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Abstract 

Nowadays, prosthetic hands are commonly controlled by Electromyographic (EMG) 
method which evaluates the electrical activity produced by skeletal muscles. However, the 
traditional EMG method has several drawbacks that limits its performance: the measurements of 
electrical signal suffer from high level noises induced by human skin and the number of sensors is 
sometimes insufficient to acquire enough data points to precisely track the muscle movements due 
to overcomplicated physical layout and high cost of EMG sensors. 

  
In this senior design project, our goal is to develop a foam pressure-sensor based method 

as an alternative of the EMG method for controlling prosthetic hands provided by PSYONIC Inc., 
which includes a design of PCB to carry the electrodes array with its corresponding 
communication peripherals and programing of the communication protocol. On top of the PCB, a 
layer of electrically conductive foam will be placed on the electrodes to function as the pressure 
sensor which records the compression of the foam. The pressure sensor method is expected to be 
less noisy and less expensive while being as accurate as the traditional EMG method. Preliminary 
research shows promising result to this pressure sensor method. 
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1. Introduction  
 

1.1 Statement of Purpose 
Nowadays, prosthetic hands are commonly controlled by Electromyographic (EMG) method 

which evaluates the electrical activity produced by skeletal muscles. However, the traditional 
EMG method is not accurate enough, because the measurements of the electrical signal suffer from 
high level noises come from the users’ skin. In addition, due to the physical layout and high cost 
of EMG sensors, the number of sensors is insufficient to acquire enough data to track the muscle 
movements precisely.   

In this senior design project, we are collaborating with the PYONICS Inc., a customized 
prostheses manufacturing company, to design and prototype an interface platform to control a 
prosthetic hand based on foam pressure-sensor as an alternative of the controlling system based on 
EMG currently used by the PYONICS Inc. The project includes:  

a.  Design of the senor module which carries the electrodes array with its corresponding 
communication peripherals and the communication master device which processes data from 
sensor modules. 

b.  Programing of the communication protocol.  

c. Design and programming of hand gesture classification algorithm 

d.  The soldering and assembly of all the components. 

This project is sponsored by the PSYONIC Inc. The pressure sensor method is more accurate, 
less noisy and cheaper, and preliminary research1 shows promising results regarding this pressure-
sensing method.  

 

 

1.2 Existing Work & Objective 
The aforementioned paper introduces a methodology of controlling prosthetic hand based on 

pressure sensors located around testers arm. The researchers designed a tactile bracelet composed 
of 10 sensor boards which was deployed around the test subject’s residual limb or forearm, in the 
case of able-bodied or disabled subjects. The pressure sensors are built with electric conducting 
foam and electrodes, utilizing the foam’s property of changing resistance while compressed by 
pressure.  

The experiment consisted of two phases: training phase and testing phase. During the training 
phase, the test subjects were asked to try to make the intended hand movement for a period of time 
while wearing the bracelet. Meanwhile, the sensors on the bracelet collected the pressure 
distributions caused by muscle movement on subjects' arm to train the classification algorithm 
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which classify the pressure distribution into categories according to different hand movement. 
During the testing phase, the test subjects were asked to repeat the movements in training phase 
with the bracelet on and the pressure distribution collected were classified by the pre-trained 
classification algorithm and transferred. The classification results were compared with the ground 
truth hand movements used in the training phase and an average inference accuracy was calculate 
for both disabled subjects and able-bodied subjects. The researchers claimed that the average 
accuracy is 89.15% for able-bodied and 93.07% for disabled subjects.  

The PSYONIC Inc. has a finished product of prosthetic hand based on the EMG method and 
we integrate the prosthetic hand provided by the company with our prototype. By deploying similar 
methodology introduced in the paper, we build an interface platform which interacts with the 
electric conducting foam and prosthetic developed by PSYONIC Inc. The previous research only 
focused on classification results but we are moving one step forward to utilize the classification 
results to generate according command to control the prosthetic hand.  

