Automated Boba Machine

Timothy Ko, Jordan Wu, Hunter Huynh Team 49

ILLINOIS Electrical & Computer Engineering COLLEGE OF ENGINEERING

Introduction

- The Boba Craze
- All made Manually
 - Food waste
 - Inconsistent taste
 - Can we make this process more efficient?

Overall Objectives

- Accurate dispensing of ingredients to create best drink possible every time
- Allow wide permutation of drinks and ingredients
- Easy to use interface that requires little technological literacy

Concrete Objectives

- Have at least 2 dispensers
 - milk tea (liquid)
 - tapioca pearls (solid)
- Dispense a user-specified amount of milk tea
 - less than ±10% error in mass
- Web interface to control the amount of liquids/solids dispensed

Original Physical Design

The machine

Block Diagram

ECE ILLINOIS

ECE ILLINOIS

Modular Design

Standalone design of each module allows customer (shop owner) to

 pick and choose whatever combination of dispensers

Benefits

- Accommodates wide permutation of drinks
- Lower cost in long run

Modular Design

- Wireless
 - Dispensers placed wherever convenient.
 - No need to run wires.
- Over-the-air software updates
 - Updating/Adding features
 - Better dispensing efficiency
 - Same software for all microcontrollers
 - Easier for shop owner

Web Interface

Automated Boba Machine

Welcome to our Automated Boba Machine!

Check out our Design Document here.

Customize your drink: Start enter integer inputs. Ex: 200 Milk Tea Amount Test API Get IPs (grams) Boba Amount (num of enter integer inputs. Ex 4 Liquid Start Liquid Stop Liquid Ping spins) Solid V=1 Solid V=0 Solid Ping Load Setup Get Load Load On Load Off

Software Logic

L 12

Other Software details

- HTTP Requests
 - Latency 100ms Round trip w/o DNS or SSL
- Automatically searches for modules & configures them
- Proportional control on liquid dispensing
 - based on load & desire load
- Safety Guards
 - Stops entire process whenever one of the Modules dies

Microcontroller

- ESP8266-01 Module
 - Only 2 GPIOs
 - Step down to 3.3V via TSR1-2433
- MicroPython Firmware
 - WebREPL interface
 - Eliminated USB serial programming

Weight Sensing - Load Cell

- Accurate
- Outputs a tiny voltage increasing with weight Mini Load Cell Output [V] vs. Weight [g]

Weight [g]

Weight Sensing - Signal Processing

 An HX711 chip amplifies its input, then converts it to a digital value

Liquid Dispensing Mechanism

Objectives:

Dispense liquid with +/- 10% error in mass

Result:

- +/- 1mL for any mass.
 - < 1% error in mass in typical scenario</p>

Liquid Dispensing Issues

 Original design had TIP120 NPN Darlington transistor as suggested by the datasheet.

V _{BE}	V _{CE}
0V	12V
3.3V	~4V

- V_{CE(ON)} was around 4V.
 - 3A current draw of solenoid
 - Package was dissipating 12W. (Very Hot)

ECE ILLINOIS

Liquid Dispensing Solutions

- Use 2 RFP30N06LE
 - 1 as gate driver.
- Resistor choice crucial to ensure staying under $V_{GS(MAX)} = 10V$ and saturation.

V _{GS(Driver)}	V _{GS(Valve)}	V _{DS(Valve)}
0V	~5.8V	~1V
3.3V	0V	12V

Reasonable power dissipation of 3W.

Solid Dispensing Mechanism

\$150 later...

ECE ILLINOIS

Solid Dispensing Mechanism

- Rotates tube with servo motor
- 3.3V logic level can control 5V servo
 - Min = 4% Duty at 50Hz
 - Max = 12% Duty at 50Hz

ECE ILLINOIS

Solid Dispensing Issues

- Cost
- Loose tolerance
 - Liquids leak out the side
- Clumped up Boba causing dispenser to jam up
 - Micro-servo in original design destroyed
 - Upgraded to standard-size servo for more torque.

Boba Consistency....

Solid Dispensing Issues (cont.)

- Boba blocked each other laterally during dispensing
 - Stopping each other from entering rotating compartment.

Solid Dispensing Solutions

- Dispenser made using injection moulding for low cost
- Leakage prevention
 - Tighter tolerance in design
 - Seal with rubber O-rings.
 - Stronger servo motor to account for the friction.

Solid Dispensing Solutions (cont.)

- Extra liquid dispenser on top of solid dispenser to flush Boba and prevent clumping.
- Vibration mechanism to "shake up" the Boba to prevent lateral jamming.

Vi<u>deo</u>

Conclusion

- Our objectives have been met.
 - Has at least two dispensers working.
 - A web interface can control amounts of liquids and solids dispensed.
 - Machine can dispense user-specified amounts of liquid and solids within ±10% error.

Thank You

