
 
 
 

 
 

Virtually Trained Self-Balancing Pendulum 

 
 
 
 
 
 
 
 
 
 
 
 

ECE 445 Design Document 
Henry Thompson, Kishore Adimulam, and Mason Ryan 

Group 31 
TA: Amr Martini 

3/6/2019 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 
1. Introduction 
1.1 Objective 
There is a growing use for virtual reality as a training environment for AI for applications in the real 
world. Game engines like Unity have even released machine learning tool-kits for researchers and 
developers to experiment training reinforcement learning algorithms inside games and simulations. 
There has been past work in translating these simulation-trained models to physical systems, such as 
the project done by OpenAI which taught a robot to stack different colored blocks in a specific order 
only after seeing it once in a virtual simulation [1]. However, the use of game engines to perform 
similar tasks has been limited, since there are no clear workflows for how someone can use AI 
models trained in an easy-to-use game engine like Unity to perform inference tasks in a physical 
system. 
 
Our solution would be to create a self-balancing inverted pendulum system, which would be trained 
as a simulation in Unity and uploaded into a physical system. The system consists of a cart connected 
to a one-dimensional track, with an attached pendulum on a hinge. The goal of the system would be 
to move the cart on the track in either left or right, in order to balance the pendulum in a vertical 
position. We would create a physical system which replicates all of the attributes of a 3D simulation, 
and train the agent in the simulation to learn to balance the pendulum using the Python API and 
Tensorflow. The trained Tensorflow model would then be uploaded into a microcontroller, which 
would then use the control signals of the agent to operate motors to balance the real physical 
pendulum.The Kalman filter will be used to reduce the noise from the output of the IMU to get a 
better estimate of the cart’s current acceleration. 
 
1.2 Background 
The ability of virtual reality to model physics and interactions between materials positions it to 
become an ideal tool for simulating environments for artificial intelligence. This allows experiments 
to be carried out on a much larger scale, at a fraction of the time and resources required to carry out 
physical tests. Once the low-level controls and modeling for a system has been determined, learning 
how to carry out more advanced tasks, such as training a robot to jump or to drive a vehicle 
autonomously, could become possible through using reinforcement learning inside simulations. Since 
the applications for virtual trained AI agents are numerous, it begs the question how easily such 
systems can practically be implemented using existing software. One of the most popular current 
game engines, Unity, has made it easy for developers to train their own AI agents using Tensorflow 
through the ML-Agents toolkit [2]. Furthermore, TensorFlow Lite has made it possible to deploy 
machine learning models and perform inference tasks on embedded devices such as the Raspberry Pi 
[6]. We aim to create a solution where a Tensorflow model trained in a 3D simulation in Unity can 
be deployed into a microcontroller to balance a physical inverted pendulum system. 
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1.3 High Level Requirements  

● The agent in the Unity simulation must be able to balance the pendulum within 10 degrees of 
vertical given a random initial state also within 10 degrees of vertical for the duration of a test 
run with a 90% success rate, given 10 second test runs. 

● The agent in the physical system must have a 90% success rate of being able to balance the 
pendulum within 10 degrees of vertical, with no prior experience outside of the simulation and 
given a random initial state of of within 10 degrees of vertical for the duration of a test run, 
given 10 second test runs. 

 
2. Design 
Our design will consist of four major subsystems: the machine learning subsystem, the control 
subsystem, the mechanical subsystem, and the power subsystem.  The detailed block diagram of our 
project can be seen in Figure 1.  
 
The machine learning subsystem consists of our Unity simulation as well as the Tensorflow model 
produced from the Unity simulation.  Once the simulation has been trained to balance the pole, we 
can then generate a Tensorflow file that is ready for interfacing with the Raspberry Pi.  This model 
will be stored in memory on the microcontroller and will take in the current state of the pendulum 
(velocity of the cart and angle of the pendulum) as inputs and output the required force on the cart. 
 
