

Virtually Trained Self-Balancing Pendulum

ECE 445 Design Document
Henry Thompson, Kishore Adimulam, and Mason Ryan

Group 31
TA: Amr Martini

3/6/2019

1. Introduction
1.1 Objective
There is a growing use for virtual reality as a training environment for AI for applications in the real
world. Game engines like Unity have even released machine learning tool-kits for researchers and
developers to experiment training reinforcement learning algorithms inside games and simulations.
There has been past work in translating these simulation-trained models to physical systems, such as
the project done by OpenAI which taught a robot to stack different colored blocks in a specific order
only after seeing it once in a virtual simulation [1]. However, the use of game engines to perform
similar tasks has been limited, since there are no clear workflows for how someone can use AI
models trained in an easy-to-use game engine like Unity to perform inference tasks in a physical
system.

Our solution would be to create a self-balancing inverted pendulum system, which would be trained
as a simulation in Unity and uploaded into a physical system. The system consists of a cart connected
to a one-dimensional track, with an attached pendulum on a hinge. The goal of the system would be
to move the cart on the track in either left or right, in order to balance the pendulum in a vertical
position. We would create a physical system which replicates all of the attributes of a 3D simulation,
and train the agent in the simulation to learn to balance the pendulum using the Python API and
Tensorflow. The trained Tensorflow model would then be uploaded into a microcontroller, which
would then use the control signals of the agent to operate motors to balance the real physical
pendulum.The Kalman filter will be used to reduce the noise from the output of the IMU to get a
better estimate of the cart’s current acceleration.

1.2 Background
The ability of virtual reality to model physics and interactions between materials positions it to
become an ideal tool for simulating environments for artificial intelligence. This allows experiments
to be carried out on a much larger scale, at a fraction of the time and resources required to carry out
physical tests. Once the low-level controls and modeling for a system has been determined, learning
how to carry out more advanced tasks, such as training a robot to jump or to drive a vehicle
autonomously, could become possible through using reinforcement learning inside simulations. Since
the applications for virtual trained AI agents are numerous, it begs the question how easily such
systems can practically be implemented using existing software. One of the most popular current
game engines, Unity, has made it easy for developers to train their own AI agents using Tensorflow
through the ML-Agents toolkit [2]. Furthermore, TensorFlow Lite has made it possible to deploy
machine learning models and perform inference tasks on embedded devices such as the Raspberry Pi
[6]. We aim to create a solution where a Tensorflow model trained in a 3D simulation in Unity can
be deployed into a microcontroller to balance a physical inverted pendulum system.

1

1.3 High Level Requirements

● The agent in the Unity simulation must be able to balance the pendulum within 10 degrees of
vertical given a random initial state also within 10 degrees of vertical for the duration of a test
run with a 90% success rate, given 10 second test runs.

● The agent in the physical system must have a 90% success rate of being able to balance the
pendulum within 10 degrees of vertical, with no prior experience outside of the simulation and
given a random initial state of of within 10 degrees of vertical for the duration of a test run,
given 10 second test runs.

2. Design
Our design will consist of four major subsystems: the machine learning subsystem, the control
subsystem, the mechanical subsystem, and the power subsystem. The detailed block diagram of our
project can be seen in Figure 1.

The machine learning subsystem consists of our Unity simulation as well as the Tensorflow model
produced from the Unity simulation. Once the simulation has been trained to balance the pole, we
can then generate a Tensorflow file that is ready for interfacing with the Raspberry Pi. This model
will be stored in memory on the microcontroller and will take in the current state of the pendulum
(velocity of the cart and angle of the pendulum) as inputs and output the required force on the cart.

The Power system will consist of our 6V power supply, a 5V DC step down regulator, and a 6V DC
regulator. The output of the 5V DC regulator will be used to power the microcontroller, which will
then supply power to the photodiode and the IMU sensor. The output of the 6V regulator will be
used to power the motor controller at a constant 6V DC.

