as apartments. Some people

prefer quiet environments and are easily disturbed by their neighbors. For instance, when a neighbor is

having a party or playing an instrument, it can be very distracting for their neighbors especially in

apartments with thin walls. Most apartments don’t control the noise well. So we need a product for

landlords to maintain a quiet environment so that tenants will have a better living experience.

Specifically, we need a device to warn the people indoor when they are being too noisy. If they keep

being noisy after several warnings are given, the device will be able to quickly resolve the issue by

automatically notifying the device administrator or landlord.

We have created a device that will give feedback to apartment residents to know how loud they are and

give them a chance to quiet down. Our device is light, portable and safe because it can run on battery

power and has measures to prevent overcharging. The device will also notify the device administrator

through WiFi if they ignore the warnings. We have made this device to be very customizable and

adjustable by offering the landlord many options in how they control their quiet environment. Our

device allows landlords to customize threshold remotely. For example the landlord can change the

average decibel value threshold as well as the amount of time that it is acceptable. The administrator

can also change the amount of warnings that need to be triggered for the device to start sending phone

notifications to indicate that the warnings have been ignored.

1.2 Background
Our inspiration for our project was our realization of how big a problem noise levels could be in urban

environments, and how that noise could affect a person’s health. Numerous studies have been done

which show that urban apartment noise affects both the health and the productivity of its residents. We

have found two different institutions in the Graham Research institute and Berkeley Health who have

conducted studies on apartment noise and found the impact on health. The study from the Grantham

Research Institute highlights the issues of noise, and mentions, “analyze the health effects of residential

noise annoyance using a high quality longitudinal survey of over 5000 adults in the Netherlands between

2007 and 2013.” and finds that “health effects of residential noise annoyance, with neighbour noise

relatively more damaging than street noise” [1]. Another article from Berkeley points out the specific

health effects that residential noise can have such as “stress which, in turn, can increase your heart rate,

cause your blood pressure to rise, slow down digestion” [2]. Clearly this issue is very widespread

especially in urban areas and needs to be addressed.

We have looked at other existing products on the market such as NoiseAware which can sense noise and

send property owners alerts if the noise level exceeds a threshold [3]. We designed our product to be

unique and to have a number of advantages over NoiseAware. First our product is more portable

because our device is capable of running on battery power which makes it easier to move around and

adjust positions. Also our product will be cheaper because it will have a one time hardware cost, while

the NoiseAware has both a hardware cost and a subscription cost. Our product has other advantages

over NoiseAware such as that it can give warnings to the people indoor at first which gives them a

chance to fix the noise problem, whereas the competing product only just sends to the device

4

administrator without a warning. Our product is also better than a decibel meter because it can has a

multitude of features that a decibel meter cannot provide. It can give notifications and warnings through

a wifi connection, adjustable thresholds, and 24 hour monitoring, all features that decibel meter does

not have. Thus, it is necessary for us to build this indoor noise monitor to solve residential noise problem

effectively.

1.3 High-Level Requirements
● Administrators can change thresholds remotely and the device will output light and sound

alarms when threshold is exceeded and will send notifications to the user after multiple

warnings are ignored.

● The device should be able to accurately measure sound levels from 50 dB SPL to 85 dB SPL with

an accuracy of 5 dB SPL.±

● The device should be able to operate on battery power for 24 hours on a full charge.

2 Design
The device has 5 different subsystems: power supply, noise sensor, control unit, alert system, and wifi

module. Power supply powers the rest of the components with 3.3V 0.05V, and it can be charged by±

power adaptor. The ATMEGA328 control unit accepts the sound signals and adjustable parameters like

threshold from the wifi module and controls the alert system. The alert system is driven by the control

unit to give warnings. The wifi module communicates with the control unit to set thresholds and s end

phone notification.

Block Diagram

5

2.1 Power Supply
There are two main requirements for the power circuit design:

1. It should go through a complete fast charging procedure, and will automatically stop charging
and maintain constant voltage when charging voltage reaches 4.20V.