The Power system will consist of our 6V power supply, a 5V DC step down regulator, and a 6V DC 
regulator.  The output of the 5V DC regulator will be used to power the microcontroller, which will 
then supply power to the photodiode and the IMU sensor.  The output of the 6V regulator will be 
used to power the motor controller at a constant 6V DC.  
 
The Mechanical subsystem will consist of the motor controller, the motor, the wheel, the cart, the 
pendulum, the pendulum potentiometer, and the motor encoder.  The motor controller will take in 
two inputs, one binary signal from the microcontroller that determines which direction to rotate the 
motor, and the other is the duty cycle of the PWM from the microcontroller.  The motor controller 
will take these inputs and output a 6V PWM signal to the motor.  The motor will take the input from 
the motor controller and rotate the motor at a specific RPM depending on the duty cycle of the signal. 
The rotation of the motor will spin the wheel and cause the cart to move a specific velocity.  The 
angle of the pendulum will change depending on the force applied to the cart.  This angle will be 
measured by the pendulum potentiometer and will be sent to the control subsystem to help determine 
how the cart should move.  The RPM of the motor will also be determined from the motor encoder. 
This RPM will be used in the control subsystem to calculate the current velocity of the cart, which 
will be used to help determine how to move the cart. 
 
The control subsystem consists of our microcontroller, a Raspberry Pi, a photodiode, and our backup 
PID controller. The Raspberry Pi will take in inputs from the photodiode and the pendulum encoder 
to determine whether the PID controller or the Tensorflow model should be used to balance the 
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pendulum, or whether it should stop and reset the cart.  The PID controller will be stored in memory 
and will be executed when the measured angle of the pendulum is out of the bounds that we have set. 
The photodiode and pendulum encoder will be used to decide which mode to run the system in.  The 
photodiode will determine if the cart’s position is out of bounds that we have set for it.  The 
pendulum encoder will determine the angle of the pendulum with respect to its upright position.  The 
process for determining which model to use can be seen in the controller software design in Figure 3. 
  
We will also have a backup control system plan in the situation in which we determine that the motor 
encoder cannot accurately be used to predict the velocity of  the cart. We will conduct the 
verifications in the tolerance analysis for the wheel, to determine the max PWM signal we can drive 
our motor with while also being able to predict velocity and prevent wheel slippage. In the situation 
we find this approach infeasible, we will use a backup design of an IMU, linear quadratic regulator, 
and Kalman filter to measure the acceleration of the cart, and have our control system set the velocity 
accordingly. 
 
Within this control system the IMU will calculate the current acceleration of the cart.  Since the IMU 
output is generally noisy, we will pass it through a Kalman filter to reduce some of the noise.  The 
output of the Kalman filter will be fed into the LQR system where it will try to send the right PWM 
signal to the motor controller to achieve the desired acceleration as calculated from the Tensorflow 
model.  This system will loop until the estimated acceleration produced from the Kalman filter is the 
same as the desired acceleration.  Of course this process will introduce some delay into the system as 
the control system attempts to ramp up the acceleration to the desired value.  However, this as long 
as this delay is sufficiently small we can account for the lag between the data inputs and outputs in 
Unity and still be able to balance the pole. 
 
  

3 



 
 

 
Figure 1: Block Diagram 
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2.1 Machine Learning Module 
For our project we will be training our cart-pole system entirely in a game engine, without any 
experience directly in our physical system.  The simulation will be modeled as closely as possible to 
our physical system so that that learned model can successfully balance the pendulum in the physical 
system.  From the Unity simulation we will obtain a Tensorflow model which we will upload to the 
controller. 
 
2.1.1 Unity Simulation 
Within the Unity Simulation we can change the necessary parameters to best model the physical 
system.  Once we have replicated the physical design within Unity, we can start to train the system 
using Unity machine learning toolkits.  We we feed the neural network rewards when the angle of the 
pendulum is within a certain range from the equilibrium and punish it for being too far from the 
equilibrium.  We can fine tune the reward functions until we find the the learned model is properly 
balancing the pendulum. 
 

