

Automatic Parking Monitoring and
Assistance for city of Champaign

ECE 445 Design Document
Christopher Santoso

Ximin Lin
Bo Wang
Group 17

TA: John Kan

1. Introduction

1.1 Objective

Parking spots on campus are numerous, and there is constantly a need for multiple people to constantly

monitor parking spots to ensure rules are not broken. It is very easy for an individual to make an honest

mistake however, such as parking too close to the curb, forgetting the time limit they paid for, or

parking in a spot they are not allowed to park in.

We propose to solve this problem with an enhanced parking device that can be either mounted on a

pole or a wall that will monitor cars coming in and out of the parking space, and notify the car-owner

and the officials if there is a violation. Our device will also be able to assist the individual by giving signals

in the form of color-coded lights on the device to assist them in parking (e.g. if they are too close to the

curb or outside their spot, a visible light on the device will turn red. Stays green otherwise).

1.2 Background

When people forget to pay the parking meter due to carelessness or some emergencies, people could

be charged for $50. Also, sometimes because of the bad schedule plannings, people ran late to the

parking lot to pick up their car. In case of these scenarios, people usually pay extra money to safely cover

the time they will use, which in turns cause people losing money because they left early. Our meter

attempts to solve all these problems.

Our meter will check the person’s balance on the server and calculate the time the person parks the car.

Remote server will automatically charge from the account for the time the car parked. When balance in

this person’s account runs out, we will notify the person first. Through our website, they can pay the

account. As a result, the person will only receive parking ticket when he or she refuses to pay. This could

greatly reduce the waste of money and accommodate some emergencies.

1.3 High-level requirements list

• Able to recognize if there is a car parked in the space (via. ultrasonic sensors), which is defined as a car

sitting at a distance of 0.35 meters +/- 0.25 meters,

• Able to identify its license plate within the next 1 minute of detecting a parked car, and associate the

license plate with a user account (if one exists), and begin charging the driver’s account after 5 minutes

of being parked.

• Able to recognize if a car has committed a violation†, and give a physical indication (LED color) to the

driver within 10 seconds of the violation being committed.

• Upon the car leaving the parking spot, the database should accurately reflect the parking time and

updated balance within 5 minutes of the driver leaving. This change should be reflected on the web

server (viewable by the driver) within 1 additional minute.

†A violation is defined as:

- a car either being too close (12cm +/-3) or too far (46cm or more) from the parking meter.

- a car parked during restricted hours or in a reserved spot

- a car occupying multiple spaces

2. Design

Figure 1: Proper versus invalid parking positions. (a) A properly positioned car. License plate is aligned

with the camera module (≤30 degrees offset from the center of the camera’s center view). (b) Car is

parked too close to the meter, which is less than 0.35 meters from the meter itself (in which case, “an

Obstructed View” message will appear). (c) Car is occupying multiple spaces, not leaving space for other

cars to park, which is measured by the license plate being ≥30 degrees offset from the center of the

camera’s view. (d). Car is parked too outwards, which is defined as the car being more than 0.5 meters

away from the module.

2.1 Block Design

Top-Level Block Diagram

Figure 2 and Figure 3 depict the connections and requirements of the PCB module and the

Raspberry Pi/Microcontroller modules, respectively. Thus, the following section is divided into

the Microcontroller, Ultrasonic Motion Sensor, and LCD Display module, and the Raspberry Pi

and Microcontroller module.

Figure 1: Top-Level block diagram of the entire system. The hardware section is separated into a

PCB module, which will consist of the modules to be placed on the PCB, as well as the Pi Module,

which consists of only the Raspberry Pi.

Requirement Verification

The module must be able to communicate with
the main server to send and retrieve license plate
data.

A. Create a database entry with an
associated predefined license plate on
the server side.

B. From the client, send a (debug) request
to retrieve the plate entry and its
associated balance.

C. Verify that the client contains the same
entry information as what was created in
(A).

The parking module must be able to identify a
license plate when there is one present within 0.5
to 1 meter, of the camera.

A. Position a license plate 0.5 meters from
the module’s camera.

B. Check to see that the license plate
number displayed on the LCD screen is
the same as the license plate number
held in front of the parking module.

