
Automated Boba Station
ECE 445 Design Document - Spring 2019
Team 49 - Hunter Huynh, Timothy Ko, Jordan Wu
TA: John Kan

1 Introduction 1
1.1 Objective 1
1.2 Background 1
1.3 High-level Requirements 2

2 Design 2
2.1 Block Diagram 3
2.2 Physical Design 4
2.3 Power Supply 4
2.4 Liquid Dispensing Mechanism 5

2.4.1 Solenoid Valve 6
2.4.2 Solenoid Control 6

2.5 Solid Dispensing Mechanism 7
2.5.2 Servo and Door 8
2.5.2 Servo Control 8

2.6 Weight Sensing Mechanism 9
2.6.1 Load Sensor 9
2.6.2 Load Sensor ADC 10

2.7 Control Unit 11
2.7.1 Microcontroller 11

2.8 Software 13
2.9 Tolerance Analysis 17

3 Costs and Schedule 18
3.1 Cost Analysis 18

3.1.1 Labor 18
3.1.2 Parts 18

3.2 Schedule 20

5 Ethics and Safety 21
5.1 Ethics 21
5.2 Safety 21

6 References 22

1 Introduction

1.1 Objective
Boba, a popular drink among millenials, has prices that are still largely dictated by the manual
labor involved in making it, so shops still require many employees. Unlike coffee, making boba
tea requires handling both solids (boba, etc), and liquids (tea, syrup, milk) [1]. With the large
variety of recipes, human workers are prone to make mistakes. Finally, taste consistency is hard
to achieve without an automated solution, leaving drinks sometimes oversweet.

Our goal is to develop an automated boba station would have multiple dispensers connected to a
U-shaped gutter that would all drip into a cup. We would have multiple dispensers for cold
liquids and solids for toppings, simplifying the entire process of creating a boba drink, which
will improve the efficiency of boba stores. In addition, because boba is currently made manually,
you most likely either make too much or make too little for the cup size. This product will
dispense predetermined amounts for each liquid/solid, customizable by a web user interface,
reducing food waste and money.

1.2 Background
The creation of a boba drink comes in a multitude of configurations. However, it generally
consists of just solids and liquids. In general, the process of creating a boba drink consists of
putting the toppings (solids) specified by the order in the cup, pouring the tea and milk (milk tea
may already be mixed together with a specific concentration of milk and tea), then adding the
user specified amount of sugar and ice (such as 0%, 25%, 50%, 75%, or 100% of the normal
amount) [1] [5]. For this project, we will just focus on the basic drink, milk tea with boba, which
consists of cold brewed tea (black tea or green tea), milk (almond milk, regular milk, etc), sugar
syrup, and tapioca pearls (boba).

Because the creation of boba drinks is currently all manual and based off of percentages, there is
no unified concentration of each component of the drink. For example, 25% sugar level varies
employee to employee and drink to drink because it is done manually. The concentration of milk
and tea varies as well as the amount of toppings is in a drink. If done automatically, the
concentrations will be unified per configuration. Eventually, we’d like this solution to allow for
more permutations of drinks by adding in more dispensers with different ingredients and
connecting it to this system.

1

1.3 High-level Requirements
● Have at least two dispensers, one for tapioca pearls and one for the milk tea.
● The station must be able to dispense a user-specified amount of tea, sugar syrup, milk,

and boba with no more than ±10% error in mass.
● Have a web interface to control the amount of liquids/solids dispensed in each dispenser.

2 Design
This automated boba station will have two dispensers: one for tapioca pearls and one for milk
tea. We will be using a “revolving door” to dispense the tapioca pearls and a solenoid valve to
dispense the milk tea. An employee can manually refill the containers holding the milk tea and
tapioca pearls. There will then be a sloped gutter the dispensers will dispense to, which direct the
ingredients into a cup placed at the bottom. The cup will be on a small raised platform with a
load sensor underneath, which is connected to its own microcontroller. Each dispenser will be
powered by 12 V and controlled by a microcontroller. All microcontrollers will have a Wi-Fi
chip and a simple web server listening for instructions. One of our computers will be then
controlling the microcontrollers for each dispenser through sending HTTP requests as well as
open up a web server to serve the web UI to control the amount of liquids/solids dispensed in
each and when to begin the boba making process.