The main goal for designing and prototyping such a platform is to prove the efficacy of a new 
methodology and by reconducting similar experiment mention above, we are expecting to 
reproduce similar inference accuracy. Therefore, the classification algorithm that we are planning 
to develop is only expected to classify the pressure distribution into limited groups to achieve 
predefined simple hand motion control. PSYONIC Inc will potentially apply this new 
methodology in their products in the future depending the performance of the prototype and they 
will potentially implement more complex classifiers such neural networks to allow more 
sophisticated hand motion control.  

 

1.3 High-level requirements  
There are two major requirements for our design: 

 Our system should be able to sense and process one specific user’s muscle movement and 
convert it to the command for prosthetic. 

 The user should be able to control the prosthetic hand to complete motions including turning 
hand in four directions and clenching and releasing of the fist. 
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2. Design 

2.1 Block Diagram 
The system we designed will consist of a master device and some slave devices. The slave 

devices will hold the pressure sensors, collect pressure data from user and transmit them to the 
master device. The master device will collect data from slave devices and communicate with 
PSYONIC’s prosthetic hand.  

2.1.1 System Overview 

 

Figure 1: System Overview Block Diagram 
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2.1.2 Master Device 
 

 

2.1.3 Slave Device 
 

Figure 3: Slave Device Block Diagram 

Figure 2: Master Device Block Diagram 
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2.2  Physical Design  
The final prototype consists of a bracelet holding 4 slave devices and the master device as 

shown in figure 4. The bracelet size is adjustable to fit testers’ arm thickness and provide proper 
tension.  

Each slave device PCB is contained in a 3D printed rectangular enclosure. One side of the 
case has a slot for the bracelet to pass through and the other side of the case is left open. The 
electrical conducting foam resides on the sensors on the PCB from the open side of the enclosure 
with a silicone cover around the enclosure to hold all parts together. The master device is attached 
to the outer surface the bracelet, locating at the closest slave device. The following 3D models 
portrays the overall physical structure.  

 

2.3 Block Description 

2.3.1 Master Device Microcontroller (STM32F401RB) 
Input: 1.7V-3.6V power input. 
Output: Command for PSYONIC’s hand. 
Communication: I2C communication with PSYONIC’s hand; SPI communication with slave 
devices. 
Description: 

Figure 4: Physical Design of the Slave device 
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The STM32F401RB is using an ARM 32-bit Cortex-M4 CPU with floating-point unit (FPU). 
It has frequency up to 84 MHz, and contains up to 256 Kbytes of Flash memory, 512 bytes 
of OTP memory and up to 64 Kbytes of SRAM. [2] 

 
This unit is supposed to collect data from all slave devices through SPI interface (MISO, 

MOSI, SCK, SS). It will then process the collected data and convert the data to command 
towards the PSYONIC’s hand. The command will be transmitted through I2C interface 
(SDA and SCL) to the PSYONIC’s hand.  

 
This unit will be powered by a 3.3V power input regulated from an 8.4V voltage supplied 

from the PSYONIC’s hand. A pin layout summary of these interfaces is shown in figure 5. 
 
Considering integrating with the system developed by PSYONIC Inc., we choose this 

specific part depending on the stock of PSYONIC Inc. and the chip is also powerful 
mathematically. 

 
 
 

 

Figure 5: STM32F401RBT6 Schematic 
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2.3.2 Slave Device Microcontroller (STM32F030K6) 
Input: 2.4V-3.6V power input; Analog signals from MUXes.  
Output: Digitized pressure sensor reading. 
Communication: SPI communication with master device. 
Description: 
The STM32F401RB is using an ARM 32-bit Cortex-M0 CPU. It has frequency up to 48 
MHz. It contains up to 256 Kbytes of Flash memory and up to 32 Kbytes of SRAM. In 
addition, the microcontroller also has one 12-bit ADC with up to 16 channels and conversion 
range 0 to 3.6 V.  [3] 

 
This unit is supposed to read analog voltage input from the MUXes. It will digitize the input 
using the built in 12-bit ADC of the microcontroller. The result data will be transmitted to 
the master device using SPI interface (MISO, MOSI, SCK, SS). In addition, four 8-to-1 
analog MUXes are used to choose between different sensors’ signal supporting up to 32 
pressure sensors on each slave device. The microcontroller will also have three pins 
connected to all the MUXes to select between signals.  
 