The parking module must be able to fetch an
associated balance from the server within 1
minute of identifying the license plate.

A. Position the plate until it is identified by
the meter.

B. Verify that the debug message on the
LCD screen correctly displays the
database entry associated with the
licence plate.

The parking module must be able to detect a car
leaving the parking space, which is defined as the
car moving away more than 1 meter from the
meter, and no identical license plate being
identified within the next minute.

A. Position the license plate 0.5 meters from
the parking module, and hold it in place
for five minutes to signal the meter that a
car is parked.

B. Move the plate away from the module to
a distance of 1 meter (or greater), and
keep it out of range for two minutes.

C. Verify that the LCD no longer displays a
license plate or a balance.

2.2 Hardware (Microcontroller & PCB and Raspbery Pi Modules)

2.2.1 Microcontroller, Ultrasonic Motion Sensor, and LCD Display

Figure 2: PIC Microcontroller to LCD Module and Motion Sensor Module connections. The motion

sensor will connect to the PIC’s external interrupt line to notify the MCU of new incoming data,

and send the data via. a digital signal to one of the PIC’s digital I/O pins. The LCD module is

commanded by the PIC via. another Digital I/O pin.

Requirement Verification

The microcontroller must be able to display a
16x2 character message on the LCD screen.

A. Program the microcontroller to send a
predefined 32-character ASCII message to
the LCD display peripheral.

B. Verify that the corresponding message
appears on the display.

The microcontroller must be able to read a
distance from the ultrasonic sensor.

A. Command the microcontroller to display
the distance read from the ultrasonic
sensor.

B. Position an object in front of the
ultrasonic sensor. Verify that the distance
displayed changes in correspondence
with the position of the object.

In displaying a status message (1. Empty Balance
and 2. Obstructed Spot or Plate, 3. Restricted
Hours), the LCD module will take no more than 3
seconds to display the correct status message
upon the correct conditions being met.

1. Empty Balance Status Test:
A. Load the parking module with an

nearly-empty balance (0.40 USD).
B. Allow the balance to empty by keeping a

parked car in the same spot for more
than 5 minutes.

C. Verify that the LCD display reflects the

“Empty Balance” message.

2. Obstructed Spot or Plate Test
A. Place an object within 3 meters, 1 meter,

and 1cm of the parking module with no
license plate in view of the camera.

B. Verify that for each of the 3 distances,
the “Obstructed Parking Spot” message
displays on the LCD.

3. Restricted Hours Test
A. Set the meter’s restricted hours to -1 and

+1 hours of the current time.
B. Place an object with a license plate within

0.5 meters of the parking meter’s camera
view.

C. Verify that the LCD displays the
“Restricted Parking Hours” message.

2.2.2 Microcontroller to Raspberry Pi Module

Figure 3. Raspberry Pi to Microcontroller connection. The dotted module is the module depicted in Figure

2 (connections between the microcontroller, the LCD screen, and the ultrasonic motion sensor).

Requirement Verification

The microcontroller must be able to send and
receive data over UART with a baud rate of
9.6kbaud.

A. Using PySerial, open a serial connection
between the Raspberry Pi and the
microcontroller (with 9.6kbaud
transmission speed).

B. Send a command to the microcontroller
to give it a predefined message.

C. Command the microcontroller to send
back the predefined message.

D. Verify that the message received is the
same as the message sent.

The microcontroller must be able to wake the
Raspberry Pi from sleep mode via.

A. Manually put the Raspberry Pi to into
sleep mode by entering “sudo shutdown
-h now” into the console.

B. From the microcontroller, program it to
manually send the wake up command
upon a debug button (physical debug
button) being pressed.

C. Verify that the Raspberry Pi is able to
wake up within 30 seconds of the button
being pressed.

The Raspberry Pi must be able to send and
receive a balance from the microcontroller, and
the microcontroller must be able to update this
balance (while a car is parked).

A. From the Raspberry Pi, send the
command to update the microcontroller’s
stored license plate.

B. From the Raspberry Pi, send the
command to display the license plate on
the LCD screen.

C. Verify that the plate number displayed on
the LCD screen is the same as the one
sent.

The Raspberry Pi must be able to update the
microcontroller with a new license plate
(whenever a car is detected).