2. It should block battery power supply from supplying device when power adaptor is plugged in.

2.1.1 Battery Management and Charging

At the beginning we plan to accomplish the charging procedure by combining current source and voltage

source simulated by voltage regulator and MOSFET circuit to deliver the battery fast charging current.

However, after testing and measurement, we found that this implementation may not be able to deliver

stable charging current to the battery and cannot guarantee charging termination when the battery

reaches desired voltage level. Most importantly, this circuit has very high power consumption and

generates extremely high amount of heat, which may have serious potential safety risks. Thus, we

changed our design and use an MCP73833 IC chip to detect and automatically control the charging

process of the battery, and a 100nF thermistor to serves as the safety protection in case of unexpected

overcurrent and overheating.

MCP73833 IC Chip Thermistor

This IC chip can deliver a maximum constant current of 1A and is optimal for charging 2000mah battery

or below. Another noticeable point is that not thermistor with any capacitance can fit into the chip’s

circuit since some capacitance may lead to unexpected operation state of the chip or cannot perform

charging correctly, and the thermistor currently using is carefully chosen after tests.

2.1.2 Battery/DC Power Adaptor Circuit Separation and Voltage Control
In order to accomplish the goal of blocking battery power supply when the power adaptor is plugged in,

we use a single schottky diode connecting before the voltage regulator in the battery line. This diode

serves to create a negative voltage difference and blocks the forward current offered by the battery

when the power adaptor is plugged in. Both the battery line as well as the power adaptor line goes to a

3.3V LDO voltage regulator. The voltage regulator will take either 5V from power adaptor or 3.7V from

battery as input and output a constant 3.3V to the rest of the device.

6

3.3V 500mA LDO Voltage Regulator (TC1262) 100V 30A Schottky Diode

Although there are LDO voltage regulators which can offer smaller drop out voltage, their maximum

allowable current is too small and may cause lack of power to the microcontroller chip. Hence we select

this voltage regulator which can offer a drop out voltage of less than 0.3V under the maximum 500mA

current.

Schematic of the whole power supply circuit

7

2.2 WIFI MODULE
Our wifi module uses the ESP8266 chip to connect to a wireless network. We have created an AWS EC2

NodeJS server to store the threshold values that can be set remotely by the the device

administrator using Postman, a HTTP request sender. ESP8266 will request the threshold

values using GET HTTP request, and when the threshold values are exceeded multiple

times, the wifi chip will send a request to the AWS server so that a text message

notification should be sent to the device administrators phone.

Communication block chart

2.2.1 Connecting to WIFI
One of the most important parts for device to work is to make sure our ESP8266 chip can connect to

WIFI. At first we tried to flash the ESP8266 with AT command firmware so that the Wifi connection and

HTTP request can be conducted by simple AT command like “AT+CWMODE=1”,

“AT+CWJAP="wifiname","password” and AT+CIPSTART=“TCP”,”ip address”,port1, port2. So the way to

control ESP8266 is to send a AT command from ATMEGA328P to ESP8266 through serial

communication.

However, during the HTTP request, the message response from ESP8266 contained lots of unreadable

characters. As a result, this communication method didn’t work.

Design alternatives:

To solve this problem we decided to program the ESP8266 independently. The following code was

written to try to connect to the network that is stated in the const ssid and uses the password values to

login. We needed to verify that our chip was capable of connecting to wireless networks.

8

ESP8266 code for WiFi access

After successfully connecting to a wireless hotspot that we setup with our phone, we send HTTP GET

request to obtain the threshold stored in the server.

ESP8266 code for HTTP GET request

2.2.2 Sending text message notification

When the threshold is exceeded three times or some other value that the device administrator decides,

we have to send a phone text message notification. To do this we programed the ESP8266 to listen for

ATmega328P, once ATmega328 sent a signal to ESP8266, ESP8266 sent a HTTP request to the NodeJS

server. Then NodeJS server used the NEXMO Communications API to send text message notifications to

a phone.