The Mechanical subsystem will consist of the motor controller, the motor, the wheel, the cart, the
pendulum, the pendulum potentiometer, and the motor encoder. The motor controller will take in
two inputs, one binary signal from the microcontroller that determines which direction to rotate the
motor, and the other is the duty cycle of the PWM from the microcontroller. The motor controller
will take these inputs and output a 6V PWM signal to the motor. The motor will take the input from
the motor controller and rotate the motor at a specific RPM depending on the duty cycle of the signal.
The rotation of the motor will spin the wheel and cause the cart to move a specific velocity. The
angle of the pendulum will change depending on the force applied to the cart. This angle will be
measured by the pendulum potentiometer and will be sent to the control subsystem to help determine
how the cart should move. The RPM of the motor will also be determined from the motor encoder.
This RPM will be used in the control subsystem to calculate the current velocity of the cart, which
will be used to help determine how to move the cart.

The control subsystem consists of our microcontroller, a Raspberry Pi, a photodiode, and our backup
PID controller. The Raspberry Pi will take in inputs from the photodiode and the pendulum encoder
to determine whether the PID controller or the Tensorflow model should be used to balance the

2

pendulum, or whether it should stop and reset the cart. The PID controller will be stored in memory
and will be executed when the measured angle of the pendulum is out of the bounds that we have set.
The photodiode and pendulum encoder will be used to decide which mode to run the system in. The
photodiode will determine if the cart’s position is out of bounds that we have set for it. The
pendulum encoder will determine the angle of the pendulum with respect to its upright position. The
process for determining which model to use can be seen in the controller software design in Figure 3.

We will also have a backup control system plan in the situation in which we determine that the motor
encoder cannot accurately be used to predict the velocity of the cart. We will conduct the
verifications in the tolerance analysis for the wheel, to determine the max PWM signal we can drive
our motor with while also being able to predict velocity and prevent wheel slippage. In the situation
we find this approach infeasible, we will use a backup design of an IMU, linear quadratic regulator,
and Kalman filter to measure the acceleration of the cart, and have our control system set the velocity
accordingly.

Within this control system the IMU will calculate the current acceleration of the cart. Since the IMU
output is generally noisy, we will pass it through a Kalman filter to reduce some of the noise. The
output of the Kalman filter will be fed into the LQR system where it will try to send the right PWM
signal to the motor controller to achieve the desired acceleration as calculated from the Tensorflow
model. This system will loop until the estimated acceleration produced from the Kalman filter is the
same as the desired acceleration. Of course this process will introduce some delay into the system as
the control system attempts to ramp up the acceleration to the desired value. However, this as long
as this delay is sufficiently small we can account for the lag between the data inputs and outputs in
Unity and still be able to balance the pole.

3

Figure 1: Block Diagram

4

2.1 Machine Learning Module
For our project we will be training our cart-pole system entirely in a game engine, without any
experience directly in our physical system. The simulation will be modeled as closely as possible to
our physical system so that that learned model can successfully balance the pendulum in the physical
system. From the Unity simulation we will obtain a Tensorflow model which we will upload to the
controller.

2.1.1 Unity Simulation
Within the Unity Simulation we can change the necessary parameters to best model the physical
system. Once we have replicated the physical design within Unity, we can start to train the system
using Unity machine learning toolkits. We we feed the neural network rewards when the angle of the
pendulum is within a certain range from the equilibrium and punish it for being too far from the
equilibrium. We can fine tune the reward functions until we find the the learned model is properly
balancing the pendulum.

Requirement Verification

Given an initial state of the pendulum
within 10 degrees of vertical, the agent in
the simulation must be able to maneuver the
cart to keep the pendulum balanced.

1. Generate a random initial angle which is between
-10 and 10 degrees w.r.t. vertical
2. Set the pendulum angle to the random angle and
start the simulation
3. Ensure that the agent can maneuver the cart left
and right to balance the pendulum within the bounds
for the duration of the test run (10 seconds)

Ensure the force generated by the model
needed to balance the pendulum will not
surpass max change in acceleration of
motor

1. Measure the force applied by agent throughout
the course of simulation
2. Give the agent a negative reward and truncate the
signal of force if it exceeds the max possible
acceleration of the motor
3. Ensure that with the truncated force the
simulation still balances for 90% of test runs

2.1.2 Tensorflow Model
The Tensorflow model produced by the Unity simulation will be in the form of a protocol buffer
(.pb), and checkpoint (.cptk) files. These will contain information of the graph and variables of our
resulting model. The model will be compiled and deployed on our Raspberry Pi to perform control.
The model will take in input from our sensors, and output the necessary force needed to apply on the
cart to balance the pendulum.