Test 1
A. From the Raspberry Pi, send the

microcontroller a preset license plate.
B. Command the microcontroller to display

the received license plate. Verify that it’s
the same as the one sent.

Test 2

A. Command the microcontroller to display
the license plate number.

B. Position the parking module such that a
license plate is within its view.

C. Verify that the license plate displayed on
the LCD screen is the same as the plate in
front of the camera.

2.3 Power Module

Figure 4. To power our system, we first adapte the ground power with a 5V DC adapter, we then

power our modules with 5V DC. We want our MCU to automatically wake up raspberry pi with high or

low voltage. The circuit shown above works as a switch.

Requirement Verification

VCC should provide stable 5V and 500mA power
for raspberry pi to safely work.

We will use oscilloscope to measure the voltage
and the current when MCU allows VCC supplies
raspberry pi.

2.4 Central Server

2.4.1 Top Level Software Flow

The central server will handle the main logic shown in the server-side software flowchart (Figure 1).
Thus, it is responsible for managing the flow of data between the database and the main server

computer, authentication and security (including user/admin sign-up), and transfer of information to

and from the smart meters.

Figure 5: Top-level data flow of the entire system.

2.4.2 Server and MCU

The flow of data on the server-side is shown in the flowchart below. The server will be responsible for

handling requests that come through the API gateway and making the correct query to the database to

check if the license plate exists. If the plate is not already registered, a new entry will be created with a

balance of 0, and when the driver with that license plate signs up, any remaining balance will be saved

to their account, and their user information will be synced with their existing plate.

Figure 6: Flow of data on the server side.

2.4.3 Server and Database

Upon a driver arriving, a request is made to query the database for an existing plate. If an existing is

balance is found, the balance is sent to the smart meter and converted into a number of minutes the

user is allowed to park for. If the balance reaches zero, or a violation is committed at any point during

the flow, an interrupt is generated and if the issue is not cleared within 15 minutes, University Parking is

alerted of the incident, and the driver’s account is updated with the corresponding incident message.

Figure 7: Software logic flow on the meter/client side.

2.4.4 Plate Recognition Model

The plate recognition model will consist of multiple models. The first model consists of detecting objects

with the shape of a license plate, which means this model will be trained to recognize a rectangle of a

specific size, edge, and of corner shape (since license plates have distinctly rounded corners). The

second portion of the model consists of optical character recognition. Once a license plate-shaped

object is detected, there needs to be a model to recognize text on the license plate itself, and associate

this text with ASCII characters in order to perform lookups based on the license plate. We will integrate

help from the OpenALPR library, which contains models for plate-shape recognition and OCR, which is

built on top of OpenCV and written in C++.

2.5 Tolerance Analysis

2.5.1 Raspberry power supply

Since we intend to wake up Raspberry Pi while necessary, we have to build this module to automatically

turn on the raspberry pi. (we could automatically turn it off in the program) By building this module, we

could turn on the Raspberry pi depends on the instruction of MCU. The MOSFET would works perfectly

as a digital switch, but it still has internal resistance. By roughly measuring the current through a working

Pi, we tested and get the resistance of Pi would vary 5 ohms to 10 ohms. If we apply 5.1 V as VDD, and

we want to ensure Raspberry could ensure 5 V voltage to work:

5V = 5 ohms / (5 ohms + Rd) * 5.1V

Then, Rds must be smaller than 0.1 ohms. We now find a MOSFET IRLB8721PbF, with smaller internal

resistance.

2.5.2 Distance estimation

Accurate estimation of the distance between the car and the meter is important for first, assisting the

driver to park car, and second, help to maintain car at a similar distance from the camera so that the

plate number can be recognized with higher accuracy. We have not tested with real cars yet. From

datasheet of ultrasonic sensor (HC-SR04), the measuring angle is 15 degree, and the measuring accuracy

is 3mm. Ultrasonic sensor measures the distance by sending ultrasonic wave to the object and calculate

the time until it receives the reflection of the sound from the object. We calculate the distance by

following the equation:

We use 344m/s for the speed of sound in the air.