2.3 Noise Sensor
The noise sensor accepts sound signal and outputs amplified analog signals to be processed by the

microcontroller. The noise sensor contains a CZN-15E electret microphone and a LM358P amplifier. The

purpose of using an amplifier is that the amplitude of microphone’s output is not big enough for the

analog to digital convertor in the microcontroller to distinguish. For instance, the amplitude of a sound

wave of 60 SPL could have a ADC reading of 10 and a sound wave of 80 SPL could have a ADC reading ot

12. As a result, an amplifier is needed to amplify the amplitude so the amplitude can be distinguished by

the ADC for further processing.

9

As shown in the figure below, the microphone in the left accepts sound signal as input and outputs

voltages in the right of the capacitor. Then the signal is amplified by the LM358P amplifier by setting the

resistor RIN = 1k ohms and RF = 47K ohms. Thus, the amplifier has a gain of 48 as calculated below:

8A = V in
V out = 1 + Rf

Rin = 1 + 1k ohms
47k ohms = 4

Schematic of microphone and amplifier circuit

2.4 Microcontroller
Microcontroller accepts noise threshold from the WiFi chip, accepts sound signals from the noise sensor,

and drives the alert system to send warnings. As shown in the figure below, there is a 16MHz crystal and

2 20pF capacitors as outside clock for the ATMEGA328P chip to operate. It also communicates with the

ESP8266 WiFI chip through TX/RX serial communication. It accepts sound signals in its analog port A0.

Schematic of Microcontroller and ESP8266

10

2.4.1 Increasing Sampling Rate
Originally our ATmega328P is only able to sample audio from the analogRead function at 9600Hz. This is

not enough to measure the sound waves with higher frequency.

Design alternative: In order to increase the sampling rate to analyze the human hearable sound with

frequency range 20 - 20,000Hz, we first disabled the analogRead function by manipulating some

registers in ATmega328P, then we directly read the ADC value from analog port during interrupt

routines[4]. As a result, the sampling rate was increased to 38.5kHz, which made it possible to analyze

the sound with frequency up to 19.25kHz.

2.4.2 Converting ADC values to dB SPL
After we received the ADC readings and we converted them to dB SPL. First step was calibration with a

real decibel meter. Under a 500 Hz sine wave, we recorded the ADC readings and the corresponding dB

SPL values in the decibel meter. Then we used 8-order polynomial fitting to calculate the relationship

between ADC and db SPL in the figure below.

Polynomial fitting of ADC vs dB SPL

In addition, since the decibel meter utilized A-weighting and outputed different dB SPL value as the

frequency changed, and sensitivity of microphone also changed as different frequency, we need to

compensate the calculated dB SPL in different frequencies. So we recorded different frequency and its

corresponding dB SPL of decibel meter. Then we did polynomial fitting on it and found that the shape is

same for different volumes, meaning that it was a reliable fitting of frequency vs dB SPL. In order to

make use of the polynomial fitting below to compensate for different frequencies, first we used the

fitting above to convert ADC to dB SPL, then we measure the current frequency and calculate the ratio

11

of the dB SPL to the dB SPL at 500 Hz, the baseline frequency. After that we multiply the db SPL by the

ratio to get the final dB SPL values.

Polynomial fitting of frequency vs dB SPL

2.4.3 Finding the Threshold
Our threshold is a decibel value average that extends over a period of time. An example of this threshold

would be 80 dB SPL over 10 seconds which means that the user must not exceed an average of 80 dB

SPL over the 10 seconds. We use the Running Average library to calculate this. In our case we created an

array of size 100, and since we want 10 seconds, we feed the array with a new value every 1/10 of a

second. When the array is full we pop out the oldest value from the array while inserting the new value

and we calculate the average to check if it over the dB SPL threshold. This way we can find the average

of every possible interval.

2.4.4 Sending warnings & notifications
Everytime the threshold is exceeded, ATmega328P drives LED light and a buzzer. We decided that after a

warning is sent, the device would have a cooldown period to give the users time to quiet down. After

the cooldown period, it restarted measurements.

Once several warnings have been sent, ATmega328P sends a signal to ESP8266 to send a request for text

message notification.