Requirement Verification 

Given an initial state of the pendulum 
within 10 degrees of vertical, the agent in 
the simulation must be able to maneuver the 
cart to keep the pendulum balanced. 

1. Generate a random initial angle which is between 
-10 and 10 degrees w.r.t. vertical 
2. Set the pendulum angle to the random angle and 
start the simulation 
3. Ensure that the agent can maneuver the cart left 
and right to balance the pendulum within the bounds 
for the duration of the test run (10 seconds) 

 

Ensure the force generated by the model 
needed to balance the pendulum will not 
surpass max change in acceleration of 
motor 

1. Measure the force applied by agent throughout 
the course of simulation 
2. Give the agent a negative reward and truncate the 
signal of force if it exceeds the max possible 
acceleration of the motor 
3. Ensure that with the truncated force the 
simulation still balances for 90% of test runs 

 
 
 
 
2.1.2 Tensorflow Model 
The Tensorflow model produced by the Unity simulation will be in the form of a protocol buffer 
(.pb), and checkpoint (.cptk) files. These will contain information of the graph and variables of our 
resulting model. The model will be compiled and deployed on our Raspberry Pi to perform control. 
The model will take in input from our sensors, and output the necessary force needed to apply on the 
cart to balance the pendulum. 
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Requirement Verification 

Tensorflow model needs to be small enough 
to be fit on the RAM of our microcontroller 

1. Compile the Tensorflow file via uTensor library 
2. Ensure that the resulting model file size plus the 
weights can fit on the available memory 

The computation time of the model must be 
small enough, s.t. the sum of the time plus 
the rise time of the motor will be less than 
the sample delay time the NN can be trained 
with and still be able to work 

1. Determine the rise time of the motor, and add it 
to the computation time of the model 
2. Check if the NN can be trained to succeed with 
balancing at 90% accuracy with a sample delay time 
larger than the sum of the two given times. 

 
2.2 Control Module 
The control module will determine the duty cycle and polarity of the PWM signal to supply to the 
motor, which will set the velocity of the cart.  It will take inputs from the potentiometer and motor 
encoder to determine the current state of the system.  After processing the current state the control 
module will decide which model to use to balance the pendulum.  It will also store the Tensorflow 
model, and the PID controller for balancing the pendulum in memory.  Since our Tensorflow model 
outputs a desired force to apply on our cart, and our motor controller can only set a desired velocity 
of the motor, we will perform a conversion to determine the velocity to set the motor given the force 
applied to the system. We will ensure that this new velocity does not exceed the maximum 
acceleration allowed by the motor through our verifications on the allowed outputs of the tensorflow 
model. 
  
2.2.1 Microcontroller 
We will be using a Raspberry Pi for our microcontroller.  This decision was based on the fact there is 
good support for deploying the Tensorflow Lite framework on a Raspberry Pi. The inputs for the 
microcontroller will be readings from our motor encoder and potentiometer to determine the velocity 
of the cart, as well as the angle of the pendulum. After our NN outputs a required force on the cart, 
we will have to determine the final velocity that want to set our motor at to simulate the application 
of force on our cart. This final velocity will be determined by solving the equation for acceleration, 
below. 

 
Our Δt will be a pre-computed constant that is greater than the rise time of our motor, since this will 
allow the motor enough time to get to the final velocity. Once the final velocity is determined, the 
motor controller will send a PWM signal to the motor to achieve the desired speed. 
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Requirement Verification 

Must be able to process the data from the 
sensors and Tensorflow model in a time 
less than the sample delay time that the NN 
in simulation can be trained to function 
with 

1. Determine total computation time of tensorflow 
model plus sensor lag time  
2. Check that the NN can be trained in simulation to 
balance pendulum give the total delay time 

 
2.2.2 Backup PID Control 
The backup PID controller will be used for our project when the angle of the pendulum is too far 
from equilibrium.  We have decided that this is beneficial, as we do not want to receive an adverse 
signal from the neural network for extreme situations.  We would rather have a backup method that is 
already well researched that we can rely on when the state of the pendulum is not easy to balance. 
The code for this PID control will be stored in memory, and we can tune the values for k_d, k_i, and 
k_p once we have built our physical system.  The PID control should also run faster than the 
Tensorflow model as we do not need to calculate the acceleration for each state of the system. 
 