2

2.1 Block Diagram

Figure 1. Block Diagram

3

https://www.draw.io/?scale=auto#G1yNDf6jvD86DZ4LNdVmRPVWIYOE9Bqa1F

2.2 Physical Design

Figure 2. Physical Design Sketch

2.3 Power Supply

2.3.1 120 VAC to 12 VDC Transformer
The power supply provides the circuit with 12 V at all times. The power supply would be a wall
converter, converting the 120 AC to 6 A 12 V DC. This would sustain our liquid dispensensing
mechanisms and its microcontrollers with consistent power.

Requirement Verification

1. Converts 120 VAC to 12 VDC. 1A. Connect the input of the power supply to
a wall outlet outputting 120 V AC.

1B. Measure the output voltage using an
oscilloscope. Check that the output voltage is
in the range 12 V +/- 5%.

4

2. Maintains a safe temperature below 140°C
for at least 99% of the time.

2A. Check that the power supply’s
temperature is below 130°C using an IR
thermometer during verifications 1A and 1B.

2.3.1 120 VAC to 5 VDC Transformer
This power supply will provide 5 V DC to the solid dispensing mechanism and weight sensing
mechanism.

Requirement Verification

1. Converts 120 VAC to 5 V DC. 1A. Connect the input of the power supply to
a wall outlet outputting 120 V AC.

1B. Measure the output voltage using an
oscilloscope. Check that the output voltage is
in the range 5 V +/- 5%.

2. Maintains a safe temperature below 140°C
for at least 99% of the time.

2A. Check that the power supply’s
temperature is below 130°C using an IR
thermometer during verifications 1A and 1B.

2.4 Liquid Dispensing Mechanism
The liquid dispensing mechanism is a core part of our automated boba station since it dispenses
the necessary liquids in order to make a milk tea drink. The amount of liquids dispensed and
when to dispense will be determined by the main server.

Requirement Verification

1. The dispensing mechanism must dispense
60 mL +/- 5% milk tea in 1 second of
opening.

1. Connect it to a microcontroller and open it
for one second.
2. Measure whether the amount of dispensed
material is accurate.

We approximated that 60mL amount of milk tea would dispense for one second of an ½ inch
NPS (nominal pipe size) open valve. This was done by making an estimated 1/2 diameter hole
with our hand over a cup and pouring a water bottle directly (upside down, like how it would be
in our machine since the solenoid valve is gravity fed) into the hole for two seconds. We then
measured the water level and divided it by two, since we did it for two seconds. There was
around ¼ cup of water, which is around 60 mL. This obviously needs some fine tuning as we

5

don’t actually have the valve. So once we have the valve, we would do the same verification
steps and measure the amount of liquids dispensed as well as get its weight.

2.4.1 Solenoid Valve
This will be used to control whether or not liquid is being dispensed. It should be normally
closed when no voltage is applied, and open when sufficient voltage is applied across its
terminal. The solenoid valves we will be using only opens when 12 V DC is applied. Therefore,
the GPIO (General-purpose input/output) signals are unable to directly open the valves.

Requirement Verification

1. Valve must open when 12 V +/- 5% is
applied.

1A. Apply 12V DC to the valve’s input.
1B. Ensure that the valve opens fully within 1
second of verification 1A.

2. Valve must be gravity fed (allow flow of
liquid by gravity alone when open), as no
other liquid pressurizing mechanism is in
place.

2. During verifications 1A and 1B, place a
liquid container above the valve and attach it.
Ensure that liquid both enters and exits the
valve.

2.4.2 Solenoid Control
The solenoid control, Fig. 3, will amplify the GPIO signal from a microcontroller to 12V via a
transistor so that the solenoid valve can be opened and closed.