2.5 Alert System
The alert system contains LEDs and a buzzer. At first we used a passive buzzer and drived it with PWM

waves, but the voltage is not high enough when powered by the power module.

Design alternative: We replaced the passive buzzer with an active buzzer which output sounds given a

steady voltage.

12

3. Design Verification

3.1 Power Supply
Verification of power supply circuit involves measuring voltage, current, and checking operation state.

3.1.1 Battery Management and Charging

For fast charging a 3.7V 2000mah battery with a constant current of 1A, the estimated charging time

should be around:

 000mA / 1000mA hrs 2 = 2
and the terminated constant voltage level should be at 4.2V in theory. However, after testing we found

that the actual charging time is about 4 hours, which is significantly larger than the estimated time.

Reasons that may explain this: First, the actual charging current may not be able to always maintain at

1A of full current due to the limitation of chip itself, or the built-in PCM of the li-ion battery which may

restrict the current. Second, the charging of li-ion battery may goes through a constant voltage stage

which we cannot identify that by observing the display LEDs, and the current during this stage is

comparatively small. The terminate voltage to stay constant is measured to be 4.175V.

Requirement Verification Verification
status

(Y or N)

1. Goes through a fast
charging procedure and
charge the battery to
the desired voltage
within specific time.

2. Automatically terminate
charging as soon as the
charging voltage
reaches 4.2V and keep
the voltage constant.

1. i. Connect the adaptor to the charging circuit
and connect an empty battery to the output
of the IC chip.

ii. Connect a voltmeter in parallel with the
battery to measure the charging voltage
across the battery until the display LED of the
IC chip lights up green. Record the time.

2. i. Connect the adaptor to the charging circuit
and connect an almost full battery to the
output of the IC chip.

ii. Connect a voltmeter in parallel with the
battery to measure the charging voltage
across it until the display LED lights up green.
Observe the voltage across it to see whether
it stays at the desired constant value.

1. Y

2. Y

13

3.1.2 Battery/DC Power Adaptor Circuit Separation and Voltage Control

The power circuit should instantaneously block the power supply from battery once the power adaptor
is plugged in. In other words, there should be no current flowing through the battery line once the
power adaptor is plugged in. After measurement, there is no forward current flowing through the
battery line with a very tiny reverse current of about -1.3uA.

Requirement Verification Verification
status

(Y or N)

1. Block the battery power
supply to the rest of the
device and no current
flowing through the
battery line.

1. i. First unplug the power adaptor and only
connect the battery to the power circuit.

ii. Connect an amp meter in series right after
the battery to measure the current flowing
through the battery line. Record the current.

iii. Next plug in the power adaptor and
connect it to the power circuit. Keep the
battery connected.

iv. Use the amp meter to measure the
current flowing through the battery line
after the power adaptor is plugged in.
Record the current.

1. Y

3.2 Wifi module
The verification of WiFi module involves the individual testing of ESP8266 and integration testing with

the AWS EC2 node js server.

3.2.1 WIFI IC

Requirement Verification Verification
status

(Y or N)

1. The wifi IC must be able
to receive threshold
data from the AWS
nodeJS server while
connected to the
wireless network

1. A. Program the ESP8266 to connect to wifi
network.
B. Send a HTTP get request to the AWS
server. Check whether we receive the
request from the ESP8266 in the server
C. Check that the correct threshold is
received by ESP8266 by printing it to
terminal

1. Y

14

2. The wifi IC’s UART_RXD

and UART_TXD should
function properly.

3. The WIFI IC needs to

send a HTTP request to
the AWS nodeJS server
so that the server
responds to send a text
message to the user’s
phone

2. A. Connect ESP8266 to ARDUINO UNO

board with its URXD and UTXD port.
B. Send AT commands from the ARDUINO
UNO board to the wifi IC ESP8266 through
UART and see if the ESP8266 sends a
response back [5]

3. A.Connect ESP8266 to a wireless network
B.Send an HTTP set request to the AWS
server and see if the server sends a
response that it has been received.
C. See if the server responds by sending the
text message notification to the phone

2. Y

3. Y

Overall, we were able to verify that the wifi chip could receive the threshold. We used Postman, a HTTP
request sender, to add a threshold value to retrieve, then we were able to see through the Arduino
console that our device retrieved the same value that we set through POSTMAN. We also saw that our
wifi chip was able to send request to our AWS server, and the server successfully sent a text message to
our phone through NEXMO communication API.