5

Requirement Verification

Tensorflow model needs to be small enough
to be fit on the RAM of our microcontroller

1. Compile the Tensorflow file via uTensor library
2. Ensure that the resulting model file size plus the
weights can fit on the available memory

The computation time of the model must be
small enough, s.t. the sum of the time plus
the rise time of the motor will be less than
the sample delay time the NN can be trained
with and still be able to work

1. Determine the rise time of the motor, and add it
to the computation time of the model
2. Check if the NN can be trained to succeed with
balancing at 90% accuracy with a sample delay time
larger than the sum of the two given times.

2.2 Control Module
The control module will determine the duty cycle and polarity of the PWM signal to supply to the
motor, which will set the velocity of the cart. It will take inputs from the potentiometer and motor
encoder to determine the current state of the system. After processing the current state the control
module will decide which model to use to balance the pendulum. It will also store the Tensorflow
model, and the PID controller for balancing the pendulum in memory. Since our Tensorflow model
outputs a desired force to apply on our cart, and our motor controller can only set a desired velocity
of the motor, we will perform a conversion to determine the velocity to set the motor given the force
applied to the system. We will ensure that this new velocity does not exceed the maximum
acceleration allowed by the motor through our verifications on the allowed outputs of the tensorflow
model.

2.2.1 Microcontroller
We will be using a Raspberry Pi for our microcontroller. This decision was based on the fact there is
good support for deploying the Tensorflow Lite framework on a Raspberry Pi. The inputs for the
microcontroller will be readings from our motor encoder and potentiometer to determine the velocity
of the cart, as well as the angle of the pendulum. After our NN outputs a required force on the cart,
we will have to determine the final velocity that want to set our motor at to simulate the application
of force on our cart. This final velocity will be determined by solving the equation for acceleration,
below.

Our Δt will be a pre-computed constant that is greater than the rise time of our motor, since this will
allow the motor enough time to get to the final velocity. Once the final velocity is determined, the
motor controller will send a PWM signal to the motor to achieve the desired speed.

6

Requirement Verification

Must be able to process the data from the
sensors and Tensorflow model in a time
less than the sample delay time that the NN
in simulation can be trained to function
with

1. Determine total computation time of tensorflow
model plus sensor lag time
2. Check that the NN can be trained in simulation to
balance pendulum give the total delay time

2.2.2 Backup PID Control
The backup PID controller will be used for our project when the angle of the pendulum is too far
from equilibrium. We have decided that this is beneficial, as we do not want to receive an adverse
signal from the neural network for extreme situations. We would rather have a backup method that is
already well researched that we can rely on when the state of the pendulum is not easy to balance.
The code for this PID control will be stored in memory, and we can tune the values for k_d, k_i, and
k_p once we have built our physical system. The PID control should also run faster than the
Tensorflow model as we do not need to calculate the acceleration for each state of the system.

Requirement Verification

The PID controller must be able to balance
the inverted pendulum for angles between
10-45 degrees from equilibrium for 10
seconds with a 90% success rate.

1. Hold the pendulum at an angle between 10-45
degrees.
2. Let go of the pendulum at that angle while the
PID controller is active.
3. Wait 10 seconds to see if the pole is still
balanced.
4. Repeat test enough times to get a good idea of the
success rate of the controller.

2.2.3 Photodiode
We will be using a photodiode to check if the cart goes beyond a position on the track that is too
close to the end of the track. We will determine the furthest position the cart to go by calculating the
maximum velocity of the cart and using the response time of the photodiode. We can multiply these
values together to determine where to place sensor far enough from the bumper so that the system
will be able to stop the cart before it come into contact with the bumper. When the cart passes the
photodiode it will block light from the photodiode and not allow current to pass through. We can
measure this change in current on our microcontroller and then promptly shut down power to the
motors before the cart runs into the bumper. For our project we will be using the TEFD4300
photodiode for its fast response time, sensitivity within visible light spectrum, and its known
application as a position sensor.