This unit will be powered by the 3.3 V input from the DC-DC Converter on the master device. 
A pin layout summary of these interfaces is shown in figure 6. 
 
This part is also chosen from the stock of PSYONIC Inc. Since it is not responsible for any 
mathematical operations, we choose it for its relatively low cost and still moderate processing 
power. 

Figure 6: STM32F030K6 Schematic 
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2.3.3 DC-DC Converter (TPS82140SILR) 
Input: 3V-17V power supply, typically 8.4V (from PSYONIC’s hand in our design) 
Output: 0.9V to 6V Adjustable Output Voltage, in our case configured as 3.3V 
 
Description: 
The TPS82140 is a step-down converter MicroSiP™ power module optimized for small 
solution size and high efficiency. It supports input voltage from 3V to 17V and an adjustable 
voltage output from 0.9V to 6V. The converter support 2A continuous output current. [4] 
 
This unit will take the 8.4V voltage from the PSYONIC’s hand convert it to the 3.3V voltage 
that power the system we designed. It also supports other input power range from 3V to 17V. 
The 2A output current is enough to power all the rest of the system and a detailed calculation 
to justify this statement can be found in part 2.6.2 below. A pin layout summary of these 
interfaces is shown in figure 6.  

This particular part is chosen for its large output current because we expect to power up to 
10 slave devices and a master device using one regulator.  
 

2.3.4 Analog MUXs (NX3L4051HR,115) 
Input: 1.4V-4.3V input power, typically 3.3V; Analog pressure sensor reading, range 
between 0-3.3V; Three selection signal (S1, S2, S3).  
Output: Selected analog pressure sensor reading to the microcontroller. 
Description: 
The NX3L4051 is a low-ohmic 8-channel analog switch. It supports a 1.4V to 4.3V supply 
voltage and has a maximum of 900𝑚Ω on resistor. [5] 
 
Since as we mentioned above, each slave device is going to hold up to 32 pressure sensors, 
which exceeds the 16 ADC channels we have on the microcontroller. Therefore, four 8-to-1 
analog MUX(s) are used to select between different inputs. In case of including 30 pressure 
sensors on a slave module, three MUX(s) will each handle 8 analog signals and one MUX 

Figure 7: TPS82140SILR Schematic 
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will handle 6 analog signals. All 4 MUX(s) will share the same selection signal from the 
microcontroller and connected to different ADC channel on the microcontroller. An example 
pin layout summary of these interfaces is shown in figure 8. 
 
This particular part is chosen for its QFN package and, therefore, its small size because of 

the limited space on slave device PCB. It’s also a good choice due to its low inner resistance. 
 

 

2.3.5 Pressure Sensor 
Input: 3.3V input power; Pressure input from human muscle. 
Output: Analog voltage change corresponding to the change of pressure. 
Description: 
Each pressure sensor is based on a resistive working principle in which the interface 
resistivity between two surfaces changes according to the applied load. We will use metal 
trail on PCB as electrodes and use conductive foam as the sensor material. When load is 
applied the resistance between the electrodes will be changed and we can use the resistance 
change to sense pressure change. Therefore, we are going to apply the voltage division 
principle to convert the resistance change to voltage change, which is demonstrated in figure 
8. A detailed explanation about the choice of foam and the resistance of R can be found in 
section 2.6.1 below.  
Figure 9 from [1] illustrates the physical design of the pressure sensor. 

 

Figure 8: NX3L4051HR Schematic 
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Figure 9: Pressure Sensor Model Figure 10: Pressure Sensor Physical Design 
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2.4 Schematics 

2.4.1 Master Device Schematics 
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2.4.2 Slave Device Schematics 
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2.5 Software Description 

2.5.1 Master Device Software 
The microcontroller we are going to use as master in our system is STM32F401RBT6, 

which is a HAL C platform supporting the strict C89/C90 standard. Thus, we are going to 
use the “-std=c99 -pedantic-errors” compiling flag in this implementation.  

Our system could be viewed as a common multiple Slaves single Master model. And 
three required control / data flow are attached as below, which will be controlled by our 
Master Device Software. 