3.3 Noise Sensor
This module contains microphone and amplifier. The amplifier will amplify the output of microphone

and feed it into the microcontroller which contains an ADC. The digital signals will be processed by the

control unit to calculate the noise levels.

3.3.1 Microphone

The microphone is a electret microphone(CZN-15E). It has -38 dBV sensitivity (1 kHz, 94 dB SPL) and 1±

dB sensitivity tolerance.

Requirements Verification Verification
status

(Y or N)

1. The microphone should
have -38 dBV sensitivity
(1 kHz and 94 dB SPL)
and 1 dB sensitivity±
tolerance

1. A. Use signal generator to output 1 kHz
sine wave in 94 dB SPL level
B. Use oscilloscope to measure the
amplitude of the analog output of
microphone and calculate difference.

1. Y

After using a signal generator to play a 1 kHz sine wave at 94 dB SPL, we were able to see using an

oscilloscope that the analog output of microphone has 0.012 volts (RMS) which means -38.416 dBV

sensitivity.

15

3.3.2 Amplifier

For the amplifier after extensive testing, we decided to go with a gain of 48 using a 47k ohm resistor for

Rf and a 1k ohm resistor for Rin. We tested multiple gains for the circuit, but it seemed we needed at

least 48 gain to get a reasonable output to process with our polynomial fitting for calculating dB SPL. The

output of the amplifier will go to the ADC of microcontroller.

Requirements Verification Verification
status

(Y or N)

1. The amplifier should
produce a gain of 48 to
produce the desired
strength output

1.A.Give the amplifier a sine wave with 0.01 V
amplitude
B.Use oscilloscope to test if the amplitude increase
0.48 V

1. Y

In our testing, when inputting a sine wave with a 0.01 V amplitude, we were able to observe that the

amplitude output on the oscilloscope had an amplitude of 0.49V which is very close to the 48 gain that

we were trying to achieve.

3.4 Alert System
Alert system contains a speaker and LED lights. The microcontroller will output analog wave to drive the

speaker and LEDs when the sound thresholds are exceeded. The purpose is to make people indoor

aware that they are being too loud.

3.4.1 Speaker

The speaker will create some kind of sound alarm and is driven by the microcontroller. We found the

speaker to be much louder than we needed (3.3V), so way above 80 dB, but we were able to control the

voltage given to the speaker to make it not so loud.

Requirement Verification Verification
status

(Y or N)

1. The speaker should be
able to output a sound
of 80 5 dB SPL±

1. A.Deliver 2.2 V to the speaker from signal
generator.
B.Measure the dB SPL with a sound meter
to verify that it is 80 dB SPL.

1. Y

Originally the output of the buzzer produced a sound with a decibel value of 103 dB SPL, but by lowering

the input voltage to 2.2V we were able to lower the sound level to 80 dB SPL.

16

3.4.2 LED lights

The LED lights, driven by the microcontroller, will light up to a let people indoor know that they are

creating too much noise.

Requirements Verification Verification
status

(Y or N)

1. The LEDs should light up
given 3.3V

1. A.Connect the LEDs with the output of a
signal generator
B.Hard code 3.3V analog output from
signal generator to see if the LEDs light up

1. Y

3.5 Control Unit
The control unit will handle all the calculations of when to set certain thresholds of sound levels, when

to give warnings, and when to notify the device administrator. Verification is shown in the following.

3.5.1 Microcontroller

The microcontroller we will be using is the ATmega328. It calculates the dB SPL with the polynomial

fitting formula we give it, and then checks if the noise threshold is exceeded. It also drives the LEDs and

speaker with analog wave. In addition, it will use UART to connect and communicate with the wifi

module ESP8266 to accept threshold parameters and send notifications.