7

Requirement Verification

The photodiode must have a measurable
change in current when the cart passes by
the sensor.

1. Place the photodiode on its mount on the track.
2. Manually push the cart pass the sensor.
3. Using an oscilloscope measure the change in
current as the cart passes the photodiode.

2.3 Mechanical Module
The mechanical module holds all of the hardware of our project. It consists of the motor controller,
motor, motor encoder, the cart, the pendulum, and the pendulum potentiometer. The pendulum will
be attached to the side of the cart. Check the physical design section for more detailed design. The
mechanical module also consists of the sensors that are attached to the physical system, such as the
motor encoder and the pendulum potentiometer. These sensors will be used to track the current state
of the system, and will send this data to the control unit for processing.

2.3.1 Pendulum Potentiometer Angle Sensor
We will be using a potentiometer angle sensor to calculate the pendulum’s current angle. The sensor
will output a voltage that can be converted to an angle due to the linear correspondence between the
sensor’s angular position and resistance.
Sketch code:
int getDegrees()
{
 // Read the raw sensor value
 int sensor_value = analogRead(ROTARY_ANGLE_SENSOR);

 // Convert the sensor reading to degrees and return that value
 float voltage = (float)sensor_value * ADC_REF / 1023;
 float degrees = (voltage * FULL_ANGLE) / Sensor_VCC;
 return degrees;
}

Requirement Verification

The angle reading from the sensor and the
voltage output of the sensor must have a
linear relationship with an r^2 value of
above 95 percent.

1. Perform linear regression on the trend between
the angle reading of the sensor against the voltage
output of the sensor
2. Calculate the r^2 measurement and ensure that it
is above 95 percent.

2.3.2 Motor Quadrature Rotary Encoder

8

We will use a quadrature rotary encoder on the motor’s extended motor shaft to count the revolutions
the motor turns. We plan to limit the output from the Tensorflow model such that we avoid tire slip
so we can use this encoder to keep track of the number of rotations of motor. Then, using the
motor’s metal spur gearbox gear ratio and circumference of the tire attached to the motor, we can
calculate the cart’s velocity by dividing the change of the angle by a certain Δt.

Requirement Verification

The encoder must be accurate within
 degrees of the motor shaft’s0.36360

1024 =
actual angle.

1. Connect the sensor to our motor and rotate the
motor for a known number of steps to designate one
full rotation.
2. Ensure that the deviation between the angle
recorded from the sensor and the true rotation of the
angle is within 0.36 degrees.

2.3.3 Motor Controller
We will be using the Pololu Dual VNH5019 Motor Driver. The motor driver will take a PWM signal
input from the Raspberry Pi and take that signal and increase it to the 6V signal needed to run the
motor.

Requirement Verification

Must support setting motor speed for
velocity based control. The output speed of
the motor must be within 0.5 percent of set
speed.

1. While motor is stationary, set the speed to a
desired value for a given time step needed for one
full rotation of the wheel, given the acceleration
time of the motor.
2. Measure rotation of the wheel to check that the
resulting position of the motor during the given time
step was within 0.5 percent of the expected position
given our desired set speed..

2.4 Power Module
The power module will consist of our 5V Raspberry Pi power supply, as well as our 6V power
supply for the motor controller. We will be using the included power plug for the Raspberry Pi, but
need to verify the 6V power supply to ensure that it can interface properly with our motor driver.

2.4.1 6V Power Supply
The 6V power supply will be a wall plug that will supply power for the motor driver.

Requirement Verification

The battery must supply a the motor driver
with a constant 5.8-6.2V.

1. Use multimeter to ensure that the supplied output
voltage is within the acceptable range of 5.8-6.2V

9

 when driven with 2.9A for the motor.

Must be able to supply at least 2.9A of
current.

1. Run the circuit with a 100% duty cycle PWM
signal.
2. Use a current probe to ensure that at least 2.9A of
continuous current is produced.