Requirement Verification

1. Must be able to output 12 V +/- 5% and 3
A +/- 5% to the solenoid valve.

1A. Apply 3.3V to transistor base.
1B. Measure the output voltage and current
using an oscilloscope. Check that the output
voltage is in the range 12 V +/- 5% and check
that the output current is in the range 3 A +/-
5%.

6

Figure 3. Solenoid Control Circuit Diagram

2.5 Solid Dispensing Mechanism
The solid dispensing mechanism is used to dispense the topping, tapioca pearls. After user
research (we interviewed friends who worked at boba places such as Latea), we learned that the
boba pearls needed to be covered with honey right after they boiled and didn’t need to be held in
a liquid solution (water or sugar water). Thus, we are planning on having a “revolving door”
driven by a servo to it to open and close it as part of the solid dispensing mechanism.

Requirement Verification

1. The solid dispensing mechanism must
dispense 2 +/- 1 tapioca pearls during 1
second of opening.

1A. Connect it to a microcontroller and open
it for one second.
1B. Measure whether the amount of dispensed
material is accurate.

We approximate two tapioca pearls dispensed per second. According to the American Key Food
Products, tapioca pearls are around 4 mm [9]. We are using a 1 inch PVC tube for the door
(described below), we know the maximum amount of pearls that can be pushed through is six
since an inch is 25 mm. However, tapioca pearls may be bigger and six means that all pearls
must be aligned properly. Thus, we can safely say that there would be an average of 2-3 pearls
passing through at every turn, which would occur every one or so seconds. We will be testing
and flushing out the correct amount of tapioca pearls that are dispensed per second. To do

7

accomplish this, we would set it up and open the door for one second. Then we will measure the
amount of tapioca pearls that were dispensed.

2.5.2 Servo and Door
The “revolving door” will be a 1” Diameter PVC tube with a hole drilled on on one side facing
upwards. The solids will be dropped into the tube from a chamber above via gravity. The servo
will then rotate the tube 180 degrees so the hole faces downwards, allowing the solids to fall out
via gravity while sealing the chamber above. The prescribed Towerpro SG92 Servo provides 2.5
kg of torque, which should be sufficient.

Requirement Verification

1. Servo must provide enough torque to rotate
the tube.

1A. Connect the servo to the PVC tube and
apply a 1ms pulse of 3.3 V DC to the servo.
Ensure that the PVC tube rotates easily.

2. Servo must be able to rotate 180 degrees. 2A. Repeat verification 1A, but with a pulse
of 2.4ms. Ensure that the PVC tube rotates
any amount greater than or equal to 180
degrees.

3. Door must be 1” wide. 3A. Measure the door with ruler and verify
whether it’s 1” wide.

2.5.2 Servo Control
The servo can be controlled directly via PWM from the microcontroller. The logic level will
need to be stepped up from 3.3 V to 5 V via a BSS138 logic level shifter.

Requirement Verification

1. Servo control signal must provide 5 V
PWM.

1A. Apply 3.3 V PWM to GPIO_2 on servo
control board.
B. Measure Servo pin 1 with oscilloscope.
Ensure 5 V PWM peaks.
C. Ensure pulse width measured matches
input pulse width.

8

Figure 4. Servo Control Circuit Diagram

2.6 Weight Sensing Mechanism
The weight sensing mechanism is used to measure the weight of the cup and liquids/solids
dispensed in it. This data will be used in coordination with the dispensing mechanism to control
how much of that certain ingredient we have already dispensed and need to dispense based on
the configuration. We will be measuring the weight of pre-measured amount tapioca pearls to
find the relation between N amount of tapioca pearls and its weight in grams. Milk tea is still
very close to the weight of water, where 1 mL of water is equal to 1 gram (unit conversion). Milk
is 1.03 mL/g due to the extra nutrients and we can estimate that Milk tea would be around 1.02
mL/g since it isn’t fully milk.

2.6.1 Load Sensor
The load sensor will be mounted under the platform the cup sits on and outputs an analog signal.
We can use the TAL221 load sensor for this purpose, which outputs voltages 0.7 V +/- 0.15 V
[4].

