
ThereminFreaks – Theremin Rhythm Game
Group 34
Esteban Looser-Rojas
Daniel Olivas Hernandez

Michael Recklein



 Desire to make a video game with unique hardware
 No rhythm games out there for simulating theremin
 Very unique instrument to make a rhythm game for: 

no contact + wave hands around

Introduction



 Create realistic and intuitive theremin simulator
 Responsive and enjoyable game
 Sound engine sounds like theremin and controls like one

Objectives



Block Diagram



Pitch and Volume Sensors
 Volume antenna: 6” wide; 10” long; 3/8” dia

Pitch antenna: 2’ long; 3/8” dia
 Design taken from DIY theremin guide
 Problem: unstable oscillators
 Theory: antennae load too large
 Solution: shorter antennae; better oscillator design



Oscillators
 First used Hartley oscillators w/SMD transformer – very weak signal
 Change: Hartley → Colpitts (thru-hole inductors) 
 Requirement: Antennae change osc. freq by 5-10 kHz from base freq
 Measured antenna freq from no hand near (left) to hand near (right):

~6 kHz difference



New design: Colpitts OscillatorOld design: Hartley Oscillator



Mixers
 Initially used Gilbert cells (on left) – sensitive; low output (1.7V pk-pk)

 Change: oscillator sine wave → square wave

 Requirement: modulated waves from 1-4 MHz input at logical high (2-5V)
 Use XOR gate to mix signals (on right) – get clean 5V output



Square Wave & Digital XOR Mixer

Gilbert Cell



 Use BJTs for integrator circuit
 Simple diode and RC lowpass filter for detector
 Requirement: 30 kHz bandwidth
 Ran func. generator through 20 Hz - 30 kHz range

Detector and Integrator



Integrator and Detector

Above: 50 Hz input
Below: 2 kHz input



Analog Circuit

Oscillators

Integrator

Detector

From 
antenna

To digital 
section

Mixer



 Create mesh to signal required pitch and volume
 Generated from text file + primitive meshes
 Requirement: want ~60 fps consistently – achieved (checked 

FPS counter)

Game Design: Rendering Engine



 Decoupled frame rate from game
speed

 Scoring function based off cubic
distance from “safe zone”

 Forgives shaky hands and
sampling noise

Game Design: Game Logic



Game Flowchart



 Take ADC samples from driver and scale to a certain frequency 
range

 Analyzed recorded theremin sound with FFT (left)
 Simulate theremin sound using additive synthesis (right)

Audio Engine



 Requirement: have at least four-octave sound range

 Used 110 Hz as lowest note (A2, left) and 1710 Hz as highest note (A6, right)

 Five-octave sound range result

Audio Engine cont.



Synthesis Flowchart



 Off-the-shelf 16-bit Maxim Integrated σ-δ converters

Analog-to-Digital Converters

Requirement Verification
 ADCs can send at least 480 

samples per second
 Connect trimmer to ADC; ADC 

to Arduino

Program Arduino to 
manipulate ADC and send 
voltage reading

Verify trimmer position 
corresponds to value from 
ADC



PIC16 and RS-232 to USB chip
 PIC16 signals to ADC to take sample
 PIC16 then sends four bytes to PC

thru RS-232 UART
 Requirement: PIC16 able to send

samples from ADC to RS-232
interface at 9600 baud

 Verification: Send byte to PIC16, get
same byte back + both ADC samples



Oscilloscope Trace of RS-232 Transmission



Digital Circuit



Overall Schematic

ADCs

PIC16USB to RS-232

Integrator

Mixer
Oscillators



 Uses system calls to open serial
device and read/write from/to
theremin controller

 Requirement: provide 2 16-bit
samples from theremin with
delay < 50 ms

 Verification: take time difference
between PIC sampling input and
driver receiving input

 ~9.5 ms delay 

Device Driver



 Oscillators still need work done (detailed in next slide)
 Digital section of theremin reliable
 Synthesis engine decent
 Game barebones but working

Conclusions



 Fix transistor biasing with inductors
before biasing inductor 6V pk-pk (left); 32.4V pk-pk after (right)

 Improve upon sound synthesis engine
 Flesh out game
 Actual controller enclosure and rigid antennae

Future Work