In a typical communication cycle, the Master Device Software will do the following, 
a. Set the SS signal for the slave currently talking with to low (active low) using 

GPIO pin of the microcontroller, meanwhile, all other SS signals should remain 
at high to prevent MISO conflict.  

b. As the Slave Clock (SCK) ticking, master chip will wait for the message from 
the selected slave by listening to the MISO. 

c. SS for the current slave will be now set to high in order to end its permission to 
write to the MISO. 

d. Now, the microcontroller on master device is ready for next cycle. 
 

2.5.2 Slave Device Software 
The microcontroller we are going to use as slave in our system is STM32F030K6T6, 

which is a HAL C platform supporting the strict C89/C90 standard. Thus, we are going to 
use the “-std=c99 -pedantic-errors” compiling flag in this implementation.  

The microcontroller on the Sensors Module Chip is expected to complete the pressure 
sensors signals’ Analog-to-Digital Conversion (ADC) as well as the communication with 
master device.  

For the ADC part, our Slave Device Software will do the following,  
a. Scan 4 ADC pins at once and register their binary values. 
b. Increment the counter to select next group of 4 sensors by giving correct 

combination of Chip-Select signal to the 8-to-1 MUX(s) we have. 
c. Keep doing this until data from all 30 sensors are registered.  
 
The task for communication with the master device is relatively simpler,  
a. Waiting for the MOSI signal with the corresponding user-defined message 

indicating the start of transmission process.  
b. Execute the scanning process and preserve only the latest data awaiting to be sent. 
c. Write data to the MISO if its own SS is in low (active low). 

 
The timing will be the most significant consideration when the time turns to the 

integration of the Master Device Software and Slave Device Software. 
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2.5.3 MATLAB Script on PC  

In order to pre-process and classify the raw data we collect from the M-shape 
pressure sensors, we prefer the data from master device transmitted on to the PC through 
SPI protocol. 

 
The whole MATLAB Script could be divided into three parts, data collecting, PCA-

KNN classification and real-time estimation.  
 
For the data collecting part, we record 40 datapoints for each gesture thus, however, 

we will only pick up the first 20 datapoints for our training process as we pass these datasets 
into the PCA-KNN model.  

 
Every time as you move your arm position or the first time you put the bracelet on, 

a “new_train” is required to make sure the whole system is working in its best situation. 
And the flag “new_train_require” will need to be set to 1 at the very beginning of the whole 
program.  

 
The second part involves the training of Principal component analysis (PCA) – K 

nearest neighbors (KNN) network. We need to first calculate the PCA of the heatmap and 
then paired them with the given ground truths, [1, 2, 3, 4] represents [Sign of the horns, 
Open, Gripping, Holding the fist] respectively.  

After we put the PCA of the heatmap and the ground truth into the MATLAB 
function “fitcknn”, it will return a classifier named “mdl”.  

 
Everything in the third part, namely, the second row of the flow chart, are placed 

in a while loop to make the MATLAB runs as a server to keep receiving the data streams 
from our master device and estimate the current gestures and send out proper command to 
the prosthetic hand until a “STOP” signal is received from the master device or we kill the 
MATLAB program manually.  

 

Figure 11: MATLAB Script Flow chart 
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Since the PCA-KNN estimation is not perfect, jitters should be expected in the 
decisions made by the estimator. To prevent the prosthetic hand from reacting too fast or 
even receiving conflict command, we design a voting scheme that considers the most recent 
five results as a whole, and they are held in a container named “decision buffer”. 

 
The logic itself is simple, as in the examples we list above: we will change a state, 

for example, from open to hold a fist gesture when and only when a certain state has a 
frequency of not less than four in the “decision buffer”, we call it “stable representative”. 
Otherwise, as in the second example, if there is no stable representative, we will leave the 
old state unchanged.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Voting Scheme 
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3. Design Verification 

3.1 Functionality test – Microcontroller 
After every PCB is soldered, following tests are conducted to make sure the microcontroller on the 

PCB is functional. The test is performed to both Master Device and Slave Device. 