2.5 Tolerance Analysis
One tolerance that we must observe is the delay time of the different components of our physical
system, and how it relates to how fast our control system can calculate the next control signal.
Specifically, we must determine both the time that the motor encoder can send the velocity of the
motor to our microcontroller, and the time the Tensorflow model takes to calculate the next control
signal given the current state from the motor encoder and the potentiometer on the pendulum. We
know that the delay of the quadrature sensor that will be used on motor shaft is 13 microseconds.
Now we must then ensure that our neural net can learn to balance the pendulum at 90% accuracy
given that it is sampling the state of the system at discrete time steps, where each time step is greater
than the sum of delay times of the 13 microsecond sensor lag and the Raspberry Pi computation lag.

We can calculate the sensor lag by looking at the datasheets for our different sensors. We can use the
maximum rise time of all our sensor’s rise times as our true sensor lag time. For the computation lag,
we can upload our tensorflow model into our Raspberry Pi and measure the time it takes from
inputting a value to receiving an output from the model. With these two times can determine the
definite lower bound for sample delay time that our neural network must be trained on. If our neural
net can learn to balance the pendulum with a sample delay time greater than this lower bound, we can
guarantee that our system will work at our desired accuracy.

Another aspect of tolerance we must account for is the chance of wheel slippage during the rapid
velocity changes of our motor. Although we are going to use the motor encoder to determine the
velocity of our system and not position, wheel slippage could possibly throw off our calculations
significantly. To handle this situation, we will determine the maximum change in speed that the
motor can handle without resulting in wheel slippage. The procedure to determine this maximum
acceleration will be to incrementally test the motor with increasing PWM signal jumps. We will use
calipers to measure our wheel and gain a precise value for circumference. Knowing the motor
gearbox ratio and counts the quadrature encoder can provide per revolution, we will be able to
correlate a number of counts from the quadrature encoder to a distance traveled. The theoretical
distance per count is 0.226 mm as shown by the calculations below, a value much smaller than the
track length of 3 feet and expected travel distances during our ten second runs, and should be easily
precise enough for our purposes. We will then compare the distance between the expected start and

10

end positions of the cart based on the data from the quadrature encoder to a measured distance
between the cart’s start and end positions. Through this process, we will determine the maximum
change in velocity that will induce wheel slippage, and use this value to train our neural net as well
as limit our PID controller to not force accelerations greater than this max acceleration.

circumference = C = wheel diameter = 90 millimeters = 282.7 millimeters· π · π
counts per revolution of wheel = gearbox ratio encoder counts per revolution·

counts per revolution of wheel = 62.5 20 = 1250·

Another tolerance is being able to accelerate our cart quickly enough to balance the inverted
pendulum. Since we are using a motor that can provide far more torque than the motor used in the
inverted pendulum project we are basing our design on, we believe achieving the acceleration values
necessary will not be a problem. Regardless, we can still calculate an estimate for the maximum
acceleration value we will be able to achieve. A high estimate of cart mass is 0.5 kg. Our motor
provides a maximum torque at 6V and 2.9 A of stall torque 54 oz-in = 0.3813 Newton-meters. Using
a wheel of radius 0.045 m = L, the maximum force we can apply to the cart will be 8.47 N which
corresponds to an acceleration of 16.9 m/s2. Estimating the tire’s coefficient of static friction to be
0.5 [9], leads to the cart being accelerated at a maximum of 4.92 m/s2 as shown by the equations
below.

,
 since f < F,

11

2.6 Controller Software

Figure 2: Controller Software Flowchart

12

2.7 Neural Network Model Optimization
Long Short-Term Network (LSTM)
The algorithm we will use to train our agent will be a long short-term network. With an LSTM, our
agent can be taught to keep track of past information that could be important. In our design, such a
network can be beneficial since remembering past states of the system, including old pendulum
angles and velocities can help the agent develop an understand of how the system is changing over
time. This can be extremely useful when modeling the lag of the physical system in the training of
the network, since the LSTM requires sequences of of experiences to perform training [8].

After we calculate the sum of the lag time of the sensors in the system and the computation lag of the
Raspberry Pi, we can set the sequence length of our LSTM to greater than the lower bound of the
system lag. This will allow our network to train with a sample delay, and hence allow better control
in the physical system. The two most important hyperparameters during training will be the
sequence_length and the memory_size. The sequence_length indicates the length of the number of
experiences that will be passed through the network while training, while the memory_size indicates
the length of an array of floating point numbers keeping track of the past states of the system. Since
we only need to infer the velocities of objects in the system, these parameters can be relatively low.