Requirement Verification 

The PID controller must be able to balance 
the inverted pendulum for angles between 
10-45 degrees from equilibrium for 10 
seconds with a 90% success rate.  

1. Hold the pendulum at an angle between 10-45 
degrees. 
2. Let go of the pendulum at that angle while the 
PID controller is active. 
3. Wait 10 seconds to see if the pole is still 
balanced. 
4. Repeat test enough times to get a good idea of the 
success rate of the controller.  

 
 
 
2.2.3 Photodiode 
We will be using a photodiode to check if the cart goes beyond a position on the track that is too 
close to the end of the track.  We will determine the furthest position the cart to go by calculating the 
maximum velocity of the cart and using the response time of the photodiode.  We can multiply these 
values together to determine where to place sensor far enough from the bumper so that the system 
will be able to stop the cart before it come into contact with the bumper.  When the cart passes the 
photodiode it will block light from the photodiode and not allow current to pass through.  We can 
measure this change in current on our microcontroller and then promptly shut down power to the 
motors before the cart runs into the bumper.  For our project we will be using the TEFD4300 
photodiode for its fast response time, sensitivity within visible light spectrum, and its known 
application as a position sensor.  
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Requirement Verification 

The photodiode must have a measurable 
change in current when the cart passes by 
the sensor.  

1. Place the photodiode on its mount on the track. 
2. Manually push the cart pass the sensor. 
3. Using an oscilloscope measure the change in 
current as the cart passes the photodiode.  

 
2.3 Mechanical Module 
The mechanical module holds all of the hardware of our project. It consists of the motor controller, 
motor, motor encoder, the cart, the pendulum, and the pendulum potentiometer. The pendulum will 
be attached to the side of the cart. Check the physical design section for more detailed design. The 
mechanical module also consists of the sensors that are attached to the physical system, such as the 
motor encoder and the pendulum potentiometer. These sensors will be used to track the current state 
of the system, and will send this data to the control unit for processing.  
 
2.3.1 Pendulum Potentiometer Angle Sensor 
We will be using a potentiometer angle sensor to calculate the pendulum’s current angle.  The sensor 
will output a voltage that can be converted to an angle due to the linear correspondence between the 
sensor’s angular position and resistance. 
Sketch code: 
int getDegrees() 
{ 
   // Read the raw sensor value 
   int sensor_value = analogRead(ROTARY_ANGLE_SENSOR); 
 
   // Convert the sensor reading to degrees and return that value 
   float voltage = (float)sensor_value * ADC_REF / 1023;  
   float degrees = (voltage * FULL_ANGLE) / Sensor_VCC;  
   return degrees; 
} 

Requirement Verification 

The angle reading from the sensor and the 
voltage output of the sensor must have a 
linear relationship with an r^2 value of 
above 95 percent. 

1. Perform linear regression on the trend between 
the angle reading of the sensor against the voltage 
output of the sensor  
2. Calculate the  r^2 measurement and ensure that it 
is above 95 percent. 

 
2.3.2 Motor Quadrature Rotary Encoder 
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We will use a quadrature rotary encoder on the motor’s extended motor shaft to count the revolutions 
the motor turns.  We plan to limit the output from the Tensorflow model such that we avoid tire slip 
so we can use this encoder to keep track of the number of rotations of motor.  Then, using the 
motor’s metal spur gearbox gear ratio and circumference of the tire attached to the motor, we can 
calculate the cart’s velocity by dividing the change of the angle by a certain Δt. 
 

Requirement Verification 

The encoder must be accurate within 
 degrees of the motor shaft’s0.36360

1024 =   
actual angle. 

1. Connect the sensor to our motor and rotate the 
motor for a known number of steps to designate one 
full rotation. 
2. Ensure that the deviation between the angle 
recorded from the sensor and the true rotation of the 
angle is within 0.36 degrees. 