1. Power the microcontroller with 3.3v input from the DC power supply. Observe the current 
drawing from the DC power supply. When the microcontroller is in idle, a reasonable 
current drawn should not be too low (less than 0.001A which means the microcontroller 
may not be powered at all) or too high (greater than 0.1 A which means there may be a 
short or the microcontroller may be broken).  

2. Write a simple program to blink the LED connected to the microcontroller. Download the 
program to the microcontroller check and check if there is any error during the 
downloading process. If the program failed to download, it may because the following 
reason: bad soldering, broken microcontroller, or broken debugger/programmer. 

3. Run the program mentioned above on the microcontroller. See if the LED blinks. If the 
LED is not blinking properly, it means: bad soldering on some of the pins on 
microcontroller or wrong polarity of the LED. 

4. Set a break point in the programming environment. Check the debugging features of the 
programming environment including setting breakpoints and single stepping through code.  

It is verified that all 5 PCBs that we use in the final design have their microcontrollers properly 
soldered and ready for further development. 

 

3.2 Functionality test – UART 
After testing the Microcontroller, the UART test is performed on the Master Device to make sure the 

communication between master and PC is correct. 

1. Program the microcontroller to send pre-defined ascii string periodically via UART. 
2. Connect the Master Device’s UART port to an UART to USB bridge and connect the UART to 

USB bridge to a PC. 
3. Display the received data on a PC in PuTTY terminal. Check whether the received data is consistent 

with the data programed in Master Device. 

It is verified that the master device is able communicate with a PC over UART protocol using baud rate 
of 115200. 
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3.3 Functionality test – SPI 
With both the Master Device’s and Slave Device’s microcontroller functioning and UART 

communication between Master Device and PC tested, we are now able to conduct tests about the SPI 
communication between Slave Devices and Master Device. The idea of the test is shown in the figure below. 

 

To simplify the problem, we will first test the communication between each Slave Device and Master 
Device. 

1. Program the Slave Device to send pre-defined message through SPI to Master Device.  
2. Program the Master Device to receive the message sent by Master Device and forward the received 

message to PC though UART. 
3. Check the received message on PC in PuTTY terminal and check whether the received message is 

consistent with the programmed message on Slave Device. 

After testing the communication between each Slave Device and Master Device, we can now set up 
and test the whole SPI bus. 

1. Since currently we are only 4 Slave Devices, we connect four Slave Devices alone with the Master 
Device to form the complete SPI communication bus. 

2. Program each slave device to send out different pre-defined messages to Master Device.  
3. Program the Master Device to scan through all four Slave Devices to receive the messages from the 

Slave Devices and forward the received messages to a PC through UART. 
4.  Check the received message on PC in PuTTY terminal and check whether the received message is 

consistent with the programmed message on each Slave Device. 

It is verified that all 4 slave devices are able to communicate with the master device over SPI protocol 
but during testing the overall communication stability using 4 slaves, we face problem that if the SPI data 
rate is too high, the slave microcontroller may not be able to catch up with it and the system desynchronizes. 
We reduce the SPI data rate and delay the master microcontroller after requesting data from slaves to solve 
the problem. The following table shows the results trying combinations of different SPI data rate and time 
delay on master device. 
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As the results showing, 1 ms time delay on the master device allows the SPI protocol running with 
maximum data rate of 256 kbps. 1 millisecond time delay is the minimum time delay achievable on the 
master microcontroller and the data is enough for transfer over 10,000 sensor readings per seconds, which 
is sufficient for our system. Therefore, we determine to use this setting for the SPI communication. 

3.4 Functionality test – MUX 
The QFN package MUXes we are using proves to be really difficult to solder and test. However, with 

the UART communication between Master Device and PC and SPI communication between Master Device 
and Slave Device tested, we are now able to test the soldering of the MUXes. 

1. Program the Slave Device to collect data from all pressure sensors and send the collected data to Master 
Device through UART.  

2. Program the Master Device to receive data from Slave Device and forward the data to a PC through 
UART.   

3. On PC, write a Matlab script to visualize the data as a heat map.  When the sensor is open (nothing 
between the electrodes), the sensor reading should be approximately maximum which is about 4095. 
When we manually short the electrodes of sensor with wire, the sensor reading shoud be approximately 
0. By checking this on each sensor and record the results, we are able to figure out which MUXes are 
not properly soldered. 