Requirements Verification Verification
status

(Y or N)

1. The microcontroller
should be able to
communicate with
other device using UART

2. The microcontroller
should be able to
output analog output
through its PWM port

3. The microcontroller
should be able to
sample audio at 38.5
kHz

1. A. Connect ARDUINO UNO board to
ATMEGA328 with UART.
B. Send commands using UART from the
microcontroller(ATMEGA328) to the
ARDUINO UNO board and see if the the
microcontroller sends a response back [5]

2. A.Hard code to send analog output
through the PWM port
B.Use oscilloscope to measure the output
signal to check if it match the set
parameters

3. A.Set a timer in arduino to count 1
millisecond.
B.Create a counter and add 1 to the
counter in the interrupt routine because

1. Y

2. Y

3. Y

17

that is when the incoming audio is updated
to the ADC.
C. Check that the counter is around 38500,
which would mean 38.5 kHz because a
millisecond is 1/1000 of a second

In our testing we were able to successfully communicate with the ESP8266 using AT Commands. We

used the function AnalogWrite(port, duty cycle) and connected the analog port to the oscilloscope and

we were able to observe a steady square wave with the specified duty cycle that had a peak value of

3.3V. With our counter check to see if we could sample at 38.5 kHz, we observed the counter going to

38300 which indicates that the ATmega was able to sample the audio at 38.3 kHz.

4. Costs & Schedule

4.1 Parts
Parts Costs

Part Manufacturer Actual Cost ($)
WIFI IC ESP8266 Espressif Systems $6.95

ATMEGA328P Atmel $1.96
CZN-15E Microphone Cylewet $6.99

LM358P amplifier Texas Instruments $0.46
 GFORTUN buzzer Gfortun $8.29

LED N/A $0.81
Battery AddWires $11.95

Li-ion charger Amazon $19.99
Voltage regulator

TC1262
Microchip Technology $0.83

Battery management
IC chip MCP73833

Microchip Technology $0.87

Schottky diode
V30100CI

Vishay Semiconductor $1.44

Thermistor
NKI100NF103C1R1E

Amphenol Advanced
Sensors

$5.93

Resistors, Wires,
capacitors,etc

N/A $10.00

PCB PCBway $15.00
Total $80.20

4.2 Labor
For our labor costs, we are estimating that each of the 3 people will earn $30 per hour, for 7 hours a

week. Our total labor costs will be:

30/hr hrs/wk 6weeks 10080 3 × $ × 7 × 1 = $

18

4.3 Schedule

Date William Ziyao Quan

2/25 Design WIFI and MCU
module in eagle
including the
schematics and PCB
layout

Design noise sensor and
Alert system module in
eagle including the
schematics and PCB
layout

Design power supply
module in eagle
including the
schematics and PCB
layout

3/4 Test wifi signal and
speed

Test voltage to dB SPL
accuracy from the linear
regression

Test power supply
requirements of the
PCB

3/11 Revise WIFI module
schematic and PCB
layout

Revise noise module
schematic and PCB
layout

Revise power module
schematic and PCB
layout

3/18 Order revised PCB and
test

Order revised PCB and
test

Order revised PCB and
test

3/25 Assemble WIFI module Assemble noise sensor
module

Assemble power
supply module

4/1 Assemble and combine
all subsystems together

Assemble and combine
all subsystems together

Assemble and
combine all
subsystems together

4/8 Prepare for mock demo Prepare for mock demo Prepare for mock
demo

4/15 Mock Demo and debug
project

Mock Demo and debug
project

Mock Demo and
debug project

4/22 Begin final report Begin final report Begin final report

4/29 Prepare for final
presentation

Prepare for final
presentation

Prepare for final
presentation

5. Conclusion

5.1 Accomplishments
The Noise Sensing device was able to achieve all the big requirements that we set out to create. We

were able to give dB SPL values with an accuracy of +- 5 from 50 to 85 dB. Our device also worked across

multiple frequencies ranging from 200 Hz to 5000 Hz. Implementing our device to be able to be accurate

19

across multiple frequencies was definitely a challenge because it also required an accurate

measurement of frequency by our device, but we were ultimately able to find an accurate polynomial

fitting across the frequencies. Our wifi module also worked very well as we were able to retrieve

thresholds and send phone notifications with high speed and little delay. Our power subsystem worked

very well too because we were able to implement safe charging by disabling current to the battery when

it was full, as well as stopping the battery from supplying current to the device when it was plugged in. It

allowed our device to be portable and convenient.

