

Gait Controlled Treadmill

 ECE 445 Project Design Document- TA: Anthony Caton
 Team 43 - Jacob Pruiett, Charles Leonard Lewis IV and Jiangtian Feng

1- Introduction

1.1- Objective

Indoor running on treadmills plays a significant role in our daily life. However,
running on a treadmill can be an uncomfortable affair. This is due to users having to
match the speed of the treadmill, rather than moving naturally at their own pace. It is
also an common sight to see gym patrons holding on to the rails of the treadmill in order
to get a sense of safety, since this unnatural pace can at times feel dangerous.
Although there are a suite of protective features, including safety clips, stop buttons and
handrails, it is still difficult for users assuage their fears. Solving this problem would
serve to greatly improve user experiences with treadmills.

Our solution to this problem is to build a treadmill that automatically matches the
gait of the runner. Upon start-up, the belt will have a slow initialization speed, the
treadmill will then naturally control the belt speed according to runner's speed and
position on the belt. Specifically, we divide the belt into three area: at the front area, the
control system will increase the belt velocity; if the runner is at the rear area, the belt will
slow down in response. The center of the belt will be the zero position, indicating the
current speed is comfortable for runners. The system also adjusts the velocity of the belt
based on the runner’s velocity relative to the belt, accelerating and decelerating in
response to a difference. This natural speed control system will prevent unexpected
injury because the system will increase the belt speed in pace with the runner which
allows them to warm-up, and to not be forced to run at a predetermined pace, allowing
for a run that feels natural and safe.

1.2- Background

Historically indoor vs outdoor running has been a subject of debate on a variety
of different fronts. While the debate of whether one is more challenging or better than
the other remains in contention, the fact that the two differ in execution is not up for
debate. One major fact is that outdoor running tends to be considerably more
challenging, since the forces that need to be generated by the runner in order to
accommodate velocity changes causes more wear on the runner when on pavement.
On the other hand, the presence of the electromechanical devices forces the user to
tamper with the controls on the treadmill whilst trying to run. This can be a deterrent for
a hardcore runner, and may be a reason why so many exercise enthusiasts avoid using
treadmills. Despite this disparity between elite athletes and the average runner, this
does not diminish the popularity of this piece of equipment. According to the Consumer

1

Report Safety Commission, over 50 million Americans use a treadmill for activity needs
[1]. This being the case, there is clearly a large interest in the treadmill as a viable piece
of exercise equipment among the fitness community.

In addition to the popularity of the treadmill there is, more importantly, the risk of

injury associated with its use. There is a plethora of articles and information concerning
treadmill related injuries, such as there being over 70,000 mechanical exercise based
injuries between the years 2007 and 2011 [1]. While the numbers are not as high as say
automobile related injuries, there is still reason for concern especially considering the
easy access to young children. While there are a number of safety mechanisms
embedded in the electromechanics of a current day treadmill, such as those mentioned
in the objective statement, they are mostly mechanical in nature and require user input.
As such, the need for safety concerns is not eliminated, and automatic safety
mechanisms are still in need.

1.3- High-Level Requirements

● Sensor subsystem must have greater than 95% distance accuracy at all ranges
and speeds, and must report this data back with a sampling rate of at minimum
12Hz, as we want to collect data at about three times human reaction speed.

● Outside of a 9” center zone, the control system must begin responding to
changes in user speed within half a second of that change occurring on the user
end, and must be able to adjust the belt velocity to any value between 3mph and
10mph in at most 3 seconds.

● System must stop within 3 seconds depending on current velocity when nothing
is detected by sensors, when the system has slowed down to a halt as a result of
decreasing user speed, or when the stop button is pressed.

2- Design

A traditional treadmill needs three central components to function: a power
supply, a control unit, and a motor. Treadmills typically take in power via a wall outlet
and pass it through an AC/DC converter that supplies the controls unit with 5V, and a
variable amount to the motor based on input from the control unit. In the control unit, we
process data from between four and seven different sources to produce a single output
signal that will adjust the velocity of the motor. Finally the motor will take in a range of
voltages from the power supply and drive the treadmill, whilst feeding back its current
velocity data to the control unit.