 
2.3.3 Motor Controller 
We will be using the ​Pololu Dual VNH5019 Motor Driver​.  The motor driver will take a PWM signal 
input from the Raspberry Pi and take that signal and increase it to the 6V signal needed to run the 
motor.  

Requirement Verification 

Must support setting motor speed for 
velocity based control. The output speed of 
the motor must be within 0.5 percent of set 
speed. 

1. While motor is stationary, set the speed to a 
desired value for a given time step needed for one 
full rotation of the wheel, given the acceleration 
time of the motor. 
2. Measure rotation of the wheel to check that the 
resulting position of the motor during the given time 
step was within 0.5 percent of the expected position 
given our desired set speed.. 

 
2.4 Power Module 
The power module will consist of our 5V Raspberry Pi power supply, as well as our 6V power 
supply for the motor controller. We will be using the included power plug for the Raspberry Pi, but 
need to verify the 6V power supply to ensure that it can interface properly with our motor driver. 
 
2.4.1 6V Power Supply 
The 6V power supply will be a wall plug that will supply power for the motor driver. 
  

Requirement Verification 

The battery must supply a the motor driver 
with a constant 5.8-6.2V. 

1. Use multimeter to ensure that the supplied output 
voltage is within the acceptable range of 5.8-6.2V 
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 when driven with 2.9A for the motor. 

Must be able to supply at least 2.9A of 
current. 

1. Run the circuit with a 100% duty cycle PWM 
signal.  
2. Use a current probe to ensure that at least 2.9A of 
continuous current is produced. 

 
 
 
2.5 Tolerance Analysis 
One tolerance that we must observe is the delay time of the different components of our physical 
system, and how it relates to how fast our control system can calculate the next control signal. 
Specifically, we must determine both the time that the motor encoder can send the velocity of the 
motor to our microcontroller, and the time the Tensorflow model takes to calculate the next control 
signal given the current state from the motor encoder and the potentiometer on the pendulum. ​We 
know that the delay of the quadrature sensor that will be used on motor shaft is 13 microseconds. 
Now ​we must then ensure that our neural net can learn to balance the pendulum at 90% accuracy 
given that it is sampling the state of the system at discrete time steps, where each time step is greater 
than the sum of delay times of the 13 microsecond sensor lag and the Raspberry Pi computation lag. 
 

 
We can calculate the sensor lag by looking at the datasheets for our different sensors. We can use the 
maximum rise time of all our sensor’s rise times as our true sensor lag time. For the computation lag, 
we can upload our tensorflow model into our Raspberry Pi and measure the time it takes from 
inputting a value to receiving an output from the model. With these two times can determine the 
definite lower bound for sample delay time that our neural network must be trained on. If our neural 
net can learn to balance the pendulum with a sample delay time greater than this lower bound, we can 
guarantee that our system will work at our desired accuracy. 
 
Another aspect of tolerance we must account for is the chance of wheel slippage during the rapid 
velocity changes of our motor. Although we are going to use the motor encoder to determine the 
velocity of our system and not position, wheel slippage could possibly throw off our calculations 
significantly. To handle this situation, we will determine the maximum change in speed that the 
motor can handle without resulting in wheel slippage. The procedure to determine this maximum 
acceleration will be to incrementally test the motor with increasing PWM signal jumps.  We will use 
calipers to measure our wheel and gain a precise value for circumference.  Knowing the motor 
gearbox ratio and counts the quadrature encoder can provide per revolution, we will be able to 
correlate a number of counts from the quadrature encoder to a distance traveled.  The theoretical 
distance per count is 0.226 mm as shown by the calculations below, a value much smaller than the 
track length of 3 feet and expected travel distances during our ten second runs, and should be easily 
precise enough for our purposes.  We will then compare the distance between the expected start and 
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end positions of the cart based on the data from the quadrature encoder to a measured distance 
between the cart’s start and end positions.  Through this process, we will determine the maximum 
change in velocity that will induce wheel slippage, and use this value to train our neural net as well 
as limit our PID controller to not force accelerations greater than this max acceleration. 