5.2 Uncertainties
Some uncertainties we had were that it was pretty hard to measure dB very accurately across a large

range of frequencies. For our project, we were able to get it accurate within the frequency range of

200Hz to 5000Hz, however outside of that, our decibel readings starting getting inaccurate. In frequency

greater than 5000Hz, the accuracy increased from +-5 dB SPL to +-10 dB SPL. The reasons were that our

microphone was not sensitive enough at really high and low frequencies as well as polynomial fitting not

being the ideal way. We discuss how we could improve upon this in our future works section.

Also our decibel meter was only capable of measuring from 8-8000Hz accurately which would have

created inaccurate measurements in frequencies outside of those ranges.

5.3 Ethical considerations
There are definitely ethical considerations for our device. Unfortunately there are ways that the device

can be abused that would go against certain code of ethics such as IEEE or ACM. A landlord could violate

IEEE code of ethics #9 and ACM code 1.2 which states that we should avoid hurting others and their

property [6]. Landlords can possibly set threshold levels to extremely low and unfair values so that

tenants cannot do any type of activities that involve any types of noise which would violate code #9 and

1.2 because extremely low thresholds could stress them out and prevent them from necessary activities

which could hurt their health. To avoid this issue we set a limit to how low of a threshold users can set

for this device. Another code that could potentially could be faced with our products would be ACM

code 1.6 which states that we should respect privacy [7]. Tenant might think that these devices breach

their privacy rights because they will always be listening, just like people nowadays are paranoid of

computer webcams spying on them or how social networks are using their data. We have prevented this

by making sure our device does not save any audio being fed into the MCU, rather it will just measure

the dB SPL levels and the amount of time that it happens.

5.4 Future work
For our future work, we could look at making our device more accurate. Right now our device can

measure dB SPL levels at an accuracy of +-5, but this can be improved upon. Further we could also try to

increase the frequency range at which our device is accurate, because currently it can measure between

200 and 5000 Hz, but this can be further increased. We could use Fast Fourier transform to easily

measure the different voltage rms across frequencies, and then utilized A weighting, which is utilized in

the decibel meters, to have a more accurate reading across different frequencies.

20

References

[1] Graham Research Institute, ‘Sick of Noise: the health effects of loud neighbors and
urban din’ 2015. [Online]. Available:
http://www.lse.ac.uk/GranthamInstitute/wp-content/uploads/2015/10/Working-Paper-213-
Weinhold.pdf

[2] Berkeley Wellness, ‘Sounding off on Noise’ 2017. [Online]. Available:
http://www.berkeleywellness.com/healthy-community/environmental-health/article/soundi
ng-noise

[3] Noiseaware, ‘FAQ’ 2019. [Online]. Available:
https://noiseaware.io/resources/faqs

[4]
Instructables, ‘Arduino Audio Input’ 2017. [Online]. Available:
https://www.instructables.com/id/Arduino-Audio-Input/

[5] Circuit Digest ‘Interfacing ESP8266 with PIC16F877A Microcontroller’, 2017. [Online]
Available:
https://circuitdigest.com/microcontroller-projects/interfacing-pic-microcontroller-with-es
p8266

[6]
Ieee.org, "IEEE IEEE Code of Ethics", 2016. [Online]. Available:
https://www.ieee.org/about/corporate/governance/p7-8.html

[7]
Acm, ‘ACM Code of Ethics and Professional Conduct’ 2018. [Online] Available:
https://www.acm.org/code-of-ethics

21