2

Figure 1. Physical Diagram

Figure 2. Block Diagram

3

2.1- Motor Unit

The motor unit will take in voltage from a lab source, and a signal from the
microcontroller to drive the treadmill belt at a range of desired speeds.

2.1.1- Motor

The motor will take in voltage values from the motor voltage regulator, and speed
up or slow down in response. It will drive the treadmill belt, meaning it is vital to the
function of this system.

We will be using a Minertia small size DC r-series (r02m) servo motor we will not
need to use a driver. The motor will be rated at a max voltage of 25.5V with a max
torque of .5N*M at 3000rpm. We wish to use a high RPM low voltage motor as they
tend to be cheaper and it is relatively easy to control the speed of them.

Requirements Verification

Motor must be able to adjust to a range of
input voltages between 5 and 25v within a
timeframe of at most 1s. Motor must drive
the treadmill at a max speed of at least
10mph.

a. Attach motor to the treadmill, such
that it is driving the belt.

b. Attach input terminals of motor to a
DC power supply.

c. Attach output of encoder to the
microcontroller, and attach that to a
PC to read total output.

d. Vary the value of the power supply
from 5v to 25v, changing the step
size from 1v up to 5v, and record via
data from the encoder how quickly
the motor reaches a steady state
value, and make sure the maximum
time frame any step requires to adjust
speed is at most 1s.

e. Once the input voltage is at 25v,
check the velocity of the belt using
the speed given by the encoder and
the circumference of the roller the
motor drives. Make sure that value is
at least 10mph.

4

2.1.2- Motor Voltage Regulator

The motor voltage regulator will need to be a DC/DC converter that steps up
voltage to meet operational voltage levels in the DC motor (in our case up to 25.5v for
our current motor) based on input from the microcontroller. Although, amplifiers and
boost converters are inherently unstable and dangerous to work with so we will instead
build a buck converter that will take in voltage from an external source and buck it down
to operational voltage levels of the motor depending on the PWM signal running gate of
the active switch.

Requirements Verification

Output current must be no more than
22A.

a. Attach the regulator to a 26V power
supply.

b. Connect an output from the
microcontroller to the regulator, and
power it.

c. Make sure it outputs a PWM signal
with a duty cycle of (25/26)*100% =
96%.

d. Connect a multimeter to the outputs of
the regulator. Make sure the current
the regulator outputs is 22A or less.

2.2- Control Unit

The control unit will take in external user input as sensor data and be used as
input into a unity gain closed feedback loop that will be used in addition to a PID
controller taking in a sum consisting of both the sensory input minus the motor feedback
info being relayed by the encoder. The microcontroller will allow us to set the PID gain
constants in order to fine tune the transfer function performance.

2.2.1- Microcontroller

The microcontroller will be the heart of this unit, and will be where all of the input
data is fed into, and where the output signal will originate from. We will use an
ATmega328p since we do not need much memory to perform the operations we will be
making, and it is inexpensive, which will allow us to put more money into other facets of
the design. Its functionality will allow us to set and adjust the PID control parameters

5

(connected through LabView via USB) as well as adjust the PWM signal going to the
power supply of the DC motor.

 Generally a basic treadmill PWM signal is controlled by an adjustable

potentiometer, but our microcontroller will instead utilize a CCP (capture compare
PWM) methodology for easily adjustable PWM control. In addition, the sensors will need
to be fed into the control unit as an input signal to set the appropriate timer adjustments
in the CCP modules in order to adjust the PWM signal (determined by the position
control system algorithm) to the gate of the buck converter and out to the DC motor
which in turn will adjust the speed (given by the voltage input level) and give feedback,
via the encoder, back into the microcontroller and control circuit for processing.