2.8 Circuit Schematics

Figure 3: Circuit Schematic

2.9 Physical Design

Our physical design will consist of both 3D printed parts, as well as motors and sensors purchased
online. The main cart chassis will be connected to both the track and motor below, as well as the
potentiometer connected to the pendulum above. Our design is based off the parts and assembly

13

described by [7]. The simulation in Unity will be modeled such that the masses, lengths, and other
physical properties of the system match as closely as possibly. All the below figures have dimensions
listed in inches.

Figure 4: Cart Chassis, Rail Spacer, and Track Holder

Figure 5: Potentiometer, Potentiometer Holder, Motor, and Motor Bracket

Figure 6:, Wheel, Wheel Hub, and Track

Figure 7: Pendulum Holder, and Potentiometer Connector, and Outer Track Holder

14

Figure 8: Prototype 3D Model and Unity Simulation

3. Cost and Schedule
3.1. Cost
Our cost comes from labor and parts. For labor, we have 3 people working an estimated average of
10 hours per week each for the 16 week semester at a wage of $35.00 per hour per person.

For parts:

Part Description Part Cost ($)

6V DC motor Pololu 63:1 Metal Gearmotor
20Dx43L mm 6V CB with
Extended Motor Shaft, #3714

22.95

Motor Encoder Pololu Magnetic Encoder Pair
Kit, #3499

8.95

Motor Brackets Pololu 20D mm Metal
Gearmotor Bracket Pair, #1138

6.95

Motor Driver Pololu Dual VNH5019 Motor
Driver Shield

49.95

Wheel Pololu wheel (2 pack), #3691 7.95

Wheel Mount Pololu Universal Aluminum
Mounting Hub for 4mm Shaft,
2 Pack, #1081

6.95

6V Power supply Triad Magnetics 12.45

15

https://www.pololu.com/product/3714
https://www.pololu.com/product/3714
https://www.pololu.com/product/3714
https://www.pololu.com/product/3499
https://www.pololu.com/product/3499
https://www.pololu.com/product/1138
https://www.pololu.com/product/1138
https://www.pololu.com/product/2507
https://www.pololu.com/product/2507
https://www.pololu.com/product/3691
https://www.pololu.com/product/1081
https://www.pololu.com/product/1081
https://www.pololu.com/product/1081
https://www.newark.com/triad-magnetics/wsu060-3000/ac-dc-converter-external-plug/dp/83T4312

WSU060-3000 6 V, 3 A Power
Supply

Photodiode TEFD4300-ND 0.74

Cart Chassis Custom chassis 20.00

Raspberry Pi Raspberry Pi RASPBERRY PI
3 MODEL B+

35.00

Potentiometer Potentiometer angle encoder
Vishay Spectrol #357

44.48

 Total 216.37

Grand total = cost of parts + cost of labor = $50,616.37

16

https://www.newark.com/triad-magnetics/wsu060-3000/ac-dc-converter-external-plug/dp/83T4312
https://www.newark.com/triad-magnetics/wsu060-3000/ac-dc-converter-external-plug/dp/83T4312
https://www.digikey.com/product-detail/en/vishay-semiconductor-opto-division/TEFD4300/TEFD4300-ND/2987573
https://www.alliedelec.com/product/raspberry-pi/raspberry-pi-3-model-b-/71131895/?src=raspberrypi
https://www.alliedelec.com/product/raspberry-pi/raspberry-pi-3-model-b-/71131895/?src=raspberrypi
https://www.mouser.com/ProductDetail/Vishay-Spectrol/357B2502MAB251S22?qs=sGAEpiMZZMtC25l1F4XBU7rZyhV5cpJR4wvCdUO0VMo%3D
https://www.mouser.com/ProductDetail/Vishay-Spectrol/357B2502MAB251S22?qs=sGAEpiMZZMtC25l1F4XBU7rZyhV5cpJR4wvCdUO0VMo%3D