Because of the different reflection surface and different height of cars, more than one sensor might be

needed to be placed on different positions.

2.5.3 Plate recognition algorithm accuracy and response time

Our model needs to accurately recognize the plate number in a limited time frame. Due to our

implementation, we will start the raspberry pi board first if MCU detects a car parking into our spot. The

starting time of raspberry pi takes less than 2 minutes. The recognition algorithms takes less than 1

minute. In total of 3 minutes, we should have output before the driver is ready to leave. The accuracy of

openALPR (4), as it is reported, has reached 99.2%. We believed that in our case, the actual accuracy will

be higher because we limit the possible positions the plate number will show up in the camera.

2.5.4 Power consumption savings

https://www.codecogs.com/eqnedit.php?latex=distance%20%3D%20344%20m%2Fs%20*%20%5Cfrac%7Btime%7D%7B2%7D%0

Above is our recorded data for current while Raspberry booting, the voltage is fixed as 5.01 V. The

process assume our system working 5 mins for each car coming. And the standby current for Raspberry

Pi is 0.493A and assume the average working current is 0.550A . So, if we leave the Raspberry on all the

time. In one busiest hour(4 cars come and leave), the energy consumed would be:

E = 20 * 60 * 5.01 * 0.493 + 40 * 60 * 5.01 * 0.550 = 2963.9 + 6613.2 = 9577.1 J

However, If we let Raspberry Pi work while necessary, we would consume less energy(average working

current with rebooting is 0.517A):

E = 20 * 60 * 5.01 * 0.517 = 3108.2 J

So, if we cut the power to raspberry pi when we don’t need it for plate recognition. In total of one hour,

we save 6468.9 J. In practice, we can save more power since there will be fewer cars arriving at one

parking spot for every hour.

3. Cost and Analysis

3.1 Cost Analysis

- Labor:

Rate: $50/hr

Bo Wang: 50 * 2.5 * (10 * 3) = $3750

Christopher Santoso: 50 * 2.5 * (10 * 3) = $3750

Ximin Lin: 50 * 2.5 * (10 * 3) = $3750

- Parts:

Name (part number) Quantity Unit price($) Subtotal($)

Raspberry pi board

model 3 b+ from

amazon (RASPBERRY
PI 3 MODEL B+)

1 35 35

Camera Module v2
Raspberry Pi from
amazon (913-2664)

1 23.9 23.9

SanDisk Ultra 16GB

Ultra Micro SDHC

UHS-I/Class 10 Card

from amazon

2 7.2 14.4

CanaKit 5V 2.5A

Raspberry Pi 3 B+

Power

Supply/Adapter from

amazon

1 9.99 9.99

LCD screen (EA

DIP162-DN3LW)

1 17.5 17.5

PIC microcontroller

(PIC16F877A)

1 4 4

Ultrasonic sensor

hc-sr04 (3942)
1 3.95 3.95

-

3.2. Schedule

Date (by end of

week)

Group Scheduled

Progress

Ximin Lin Chris Santoso Bo Wang

2/18 Simulate

ultrasonic sensor

and part of power

module, cable

modification for

raspberry pi.

Develop plate

number

recognition

model.

 Simulate the

power module, do

the cable

modification for

raspberry pi.

2/25 Programming

MCU for

ultrasonic sensor

and LCD, simulate

on breadboard

Simulate

Ultrasonic

sensors, LCD

display

Begin setup of the

WiFi

communications

with the server.

Combining all

parts on

breadboard and

debug

3/4 Design PCB on

Eagle for the first

wave PCB order.

Design PCB Continue setting

up WiFi-enabled

communications.

PCB design and

simulation

3/11 Finish plate

recognition model

and testing. Build

the structure of

software in

Python.

(PCB modification)

Research Plate

recognition model

and testing on

raspberry pi

Set up the UART

communications

between the

Raspberry Pi and

the

Microcontroller.

Testing the

module, help with

python code.

3/18 Spring break (no

scheduled work

for now)

Continue working

on plate

recognition and

PCB modification

Continue working

on the UART

communications

between the

Raspberry Pi and

the

Microcontroller.

