Automated Drink Mixer

Group 40 Dave Ha, Eric Mysliwiec, Matthew Gross

ILLINOIS Electrical & Computer Engineering COLLEGE OF ENGINEERING

Introduction

- Automated drink making with minimal user interaction
- WiFi enabled system tracks transactions

Objective

- Systematically reduce clutter at busy bars
- Track user purchases with RFID cards
- Reduces human error in mixing drinks

Pour Bros Champaign, IL

DID IT WORK?

57

57

Power Circuitry

- 120VAC to 24VDC converter
 - Used for pumps
 - ~24.3V
- 24VDC to 12VDC transformer
 - Used for stepper motor
- 24VDC to 5VDC transformer
 - 5.024
 - Used for small electronics

Main Printed Circuit Board

Logic Unit

- NodeMCU microcontroller
- Refill Indication Control
- Component Drivers

Main Printed Circuit Board

NodeMCU Microcontroller

- Powered by 5V
 - internally converted to 3.3V to send signals
- CPU to run software
 - sends control signals to subunits
- IOT capabilities
 - connects to a server to keep tabs

NodeMCU Microcontroller

NodeMCU Communication

- Problem: Not enough pins
 - Left side used for flashing
 - Bottom right used for RFID
 - Top right used for I2C
- Solution: MCP23017 chip
 2-to-16 expansion chipset

NodeMCU Microcontroller Pinout Diagram

Software Flow

Recall: Refill Indication Control

Refill Indication General Schematic

Refill Indication Control

Component Drivers

- Pump Driver
 - Stepped 3.3V to 24V
- Laser Driver
 - Stepped 3.3V to 5V

Main Printed Circuit Board

Stepper Motor Driver

- Controller for bipolar stepping sequence
- Problems:
 - Complexity
 - Shoot-through
 - Circuit Protection

Custom Stepper Driver PCB

Precision half-stepping positions

Stepper Motor Driver

	Coil	А		В	
IB	Terminal	1	3	2	4
	1	1			1
	2	1			
	3	1		1	
	4			1	
	5		1	1	
	6		1		
	7		1		1
	8				1

Coil A

Stepper Motor - Stepping Sequence Animation

Stepper Motor - Half Step Coil Sequence

ECE ILLINOIS

Coil B

Σ

Peristaltic Pumps

Time (s)	Volume Dispensed (mL)	Ticks Measured
5.00	90	2474
11.10	200	5014
16.66	300	7635
22.22	400	10140
27.77	500	12666

Peristaltic Pump - Flow Test Results

Stepper Motor

- Spins bottom disk to preset positions
- 400 steps per revolution: 0.9° per step
- Laser & photocell for calibration
 - More detail in the sensor section

Bipolar Stepper Motor Housing

Bipolar Stepper Motor Cutaway

57

Sensors

Photocell and Laser Calibration

- Flow Meters
- Weight Sensor

Photocell and Laser Calibration

Photocell General Schematic

Flow Meters

Hall Effect Sensor

Flowmeter

- Generates a tick(wave) with each volumetric step
- Ticks used to calculate volume

Flowmeter Anatomy

Flow Meters - Data

Weight Sensor

Weight Sensor Characterization

Recall: Refill Indication Control

Weight Sensor General Schematic

Σ

User Interface

User-friendly, minimal interface
 4 buttons & LCD

- WiFi Indicator
- RFID Scanner
 - eliminates the need to type

Buttons & LCD

User-friendly, minimal interface Left, Right, Select, Back

 LCD connected via I2C

User Interface Printed Circuit Board

WiFi & Server

- LED to show connectivity
- Uses SMTP to send email
- Python script collects email & keeps tab

import numpy, smtplib, time, imaplib, email

```
# define constant variables
Email = "handsfreemixer445@gmail.com"
Password = ______
Server = "imap.gmail.com"
button_delay = 0.2
```

```
# Function to read and delete the latest email
def read_latest_email():
```

return email_subject, email_message

Transaction Python Scraping Script

 Image: me
 BB5B530D - drinkName
 Mar 9

 Image: me
 BB5B530D - drinkName
 Mar 9

Emails as received by the psuedo-server

Server-side Transaction Log

ECE ILLINOIS

...