It is verified that all MUXes are working properly after several testing and re-soldering. This test also 
proves the functionality of pressure sensor electrodes that every pair of sensors are sensing 4095 when they 
are not connected. 

3.5 Functionality test – Overall Test 
With all the blocks tested, we can now perform the overall functionality test of the whole system.  

1. Put the bracelet with a Master Device and 4 Slave Devices on testee’s arm. The testee will perform 4 
predefined motions, holding the fist, releasing the fist, gripping with thumb and ink finger, and sign of 
horns and our system will record the user’s muscle movement for the four gestures and compute the 
principle component and form a nearest neighbor classifier according to the calculated result. 

2. The testee will then perform the 4 gestures again and record additional data as the test data. The 
principle component of the test data will be calculated and will be tested using the nearest neighbor 
classifier we get from the previous step. The accuracy of classification will be calculated. 

The result of the overall test shown that our system is able to classify between different gestures. The 
holding the fist gestures have an accuracy of 85%, releasing the fist of an accuracy of 90%, gripping with 
thumb and ink finger have accuracy of 79.49% and sign of horns have accuracy of 100%. The overall 
accuracy of classification is 88.68%, which is pretty nice with such a naive classification algorithm. 
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4. Cost Analysis  

4.1 Cost of All Parts (Currency in USD) 

Part Part Number  Cost/Unit Quantity Subtotal Provider 

4x Slave Module 

4 layers PCB  with ENIG finish 3.5 4 14 JLCPCB 
Microcontroller STM32F030K6T6 1.26 4 5.04 STMicroelectronics 
0.1 uF Capacitor CC0402JRX5R6BB104 0.039 16 0.624 Yageo 
4.7 uF Capacitor EMK107ABJ475MA-T 0.124 8 0.992 Taiyo Yuden 
7-pin Connector  53261-0771 1.26 8 10.08 Molex 

2-pin SMD Header N/A 0 4 0 N/A 
10k Resistor SFR01MZPJ103 0.023 120 2.76 ROHM Semiconductor 
8-input MUX NX3L4051HR 0.849 16 13.584 NXP Semiconductors 

SMD LED SML-LXFT0603UPGCTR 0.806 1 0.806 Lumex 

1 x Master Module 

PCB with HASL finish 0.2 1 0.2 JLCPCB 
Microcontroller STM32F401RBT6 5.33 1 5.33 STMicroelectronics 

SMD LED SML-LXFT0603UPGCTR 0.806 1 0.806 Lumex 
2-pin SMD Header N/A 0 1 0 N/A 
2-pin Connector 53261-0271 0.776 1 0.776 Molex 
4-pin Connector 53261-0471 0.983 1 0.983 Molex 
7-pin Connector 53261-0771 1.26 2 2.52 Molex 
Linear Regulator TPS82140SILR 3.38 1 3.38 Texas Instruments 
0.1 uF Capacitor CC0402JRX5R6BB104 0.039 5 0.195 Yageo 
4.7 uF Capacitor EMK107ABJ475MA-T 0.124 4 0.496 Taiyo Yuden 
22 uF Capacitor GRM188R61A226ME15J 0.35 1 0.35 Murata Electronics 
33 nF Capacitor AC0402KRX7R8BB333 0.053 1 0.053 Yageo 

470 Resistor RR0510P-471-D 0.076 1 0.076 Susumu 
309k Resistor RC0402FR-07309KL 0.012 1 0.012 Yageo 
100k Resistor RT0402FRE07100KL 0.056 2 0.112 Yageo 

MISC 

ST-LINK in-circuit 
debugger/programmer 

N/A 8.6 1 8.6 N/A 

FTDI FT232 USB to 
UART Converter 

N/A 10.25 1 10.25 N/A 

      Total:  84.443   
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4.2 Cost of Labor (Currency in USD) 
 

 