circumference = C = wheel diameter  = 90 millimeters  = 282.7 millimeters· π · π  
counts per revolution of wheel = gearbox ratio  encoder counts per revolution·  

counts per revolution of wheel = 62.5 20 = 1250·  

 
 
Another tolerance is being able to accelerate our cart quickly enough to balance the inverted 
pendulum.  Since we are using a motor that can provide far more torque than the motor used in the 
inverted pendulum project we are basing our design on, we believe achieving the acceleration values 
necessary will not be a problem.  Regardless, we can still calculate an estimate for the maximum 
acceleration value we will be able to achieve.  A high estimate of cart mass is 0.5 kg.  Our motor 
provides a maximum torque at 6V and 2.9 A of stall torque 54 oz-in = 0.3813 Newton-meters.  Using 
a wheel of radius 0.045 m = L, the maximum force we can apply to the cart will be 8.47 N which 
corresponds to an acceleration of 16.9 m/s​2​.   Estimating the tire’s coefficient of static friction to be 
0.5 [9], leads to the cart being accelerated at a maximum of 4.92 m/s​2​ as shown by the equations 
below. 

 

, 
 since f < F, 
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2.6 Controller Software 
 

 
 

Figure 2: Controller Software Flowchart  
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2.7 Neural Network Model Optimization 
Long Short-Term Network (LSTM) 
The algorithm we will use to train our agent will be a long short-term network. With an LSTM, our 
agent can be taught to keep track of past information that could be important. In our design, such a 
network can be beneficial since remembering past states of the system, including old pendulum 
angles and velocities can help the agent develop an understand of how the system is changing over 
time. This can be extremely useful when modeling the lag of the physical system in the training of 
the network, since the LSTM requires sequences of of experiences to perform training [8]. 
 
After we calculate the sum of the lag time of the sensors in the system and the computation lag of the 
Raspberry Pi, we can set the sequence length of our LSTM to greater than the lower bound of the 
system lag. This will allow our network to train with a sample delay, and hence allow better control 
in the physical system. The two most important hyperparameters during training will be the 
sequence_length and the memory_size. The sequence_length indicates the length of the number of 
experiences that will be passed through the network while training, while the memory_size indicates 
the length of an array of floating point numbers keeping track of the past states of the system. Since 
we only need to infer the velocities of objects in the system, these parameters can be relatively low. 
 
2.8 Circuit Schematics 

 
Figure 3: Circuit Schematic 

2.9 Physical Design 
 

Our physical design will consist of both 3D printed parts, as well as motors and sensors purchased 
online. The main cart chassis will be connected to both the track and motor below, as well as the 
potentiometer connected to the pendulum above. Our design is based off the parts and assembly 

13 



 
described by [7]. The simulation in Unity will be modeled such that the masses, lengths, and other 
physical properties of the system match as closely as possibly. All the below figures have dimensions 
listed in inches. 

 
 

 
Figure 4: Cart Chassis, Rail Spacer, and Track Holder 

 
Figure 5: Potentiometer, Potentiometer Holder, Motor, and Motor Bracket 

 

 
Figure 6:, Wheel, Wheel Hub, and Track 

 

 
Figure 7: Pendulum Holder, and Potentiometer Connector, and Outer Track Holder 
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Figure 8: Prototype 3D Model and Unity Simulation 

 
 
 
 
3. Cost and Schedule 
3.1. Cost 
Our cost comes from labor and parts.  For labor, we have 3 people working an estimated average of 
10 hours per week each for the 16 week semester at a wage of $35.00 per hour per person. 
 

