
ThereminFreaks – Theremin Rhythm Game
Group 34
Esteban Looser-Rojas
Daniel Olivas Hernandez

Michael Recklein



 Desire to make a video game with unique hardware
 No rhythm games out there for simulating theremin
 Very unique instrument to make a rhythm game for: 

no contact + wave hands around

Introduction



 Create realistic and intuitive theremin simulator
 Responsive and enjoyable game
 Sound engine sounds like theremin and controls like one

Objectives



Block Diagram



Pitch and Volume Sensors
 Volume antenna: 6” wide; 10” long; 3/8” dia

Pitch antenna: 2’ long; 3/8” dia
 Design taken from DIY theremin guide
 Problem: unstable oscillators
 Theory: antennae load too large
 Solution: shorter antennae; better oscillator design



Oscillators
 First used Hartley oscillators w/SMD transformer – very weak signal
 Change: Hartley → Colpitts (thru-hole inductors) 
 Requirement: Antennae change osc. freq by 5-10 kHz from base freq
 Measured antenna freq from no hand near (left) to hand near (right):

~6 kHz difference



New design: Colpitts OscillatorOld design: Hartley Oscillator



Mixers
 Initially used Gilbert cells (on left) – sensitive; low output (1.7V pk-pk)

 Change: oscillator sine wave → square wave

 Requirement: modulated waves from 1-4 MHz input at logical high (2-5V)
 Use XOR gate to mix signals (on right) – get clean 5V output



Square Wave & Digital XOR Mixer

Gilbert Cell



 Use BJTs for integrator circuit
 Simple diode and RC lowpass filter for detector
 Requirement: 30 kHz bandwidth
 Ran func. generator through 20 Hz - 30 kHz range

Detector and Integrator



Integrator and Detector

Above: 50 Hz input
Below: 2 kHz input



Analog Circuit

Oscillators

Integrator

Detector

From 
antenna

To digital 
section

Mixer



 Create mesh to signal required pitch and volume
 Generated from text file + primitive meshes
 Requirement: want ~60 fps consistently – achieved (checked 

FPS counter)

Game Design: Rendering Engine



 Decoupled frame rate from game
speed

 Scoring function based off cubic
distance from “safe zone”

 Forgives shaky hands and
sampling noise

Game Design: Game Logic



Game Flowchart



 Take ADC samples from driver and scale to a certain frequency 
range

 Analyzed recorded theremin sound with FFT (left)
 Simulate theremin sound using additive synthesis (right)

Audio Engine



 Requirement: have at least four-octave sound range

 Used 110 Hz as lowest note (A2, left) and 1710 Hz as highest note (A6, right)

 Five-octave sound range result

Audio Engine cont.



Synthesis Flowchart



 Off-the-shelf 16-bit Maxim Integrated σ-δ converters

Analog-to-Digital Converters

Requirement Verification
 ADCs can send at least 480 

samples per second
 Connect trimmer to ADC; ADC 

to Arduino

Program Arduino to 
manipulate ADC and send 
voltage reading

Verify trimmer position 
corresponds to value from 
ADC



PIC16 and RS-232 to USB chip
 PIC16 signals to ADC to take sample
 PIC16 then sends four bytes to PC

thru RS-232 UART
 Requirement: PIC16 able to send

samples from ADC to RS-232
interface at 9600 baud

 Verification: Send byte to PIC16, get
same byte back + both ADC samples



Oscilloscope Trace of RS-232 Transmission



Digital Circuit



Overall Schematic

ADCs

PIC16USB to RS-232

Integrator

Mixer
Oscillators



 Uses system calls to open serial
device and read/write from/to
theremin controller

 Requirement: provide 2 16-bit
samples from theremin with
delay < 50 ms

 Verification: take time difference
between PIC sampling input and
driver receiving input

 ~9.5 ms delay 

Device Driver



 Oscillators still need work done (detailed in next slide)
 Digital section of theremin reliable
 Synthesis engine decent
 Game barebones but working

Conclusions



 Fix transistor biasing with inductors
before biasing inductor 6V pk-pk (left); 32.4V pk-pk after (right)

 Improve upon sound synthesis engine
 Flesh out game
 Actual controller enclosure and rigid antennae

Future Work