Requirements Verification

Data processing algorithm must interpret
sensor data so that it can produce a
velocity value with 5% accuracy.

a. Implement the data processing
algorithm, as described in our
Tolerance analysis.

b. Append to this algorithm an algorithm
to interpolate the positional data that is
created, and generate a velocity based
on the stored position data.

c. Plug in microcontroller to a power
supply and set it to 5V.

d. Upload program to microcontroller.
e. Attach range sensors as appropriate

for the implemented algorithm, and
power them with the 5V power supply.

f. Attach sensors to the treadmill in
desired configuration.

g. Place test car at end of treadmill, then
run it at a constant 3mph.

h. Compare velocity values given by the
microcontroller to the known velocity.
Make sure it does not differ from the
actual velocity by more than 5%

i. Repeat steps g and h at 5mph, and
then again at 10mph.

6

2.2.2- Start/Stop Buttons

The start and stop buttons are a simple user interface for the sake of safety and
ease of use. If the start button is pressed the system should begin moving and
responding to user movement, and if the stop button is pressed the system should
immediately begin slowing down to a halt.

2.3- Sensor Unit

2.3.1- Range Sensors

The sensors will be vital to the function of our system. In order to most accurately
measure on the position of our user, we will test a number of configurations and type of
sensors, namely ultrasonic and Lidar sensors. These configurations and how we
interpret this data to reduce error is further extrapolated upon in our tolerance analysis.

In this section, we are most concerned with the qualifications of each individual
sensor. The sensors will be connected to the I/O pins of the microcontroller, and will be
used to determine both the position of the user, and their velocity relative to the
treadmill. If we use Lidar sensors, they will communicate to the microcontroller via an
I2C protocol. Our ultrasonic sensors communicate with our microsensor via TTL signals.

Requirements Verification

Sensor must have at most 5% error up to
6 feet away.

a. Fix the sensor 24” above the ground,
connect its data pins to a
microcontroller’s I/O ports, and
connect a 5V power supply to the
sensor’s power inputs.

b. Setup an object with a width of at least
1’, 6’ away from the front of the
sensor.

c. Connect the microcontroller to a pc
and display in real time the input
values of the microcontroller.

d. Turn on the sensor and make sure the
value it reads has at most 5% error.

e. Repeat steps b-d, moving the object 1’
closer each time, until you are 1’
away.

7

2.3.2- Encoder w/ regulator

The encoder will measure the angular velocity of the motor as it’s running, and

output that data to the microcontroller. This is important so that our control algorithm
can know what the current speed of the treadmill is. For this purpose we will be using a
preinstalled Yaskawa 3vc tachometer generator, which outputs a voltage signal that
correlates to the rotational velocity. Because it is a DC tachometer generator, it does not
require any power supply, and outputs a voltage value in real time according to the
speed of the motor shaft.

However, this then means that we need to make sure that the output voltage can
be read by the microcontroller without harming it, so we run the output values of the
encoder through a buck converter to step down the voltage to levels the microcontroller
can tolerate. The buck converter will be sent a constant PWM signal from the
microcontroller to drive it, and the signal will have a duty cycle of 23.8%, since that is
the ratio from 21V to 5V, which is the highest output voltage of our encoder, to the
highest input voltage of our microcontroller.

Requirements Verification

Output voltage can be no more than 5V,
and the output current must be no more
than 200mA.

a. Attach the motor to a power supply,
with the encoder/regulator subsystem
attached.

b. Connect an output from the
microcontroller to the buck converter,
and power it. Make sure it outputs a
PWM signal with a duty cycle of
23.8%.

c. Connect a multimeter to the outputs of
the regulator.

d. Set the input voltage to the rated
motor voltage, 25V.

e. Make sure the voltage the regulator
outputs is 5V or less, and the current
is 200mA or less.

8

2.4- System wide requirements

Requirements Verification

The system must be able to respond to
changes in the velocity of a user
completely within 3 seconds after they
leave the 9” long zone at the center of the
belt, and begin the shutdown process
after slowing down below the minimum
velocity.

a. Attach all modules together, as
shown in our circuit schematic and
block diagram.

b. Place test car on the treadmill in
the center of the belt.

c. Press the start button and turn on
the treadmill.

d. Input voltage to the car such that it
moves at 3mph. It should remain
stationary.

e. Increase the speed of the car to
4mph, after it leaves the
equilibrium zone, the system
should at minimum match that
velocity within 3 seconds.

f. The belt should become slightly
faster than the car, and push it
back to the equilibrium zone.

g. Repeat this process from 4mph up
to 6 mph, 6mph down to 3mph,
and from 3mph up to 10mph, then
slowly step down this speed 1mph
at a time until the car is below
3mph, after which the treadmill
should begin the shutdown
process.

