Internet Connected Chessboard

Spring 2019 Team 61: Jeffrey Ito, Joel Mathews, Ritish Raje TA: Thomas Furlong

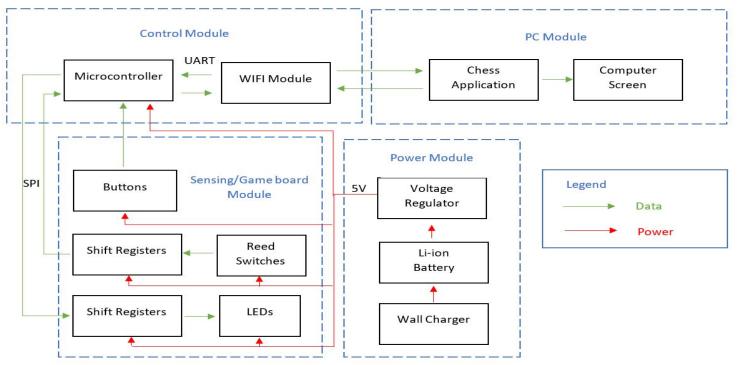
IILLINOIS

Electrical & Computer Engineering

Introduction

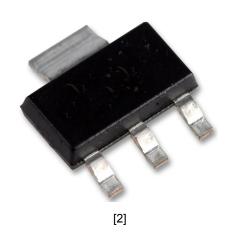
- Very Easy to play against someone around the world
- Online chess applications are a great way to play chess against players from all over the world
- A user interface on the computer screen is the traditional way to interact with these applications

[1]


Objective

 To regain the physical interface of an actual chess board while maintaining the ability to play against players from all over the world

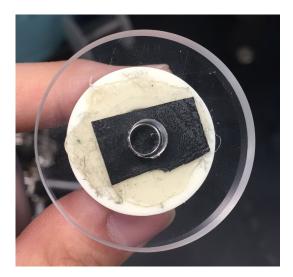
High-Level Block Diagram

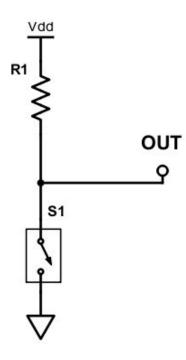

Main Requirements

- Chessboard transmits data to application through WIFI
- Application sends data to chessboard through WIFI
- Move validation

Power

- 9 V, 600 mAh rechargeable battery
- 5 V, 500 mA fixed-voltage LDO regulator




Reed Switches

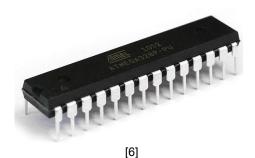
- Magnetically activated switches
- Detect pieces on chessboard

Reed Switches

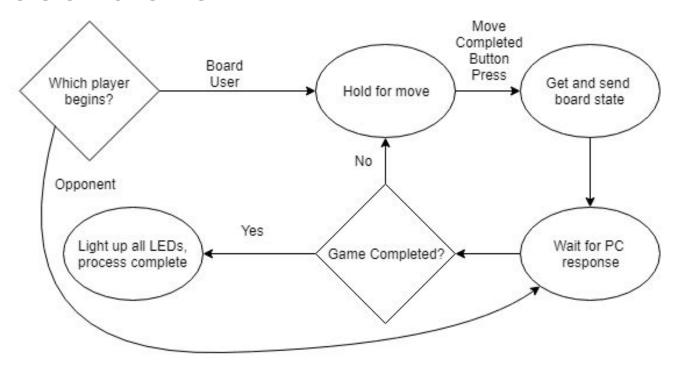
Shift Registers


- Facilitate communication between the MCU and reed switches
- Facilitate communication between the MCU and LEDs

[4]


Shift Registers

- Parallel-in serial-out shift registers take in parallel data and output serial data
- Serial-in parallel-out shift registers take in serial data and output parallel data



Microcontroller

- ATmega328p
 - UART and SPI communication
 - 32 KB of flash programmable memory
 - Able to operate at 5 V

Microcontroller

Communication Design

Microcontroller

- Used WiFi to allow communication across the globe
- ESP8266-01s WiFi Module
- 4 Input/Outputs
- Cheap

Communication Design Web Application

- Used FLASK microframework for Python
- Easy to set
- Ideal for prototyping

Data communication

Board to MCU

- Board sends 8 bytes of data to MCU.
- 1 byte corresponds to 1 row on chessboard
 => 1 bit corresponds to 1 square
- 8 bytes * 8 bits = 64 = number of squares on board

Data Communication

MCU to WiFi Module

- Serial Communication is used to send the 8 bytes to WiFi Module
- TX (MCU) ->Logic Converter (5V to 3.3V) -> RX (WiFi Module)

Data Communication

WiFi Module to Flask Python App

- Wifi Module makes POST request to FLASK endpoint with 8 byte data
- Endpoint parses and converts into 8x8 array to change state of chess application

Python Chess Application

- Running on computer through python script
- Brains of whole project
- Saves the game state

Chess Application Implementation

- Python chess application does most data processing
- State is continuously being sent to application
- Could have coded move detection in MCU
- Uses Python-Chess Library
- More concise to use python

Chess Application Communication

- Python script creates its own server
- Python script sends data by connecting to WiFi Module's servers

Application Data processing

Gets game state from the chess board

Sends back opponents move

Tells chess board which LEDs to light

Ethical Issues

Cheating by taking advantage of software

Hackers attacking the website (taking personal information)

Successes

Fully integrated all communication modules

Able to send move from Board to the chess application

 Able to send move from Pygame to Chess Board

Challenges

Wiring

Serial communication

Programming microcontrollers

Trouble getting Wifi module to send data

Conclusion

Future work

Redesign wiring system

Fine tune chess application algorithms

Reduce latency

Reduce power consumption

Questions?

References

- [1]B. Chaudhary, "Making the chess functional," Safari Books Online, 2019. [Online]. Available: https://www.oreilly.com/library/view/tkinter-gui-application/9781849697941/ch04s07.html. [Accessed 26 April 2019].
- [2]"UA78M05CDCYR Linear Voltage Regulator, 7805, Fixed, 7V To 25V In, 5V And 0.5A Out, SOT-223-4," element14, 2019. [Online]. Available: https://in.element14.com/texas-instruments/ua78m05cdcyr/linear-volt-reg-0-5a-sot-223-4/dp/2437942. [Accessed 26 April 2019].
- [3] "Reed Switch," Sparkfun, 2019. [Online]. Available: https://www.sparkfun.com/products/8642. [Accessed 26 April 2019].
- [4]"10pcs SN74HC165N 74HC165N SN74HC165 DIP-16 Logic Gates Quad 2-Input and GATE New Original," Amazon, 2019. [Online]. Available: https://www.amazon.com/SN74HC165N-74HC165N-SN74HC165-2-Input-Original/dp/B07NYD8PR7. [Accessed 26 April 2019].
- [5] "The Shift Register," ElectronicsTutorials, 2018. [Online]. Available: https://www.electronics-tutorials.ws/sequential/seq_5.html. [Accessed 26 April 2019].
- [6] "ATmega328P-PU PDIP-28 Microcontroller," Robu.in, 2019. [Online]. Available: https://robu.in/product/atmega328p-pu-pdip-28-microcontroller/. [Accessed 26 April 2019].