 
If we assume the actual working period takes about 12 weeks, the total cost of 

labor is about $900 ∗ 12 ∗ 2.5 = $27000 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Worker  Pay Rate (Semi-Skill) Weekly Hours Total Pay 
Yangge Li 25 12 300 
Enliang Li 25 12 300 

Zhoushi Zhu 25 12 300 

    Total:  900 
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5. Conclusion  

5.1 Accomplishment 
By the end of the semester, we successfully design and prototype a functioning interface 

platform to control a prosthetic hand based on foam pressure-sensor including a classification 
algorithm that transfer pressure change into command to control a prosthetic hand. The system is 
able to fit on a specific user’s arm, recognize four gestures and control the prosthetic hand to do 
the same motion. The gestures supported are holding the fist, releasing the fist, gripping with 
thumb and ink finger and make the sign of the horns.  

The overall classification accuracy achieves the requirement set by PSYONIC Inc. and 
the total cost is less than 100 USD, which is much less than the cost for PSYONIC Inc. to 
develop an equivalent EMG system.  

5.2 Safety & Ethics 
Our major safety concern during the design process is the potential circuit short which may 

lead to extreme high temperature due to current surge if the PCB carries serious bugs or human 
error while testing. Circuit short hazard could burn down the PCB or scald our skins, and thus, it 
needs to be taken seriously. We won’t allow any one in our group working alone with the PCB(s). 

 
Since the prosthetic hand is comprised of many mechanical components, we also need to 

take precautions to avoid any possible cutting injuries caused by improper operations. 
 

After reviewing the IEEE and ACM ethics, we agree on the following concerns to be 
presented in our project proposal, 

 

5.2.1 IEEE Policies, Section 7, 7.8 IEEE Code of Ethics  
8. to treat fairly all persons and to not engage in acts of discrimination based on 

race, religion, gender, disability, age, national origin, sexual orientation, gender identity, 
or gender expression [6] 

We need to be honest on the performance of our product. Due to current technical 
limitation, both EMG and pressure-sensing method could only work for the disabled who 
had amputation surgery below the elbow (and still have working residual limbs). We expect 
our product to work poorly for those who experienced amputation surgery above the elbow.  

This may be a discrimination regarding the degree of disability.  

9. to avoid injuring others, their property, reputation, or employment by false or 
malicious action [6] 

& 

ACM General Ethical Principles    1.2 Avoid harm. [7] 
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Our product may injure/harm (bring negative consequence) the user, or the objects 
hold by the prosthetic hand due to incorrect responds that against user’s will. Furthermore, 
since user could not always control the force it applies to the project precisely, it’s very 
possible that soft items are squeezed.  

 

5.2.2 ACM General Ethical Principles  
1.6 Respect privacy. [7] 

As part of the training process, we need to collect sensitive data from user, such as 
the pressure patterns for different hand movements and store them into the master chip, 
which assumes the possibility of user’s data leakage if the product hacked or missing. 

 

5.3 Future works and Application 
There exists several possible improvements to the system we designed: 

a. The mechanical design of the enclosure can be improved to make our product 
more user-friendly and robust 

b. A quantitative analysis on the characteristics of the foam can be developed to 
help find more suitable electrical conducting foam 

c. A better classification algorithm can be developed so the classification and 
inference process can be more robust and accurate 

d. Increase the number of pressure sensing units to provide more data points for 
muscle movement  

e. Deploy the classification algorithm on the microcontroller so command could 
be sent directly from the master device to the prosthetic hand 

For future application, the product we designed can cooperate with the existing EMG 
sensors on the prosthetic hand developed by PSYONIC Inc. to combine the advantages of both 
methods. By doing this, we expect to enhance the capability for the prosthetic hand to track the 
user’s intended movement and benefit people with disability without increasing the cost 
remarkably. 
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Appendix A 
 

Master Device Microcontroller 

Requirement Verification 
1. Able to both receive and transmit data 

over SPI at speeds greater than 
12Mbit/s while running the proper 
master device software.  