9

2.5- Tolerance analysis

The most important tolerance to keep track of in our system will be in our
sensors. We will be comparing different sensors in different configurations to determine
a setup that best suits our needs. The two types of sensors we wish to test are LiDAR
and ultrasonic sensors, and there are three different configurations we will test with in
mind. A single sensor at one of the rear corners, three sensors at the front, and four
sensors, one in each corner. The single sensor setup will be with our LiDAR sensor,
whilst the three and four sensor setups will use our ultrasonic sensors. Because the
data we actually need is how far the user is from the rear of the treadmill, we will take
the data from the sensors and put them through a few equations:

For a front sensor:
istance ensorDataD = S Eq.1

For a corner sensor:

istance D = √SensorData 9") 2 − (2 Eq.2

Then average the different distance values:

i = # of sensors, k = current sensorinalDistanceF = ∑
i

1
i

Distance k Eq.3

We will then do an error analysis with real world measurements:
rror 00%E = RealDistance

RealDistance−F inalDistance * 1 Eq.4

Getting these values to be accurate is important because any errors they have
compounds through the rest of our system. An inaccurate distance reading will lead to
an inaccurate velocity reading, which will in turn cause the microcontroller to send the
wrong voltage signals, which finally will cause the motor to accelerate to the wrong
velocity, leading to the treadmill to match a velocity the user is not running at. The issue
with this is that the user will then have to slightly adjust their speed to match, which will
in turn elicit more speed change from the controller, and form a feedback loop based on
this error that gets worse with time.

To counteract these error issues, we will run those data through an algorithm in

our microcontroller before passing those to the main motor control algorithm. Our
algorithm depends on the specific sensors configuration.

10

Here is a breakdown of our algorithm. To clarify, any mention of “abnormal”
indicates any data more than five inches larger or smaller than the data entry it is being
compared with, since at a sampling rate of 60Hz that indicates a velocity of over 17mph,
which is very improbable for the average human. The first step after receiving data from
the sensors is to check whether these are the initial data entries. If they are, these
values are immediately stored for future use. On the other hand, if these data values are
not the initial data entries, then we compare them with previously stored data in order to
eliminate abnormal sensor data. After storage of data, our algorithm differs depending
on the number of sensors in our configuration. For the two LiDAR sensor configuration,
if one of the sensors is abnormal, we use the previous averaged data, adjusted for the
current user velocity. However, for the four ultrasonic sensors configuration, if there is
one sensor with abnormal data value, we just average the other three and ignore the
abnormal one. If there are two or more sensors with abnormal values, we use the
previous averaged data, adjusted for current user velocity. After processing out
abnormal data, we then proceed to average together all of the data as per Eq.3, then
push that data to memory and use it in our control algorithm. Our algorithm is displayed
in separate flow charts on the next two pages.

11

2.6- Circuit Schematic

12

Figure 3. Tiny LiDAR Sensor Configuration(2) Processing Algorithm

13

Figure 4. Ultrasonic Sensor Configuration(4) Processing Algorithm

14

3- Costs

For our labor costs, we estimate a fixed wage of $32/hr, 8 hours/week for three
people to complete this project.

wks .5 $15, 603 · hr
$32 · wk

8hr · 8 · 2 = 3 Eq.5

Component Cost

Machine shop mechanical build quote $175

Motor w/ Encoder [*;Minertia Motor R02MA203 w/ tg-3vc] $150

Microcontroller [Digikey; ATmega328p] $2.14

LiDAR sensor [RobotShop; tinyLiDAR ToF Range Finder Sensor] $24.95

Ultrasonic sensor [Mouser; sparkfun SEN-13959]*4 $15.80

Buck converters [Banggood;Geekcreit 5A XL4005]*2 $5.20

Start/Stop Buttons [Amazon; HONBAYSPST Latching Type Push
Button Switch] *2

$0.70

Assorted resistors/capacitors/transistors [Digikey; est.] $10.00

Total Cost of Components: $383.79
*It appears this motor is no longer in production, so price is based off of similar models on Ebay, and the
advice of the power electronics department, who we are borrowing the motor from.