3.2 Schedule

Week Kishore Henry Mason

2/18 Design review prep Design review prep Design review prep

2/25 Improve Unity Simulation,
develop prototype
Tensorflow model to be
uploaded to Raspberry Pi
microcontroller

Determine all necessary
components and chassis
design, order components

Determine all necessary
components and chassis
design, order components

3/4 Further development of
Unity simulation and
Tensorflow model

Verify that each component
fulfills our needs, order
chassis

Verify that each component
fulfills our needs, order
chassis

3/11 Adjust Unity simulation to
replicate our physical
system

Build physical system Build physical system

3/18 Spring Break Spring Break Spring Break

3/25 Make minor adjustments to
simulation to improve
Tensorflow model

Build physical system Build physical system

4/1 Finalize Unity simulations.
Obtain final working
Tensorflow model.

Make sure each subsystem
in physical design is
working properly.

Make sure each subsystem
in physical design is
working properly.

4/8 Prepare for mock demo.
Make sure each subsystem
is working

Prepare for mock demo.
Make sure each subsystem is
working.

Prepare for mock demo.
Make sure each subsystem is
working

4/15 Prepare for final/mock
presentation and test project
for mock demo.

Prepare for final/mock
presentation and test project
for mock demo.

Prepare for final/mock
presentation and test project
for mock demo.

4/22

Prepare for presentation
and poster session,
complete final paper

Prepare for presentation and
poster session, complete
final paper

Prepare for presentation and
poster session, complete
final paper

4. Ethics and Safety
The ethical and safety issues in our project mainly pertain to the safety of the different moving
mechanical components in the design. Since there is movement of a cart on a track and the attached
swinging pendulum, this poses a safety risk for anyone standing too close or putting their body parts
in the system. During operation, the cart and pendulum could cause injury to someone too close to

17

the system. Additionally, our electrical components could cause harm to someone upon being
mishandled.

The safety precautions we would take to handle these situations refer to #9 on the IEEE Code of
Ethics, to “avoid injuring others, their property, reputation, or employment by false or malicious
action“ [4]. To prevent the cart from hurting someone’s fingers, we would add a rubber bumper to
each side of the cart, as well as bumpers to the end of the track to prevent the cart from flying off. We
would also ensure that the heavy end of the pendulum is rounded and not sharp, to avoid the risk of
serious injury if it was to strike anyone standing too close. We will also have a safety mechanism to
prevent any outputs of the control system which ask for too high voltages or forces. In such a
situation, we will ignore the output of the model and choose a more appropriate signal.
In addition, since we are dealing with relatively high voltages to power the motor, we need to make
sure the circuits are properly insulated so that no can get hurt by accidentally coming into contact
with the system.

18

References

[1] Clark, Jack. “Robots That Learn.” OpenAI Blog, OpenAI Blog, 28 Nov. 2017,
blog.openai.com/robots-that-learn/.

[2] Juliani, Arthur. “Introducing: Unity Machine Learning Agents Toolkit – Unity Blog.” Unity
Technologies Blog, 19 Sept. 2017,
blogs.unity3d.com/2017/09/19/introducing-unity-machine-learning-agents/.

[3] OpenAI. “Proximal Policy Optimization.” OpenAI Blog, OpenAI Blog, 20 July 2017,
blog.openai.com/openai-baselines-ppo/.

[4] “IEEE Code of Ethics.” IEEE - Advancing Technology for Humanity,
www.ieee.org/about/corporate/governance/p7-8.html.

[5]”Average Entry-Level Electrical Engineer Salary”, Payscale,
www.payscale.com/research/US/Job=Electrical_Engineer/Salary/6fd28da9/Entry-Level

[6] “TensorFlow Lite | TensorFlow.” TensorFlow , www.tensorflow.org/lite.

[7] “Inverted Pendulum Project.” Andy's Log, 23 Jan. 2016,
andreweib.wordpress.com/inverted-pendulum-project/.

[8] Unity-Technologies. (n.d.). Unity-Technologies/ml-agents. Retrieved from
https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Feature-Memory.md

[9] Friction and Friction Coefficients. (n.d.). Retrieved from
https://www.engineeringtoolbox.com/friction-coefficients-d_778.html

19

http://www.tensorflow.org/lite
https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Feature-Memory.md