 
 
 
 
 
 
 
 

2. Able to both receive and transmit data 
over I2C while running the proper 
master device software. 

 
 
 
 
 
 

3. The microcontroller 
(STM32F401RB) clock frequency 
should be higher than 64MHz. 

1. SPI Verification 
a. Connect the MISO, MOSI, SCK 

and SS signals to oscilloscope to 
verify there are signals. 

b. Using the signal from SCK to check 
if the speed of SPI is greater than 
12Mbits/s.  

c. Use the debugger built inside the 
STM32 development environment 
to check the content of data from 
slave device is correct.  
 

2. I2C Verification 
a. Connect the SDA and SCL signals 

to oscilloscope to verify there are 
signals.  

b. Connect the master device to 
PSYONIC hand and send 
predetermined command to the 
hand and see if the hand is 
controlled.  
 

3. Computational power verification  
Connect the system core clock output to the 
oscilloscope. The frequency of that signal 
should be higher than 64MHz. 

 

Slave Device Microcontroller 

Requirement Verification 
1. Able to both receive and transmit data 

over SPI at speeds greater than 
12Mbits/s while running the proper 
slave device software. 

 
 

2. Able to convert analog signals ranging 
from 0-3.3V to corresponding 12-bit 
digital signals. 

1. SPI verification 
Please refer to the SPI verification of master 
device. If the Master Device SPI is proofed to 
be working, the Slave Device SPI have to 
work. 
 
2. ADC verification 
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 a. Connect the ADC channel of the 
slave device microcontroller to 
the DC power supply. 

b. Adjust the output voltage of the 
DC power supply to be value 
between 0-3.3V.  

c. Use the debugger built inside the 
STM32 development 
environment to check the 
correctness of converted data. 

 
DC-DC Converter 

Requirement Verification 
1. Able to convert voltage ranging from 7.2-

8.4V to 3.3±0.3V. 
 
 
2. Able to provide 500mA current to power 

the system. 

1. Provide 7.2-8.4V input voltage from DC 
power supply to the component. The 
output voltage should be 3.3±0.3V 
 

2. Check if the system powered by the DC-
DC Converter can function properly. 

 
Analog MUXs 

Requirement Verification 
1. The component is able to select between 8 

analog signal ranging from 0-3.3V. 
 
 
 
 
 
 
 
 
 
 
 
2. The component should have a on 

resistance lower than 10. 

1. MUX selection verification 
a. Program the slave microcontroller to 

specify the Select Signal for the Analog 
MUX.  

b. Apply different pressures to eight 
sensors that are connected to the MUX 
being tested. 

c. Use the debugger built inside the 
STM32 development environment to 
check if the output of MUX reflects the 
change of pressure on the selected 
sensor.  

 
2. Connect the output pin of the component 

to a 10 resistor. Provide 3.3V signal to 
input 0 and change selection signal to 
select input 0. The voltage between input 
0 and output should be less than 
3.3/2=1.65V. 
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Pressure Sensor 

Requirement Verification 
1. The pressure sensor characteristic should 

report approximately same signal for same 
compression of a properly chosen form 
and different sensors should report 
approximately same signal for same 
compression. The difference between 
different test trial on the same sensor 
should be less than 1% and the difference 
between different sensors should be less 
than 10%. 

1. Verification Process 
a. Connect the master device to a PC via a 

UART bridge. 
b. Program the master microcontroller to 

collect digitized data from slaves and 
transfer the data to PC using UART 
protocol.  

c. Compress the foam on top of the all the 
sensor to a specific distance for five times. 
Choose 10 different distance within the 
working range of the foam and repeat the 
test for 10 time respectively. 

d. Compare the value transferred from 
master microcontroller in the PC and 
check if the differences are larger than 
expected. 

e. Port the data to Matlab and plot a heatmap 
of the reported pressure distribution for 
more visualized test results.  

 
 

 

Mechanical Constraint 

Requirement Verification 
1. The X and Y dimension of the master 

device PCB should both be smaller than 
3cm. 
 

2. The X dimension of the slave device PCB 
should be smaller than 3cm, and the Y 
dimension should be smaller than 10cm. 

1. Measure the dimension of the 
manufactured master device PCB to check 
if it is oversized.  

 
2. Measure the dimension of the 

manufactured slave device PCB to check 
if it is oversized.  
 

 