RFIDMFRC522 Sensor

- Reads 13.56MHz Tags
 simulates iCards
- Scan time
 < 5ms

MFRC522 RFID Sensor

This code scans the MIFARE Classsic NUID. Using the following key: FF FF FF FF FF FF FF

Card Detected: Time(ms) Spent: 4 PICC type: MIFARE 1KB The NUID tag is: In hex: D9 4D F5 5D In dec: 217 77 245 93

Card Detected: Time(ms) Spent: 3 PICC type: MIFARE 1KB The NUID tag is: In hex: 8B 65 B9 15 In dec: 139 101 185 21

Card Detected: Time(ms) Spent: 4 PICC type: MIFARE 1KB The NUID tag is: In hex: E9 39 F5 5D In dec: 233 57 245 93

RFID Time Testing Results

Conclusion

- Overall system integrated successfully
- Problematic Components:
 - LCD
 - Stepper Driver
 - Flow Meters
- Future work:
 - expand and streamline software
 - use iCard compatible RFID sensor

ECE ILLINOIS

optimize the physical form factor

Questions?

Citations

- [1] A. Swanson, "What really drives you crazy about waiting in line (it actually isn't the wait at all)," The Washington Post, 27-Nov-2015. [Online]. Available: https://www.washingtonpost.com/news/wonk/wp/2015/11/27/what-you-hate-about-waiting-in-line-isnt-the-wait-at-all/?utm_term=.d60c8abdd1ef. [Accessed: 22-Feb-2019].
- [2] "Pour Bros. Craft Taproom", Pour Bros. Craft Taproom, 2019. [Online]. Available: https://www.pourbrostaproom.com/. [Accessed: 22- Feb- 2019].
- [3] "A beginner's guide to switching regulators," Dimension Engineering. [Online]. Available: https://www.dimensionengineering.com/info/switching-regulators. [Accessed: 22-Feb-2019].
- [4]"3W 5V 0.6A DIP-16 Isolated DC-DC Regulated Converter 12 Volt In," How It Works: Xbox Kinect. [Online]. Available: https://www.jameco.com/z/SLC03A-05-MEAN-WELL-3W-5V-0-6A-DIP-16-Isolated-DC-DC-Regulated-Converter-12-Volt-In_2261815.html. [Accessed: 22-Feb-2019].
- [5] B. H., Phil, J. A., and Anthony, "Dart Solo P16R 16 oz. Red Plastic Cup 1000/Case," WebstaurantStore, 12-Jun-2018. [Online]. Available: https://www.webstaurantstore.com/dart-solo-p16r-16-oz-red-plastic-cup-case/760P16R.html. [Accessed: 22-Feb-2019].
- [6] Adafruit Industries, "Stepper motor NEMA-17 size 200 steps/rev, 12V 350mA," adafruit industries blog RSS. [Online]. Available: https://www.adafruit.com/product/324. [Accessed: 22-Feb-2019].
- [7] DNews, "Did You Know the Solo Cup is also a Measuring Cup (for Booze)?," Seeker, 13-Jun-2012. [Online]. Available: https://www.seeker.com/did-you-know-the-solo-cup-is-also-a-measuring-cup-for-booze-1765829437.html. [Accessed: 08-Feb-2019].

Citations

- [8] "DID YOU KNOW?," About PET | PETRA: Information on the Use, Benefits & Safety of PET Plastic., 2016. [Online]. Available: http://www.petresin.org/news_didyouknow.asp. [Accessed: 08-Feb-2019].
- [9]"Questions from andrew, a student," Math Central Quandaries and Queries, Oct-2017. [Online]. Available: http://mathcentral.uregina.ca/QQ/database/QQ.09.06/s/andrew1.html. [Accessed: 08-Feb-2019].
- [10] "INTLLAB DIY Peristaltic Pump Dosing Pump 12V DC, High Flowrate for Aquarium Lab Analytical, 170~460 mL/min," Amazon. [Online]. Available: https://www.amazon.com/dp/B07MTBV5RR/ref=sspa_dk_detail_2?th=1. [Accessed: 22-Feb-2019].
- [11] "FSR 400 Series Data Sheet," Adafruit CDN Shop. [Online]. Available: https://cdn-shop.adafruit.com/datasheets/FSR400Series_PD.pdf. [Accessed: 07-Feb-2019].
- [12] "EEVblog Electronics Community Forum," OVP & OCP Page 1. [Online]. Available: https://www.eevblog.com/forum/microcontrollers/esp8266-native-spi-hardware-driver/. [Accessed: 22-Feb-2019].
- [13] "Load Testing an ESP8266," arunoda.me. [Online]. Available: https://arunoda.me/blog/load-testing-an-esp8266. [Accessed: 22-Feb-2019].
- [14] Ieee.org, "IEEE IEEE Code of Ethics", 2016. [Online]. Available: http://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 7- Feb- 2019].