3/25 Coding for data

transfer between

smart meters and

server. Build the

database and user

interface of our

service.

Help Chris build

the server

connection with

database

Begin the

back-end server

connection with

the database.

Finish building the

database and test

the connection.

4/1 Continue and

design a custom

cover for system.

(may order a

powerful battery

to supply the

project for

outdoor testing)

 Continue the

back-end server

connection with

the database.

Design the cover

for our meter, and

find out the

solution for

testing battary.

4/8 Testing

4/15 Testing

4/22 Testing

4/29 Testing

4. Ethics and Safety

One of the primary concerns to be aware of is the fact that user data and their credit card

account information is being stored and charged while utilizing our service. For this reason, it’s

imperative that user information is properly encrypted and transmitted in a safe and secure

manner. This will require us to research our options for when it comes to storing and

transferring data.

An issue brought up during our discussions revealed that a similar automated parking collection

meter was installed in Palisades Park (1). As a result, user complaints were numerous, and

stores lost customers because they simply didn’t want to deal with the complications of these

new meters. Furthermore, the city was able to raise a lot of money from drivers going over

time, since tickets would be automatically billed to their address. This practice seems to clearly

violate IEEE ethics code #5: “to improve the understanding by individuals and society of the

capabilities and societal implications of conventional and emerging technologies, including

intelligent systems.” Because the use of their meters was confusing and unclear, many users

suffered fines, which only seems to exacerbate the concern of automated processes. We seek

to improve user parking experience with a more fully-featured automated driver parking assist.

Our meter will provide clear signals to the driver when a violation has occurred, and one of our

biggest goals is to make the user interface as simple as possible. To reap benefits from users’

confusion is unethical, so it’s very important that our design choices make sense to the driver

and that our signals and instructions are easy to follow.

IEEE ethics rule #6 (“to maintain and improve our technical competence and to undertake

technological tasks for others only if qualified by training or experience, or after full disclosure

of pertinent limitations”) brings up another concern about storing and transmitting user data.

Only one of us has experience with storing and retrieving encrypted user data for public

services, so in doing so, we acknowledge that our knowledge in the field is limited, so in order

to prevent unsafe practices, we plan to consult online resources and utilize existing tools for

secure transfer and storage of user data.

5. Schematics

Figure 9. PIC16F877A microcontroller, LCD, and motion sensor connections circuit diagram.

Figure 10. Raspberry Pi B+ to PIC16F877A UART connections.

6. Citations

1. northjersey. (2019). Palisades Park: Digital parking meters a chance at a camera windfall.

[online] Available at:

https://www.northjersey.com/story/news/bergen/palisades-park/2018/06/19/palisade

s-park-digital-parking-meters-camera-windfall/710805002/ [Accessed 3 Feb. 2019].

2. Learn.adafruit.com. (2019). How PIRs Work | PIR Motion Sensor | Adafruit Learning

System. [online] Available at:

https://learn.adafruit.com/pir-passive-infrared-proximity-motion-sensor/how-pirs-work

[Accessed 4 Feb. 2019].

3. MaxBotix Inc. (2019). Ultrasonic vs Infrared (IR) Sensors - Which is better? - MaxBotix

Inc.. [online] Available at:

https://www.maxbotix.com/articles/ultrasonic-or-infrared-sensors.htm [Accessed 4

Feb. 2019].

4. Officer.com (2018). OpenALPR Software Upgrade: Brings Accuracy Up To 99.02%.

[online] Available at:

https://www.officer.com/command-hq/technology/traffic/lpr-license-plate-recognition/press-r

elease/21031077/openalpr-technology-inc-openalpr-software-upgrade-brings-accuracy-to-9902

[Accessed 18 Feb. 2019].

https://www.officer.com/command-hq/technology/traffic/lpr-license-plate-recognition/press-release/21031077/openalpr-technology-inc-openalpr-software-upgrade-brings-accuracy-to-9902
https://www.officer.com/command-hq/technology/traffic/lpr-license-plate-recognition/press-release/21031077/openalpr-technology-inc-openalpr-software-upgrade-brings-accuracy-to-9902