In total, our cost as a whole adds up to $15,743.79.

15

4- Schedule

Week Jacob Charles Jiangtian

2/25 Test motor, encoder
and sensors. Procure
and test buttons.
Procure RC car that
can fit test standards.

Assemble and test
motor and
microcontroller buck
converters on
breadboard

Buy sensors and
microcontroller and get
familiar with those

3/4 Consult with machine
shop on finalizing
design of treadmill.
Work on mounting for
sensors and buttons,
and how to wire
through the machine

Finalize functionality of
buck converters making
sure both function within
tolerances

Begin testing the sensor
and control algorithms
on microcontroller

3/11 Work with Chas on
PID for feedback
control

Solder and put together
buck PCB’s. Begin work
on control schema for
feedback control

Keep testing and
optimizing sensor and
control algorithms to
minimize the error rate

3/18 Spring Break Spring Break Spring Break

3/25 Test and finalize PID
feedback control

Finalize functionality of
feedback control

Finalize the sensor
control algorithm

4/1 Make sure each part
finishing the individual
testing procedure and
integrate together

Operate feedback
control with other
modules

Integrate with other
parts and begin testing
together

4/8 Combine and finalize
optimization of all
modules

Optimize functionality of
remaining modules

Keep testing and
optimizing in system
level, make sure the
treadmill is stable

4/22 Final Demo Final Demo Final Demo

16

5- Ethics and Safety

Treadmills pose a number of safety and ethical risks. The most readily apparent
risk is the fact that people can easily get hurt on a treadmill, violating IEE code of ethics
#1: ”to hold paramount the safety, health, and welfare of the public [...]” and #9: “to
avoid injuring others [...]” [2]. On a typical treadmill people must match the speed of the
treadmill, if the speed is too quick for them they will lose their footing and fall. The
objective of our design is to help alleviate this issue by designing a prototype treadmill
that will match the speed of the user, rather than forcing the user to match the speed of
the tread. However in the event that a fall still occurs, we will ensure that safety rails to
help catch the user and an emergency stop button is installed to help prevent it. In
addition we will use our sensors to automatically stop the treadmill if it is sensed that the
user is at a standstill or is no longer in view of the sensors. In addition, the testing
procedure would be incredibly dangerous if we were to use a live subject, so for this
reason we have opted to use a scaled down treadmill and an RC car to do testing, since
no live subject will be needed that way.

Treadmills are also very large and difficult to move around, and since we will be
making ours in a an environment shared by our peers, this could be seen as violation of
IEEE code of ethics #10: “to assist colleagues and co-workers in their professional
development [...]” [2], since we would be disrupting the work environment of our peers
and possibly inhibiting their ability to do their work properly. As such we have decided to
use a scaled down model of a treadmill to prototype our design, since this would greatly
reduce the footprint we have in the shared workspace. However, scaling down the
treadmill may pose a problem with both IEEE code of ethics #1 and #9 as stated above,
and in IEEE code of ethics #3: “to be honest and realistic in stating claims or estimates
based on available data” [2]. This breach in ethics is caused by the fact that a treadmill
at a smaller size such as this may not scale up to a human size and function correctly
still, which means that if we scale it up without testing, it may bring harm to someone,
and if we lie about the test results or the scalability of our system on a conceptual level,
we would be violating those codes. As such we have decided to use an algorithm that
uses positional tracking and velocity measurement to drive our control system, as that is
a more linearly scalable system than if we were to use pressure or force detection.

17

References

[1] Graves JM, Iyer KR, Willis MM, et al
Emergency department-reported injuries associated with mechanical home
exercise equipment in the USA
Injury Prevention 2014;20:281-285.

[2] Ieee.org, "IEEE IEEE Code of Ethics", 2016. [Online]. Available:
http://www.ieee.org/about/corporate/governance/p7-8.html [Accessed: 7-Feb-2019.]

18

http://www.ieee.org/about/corporate/governance/p7-8.html