 
 

For parts: 

Part Description Part Cost ($) 

6V DC motor Pololu 63:1 Metal Gearmotor 
20Dx43L mm 6V CB with 
Extended Motor Shaft, #3714  

22.95 

Motor Encoder Pololu Magnetic Encoder Pair 
Kit, #3499  

8.95 

Motor Brackets Pololu 20D mm Metal 
Gearmotor Bracket Pair, #1138  

6.95 

Motor Driver Pololu Dual VNH5019 Motor 
Driver Shield  

49.95 

Wheel Pololu wheel (2 pack), #3691 7.95 

Wheel Mount Pololu Universal Aluminum 
Mounting Hub for 4mm Shaft, 
2 Pack, #1081  

6.95 

6V Power supply Triad Magnetics 12.45 
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https://www.pololu.com/product/1081
https://www.pololu.com/product/1081
https://www.newark.com/triad-magnetics/wsu060-3000/ac-dc-converter-external-plug/dp/83T4312


 

WSU060-3000 6 V, 3 A Power 
Supply  

Photodiode TEFD4300-ND  0.74 

Cart Chassis Custom chassis 20.00 

Raspberry Pi Raspberry Pi RASPBERRY PI 
3 MODEL B+  

35.00 

Potentiometer Potentiometer angle encoder 
Vishay Spectrol #357 

44.48 

 Total 216.37 

 
Grand total = cost of parts + cost of labor = $50,616.37 
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3.2 Schedule 

Week Kishore Henry Mason 

2/18 Design review prep Design review prep Design review prep 

2/25 Improve Unity Simulation, 
develop prototype 
Tensorflow model to be 
uploaded to Raspberry Pi 
microcontroller 
 

Determine all necessary 
components and chassis 
design, order components 

Determine all necessary 
components and chassis 
design, order components 

3/4 Further development of 
Unity simulation and 
Tensorflow model 

Verify that each component 
fulfills our needs, order 
chassis 

Verify that each component 
fulfills our needs, order 
chassis 

3/11 Adjust Unity simulation to 
replicate our physical 
system 

Build physical system Build physical system 

3/18 Spring Break Spring Break Spring Break 

3/25 Make minor adjustments to 
simulation to improve 
Tensorflow model 

Build physical system Build physical system 

4/1 Finalize Unity simulations. 
Obtain final working 
Tensorflow model. 

Make sure each subsystem 
in physical design is 
working properly. 

Make sure each subsystem 
in physical design is 
working properly. 

4/8 Prepare for mock demo. 
Make sure each subsystem 
is working 

Prepare for mock demo. 
Make sure each subsystem is 
working. 

Prepare for mock demo. 
Make sure each subsystem is 
working 

4/15 Prepare for final/mock 
presentation and test project 
for mock demo. 

Prepare for final/mock 
presentation and test project 
for mock demo. 

Prepare for final/mock 
presentation and test project 
for mock demo. 

 
4/22 

Prepare for presentation 
and poster session, 
complete final paper 

Prepare for presentation and 
poster session, complete 
final paper 

Prepare for presentation and 
poster session, complete 
final paper 

 
4. Ethics and Safety  
The ethical and safety issues in our project mainly pertain to the safety of the different moving 
mechanical components in the design. Since there is movement of a cart on a track and the attached 
swinging pendulum, this poses a safety risk for anyone standing too close or putting their body parts 
in the system. During operation, the cart and pendulum could cause injury to someone too close to 
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the system.  Additionally, our electrical components could cause harm to someone upon being 
mishandled. 
 
The safety precautions we would take to handle these situations refer to #9 on the IEEE Code of 
Ethics, to “​avoid injuring others, their property, reputation, or employment by false or malicious 
action“ [4]. To prevent the cart from hurting someone’s fingers, we would add a rubber bumper to 
each side of the cart, as well as bumpers to the end of the track to prevent the cart from flying off. We 
would also ensure that the heavy end of the pendulum is rounded and not sharp, to avoid the risk of 
serious injury if it was to strike anyone standing too close. We will also have a safety mechanism to 
prevent any outputs of the control system which ask for too high voltages or forces.   In such a 
situation, we will ignore the output of the model and choose a more appropriate signal. 
In addition, since we are dealing with relatively high voltages to power the motor, we need to make 
sure the circuits are properly insulated so that no can get hurt by accidentally coming into contact 
with the system.  
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