Requirement Verification

1. Sensor must be accurate to > 0 g and < 5 g
to reliably measure liquids. Sensor must

1A. Plug in load sensor to microcontroller
1B. See if digital output corresponds with
increasing pre-measured weight

9

support up to 500 g, the typical weight for a
drink.

2.6.2 Load Sensor ADC
Because load cells have a very small resistance change, most devices can’t actually detect the
change so we are going to need another device that can take the very small change in resistance
and turn it into something we can measure accurately. This is where an HX711 will come into
play, as it functions both as an ADC and an amplifier. It must be able to read an analog signal
outputted from the load cell and amplifies it and converts it to a digital signal via an ADC to be
read by the microcontroller.

Requirement Verification

1. Must be able to read voltages 0.7 V +/-
0.15 V from a load cell and convert it to a
digital value.

1A. Connect the ADC circuit to the load cell
and to a microcontroller.
1B. Apply 24 pulses to pin CLK. The
microcontroller should obtain a 24-bit number
from the DATA pin proportional to the
weight on the load cell.

Figure 5. Load Sensor ADC Circuit Diagram

10

2.7 Control Unit
The control unit controls the different dispensing mechanisms, when to open and close as well as
takes input from the weight sensing mechanism to make decisions. It will store the
configurations set by the user through web UI it serves and manage the system accordingly. For
more information on the high level architecture and communication, look below to the Software
Section 2.8.1.

2.7.1 Microcontroller
Our microcontrollers will receive requests through Wi-Fi and perform the corresponding action
on the mechanisms. Each of the mechanisms will have its own microcontroller, receiving or
sending data through GPIO 2 on the microcontroller. We currently plan to use the ESP8266 (ver.
ESP-01). Control of the solid dispenser servo will be through PWM, while the liquid dispenser
gets a “ON/OFF” based on logic level 1/0. Programming will be done via an external Arduino to
act as a USB to serial converter. [13]

Requirement Verification

1. Microcontroller connected to network and
can communicate with laptop.

1A. Ping microcontroller IP from laptop.
B. Verify response

2. Set a HIGH signal (3.3 V) on GPIO 2 when
a Request “ON” is sent to the microcontroller.
Respond “ACK”.

2A. Send “ON” to microcontroller from
laptop
B. Probe GPIO 2. Check for 3.3 V

3. Set a LOW signal (0 V) on GPIO 2 when a
Request“OFF” is sent to the microcontroller.
Respond “ACK”.

3A. Send “OFF” to microcontroller from
laptop
B. Probe GPIO 2. Check for 0 V

4. Set a PWM signal MIN (pulse width 1 ms)
for 2 seconds, then off on GPIO 2 when
Request “PWM_MIN” is received. Respond
“ACK”.

4A. Send “MIN” to microcontroller from
laptop
B. Probe GPIO 2 with oscilloscope. Check for
3.3V PWM with pulse width 1 ms.

5. Set a PWM signal MAX (pulse width 2 ms)
for 2 seconds, then off on GPIO 2 when
Request “PWM_MIN” is received. Respond
“ACK”.

5A. Send “MAX” to microcontroller from
laptop
B. Probe GPIO 2 with oscilloscope. Check for
3.3 V PWM with pulse width 2 ms.

11

6. Read value from GPIO 2 when Request
“GET_VAL” is received. Respond with
value.

6A. Send “MAX” to microcontroller from
laptop
B. Verify response value is proportional to
weight on sensor by varying weight.

2.7.2 Control Unit Power Delivery
Since the ESP8266 has a 3.3 V VCC, 5 V or 12 V from input from the transformer must be
dropped down. To do so we will use a TSR1-2433 converter.

Requirement Verification

1. Must supply 3.3 V DC at 1 A +/- 5% 1A. Attach V_In and GND to test bench
power supply, vary input voltage between 4.5
V to 12.5 V.
B. Probe V_Out with oscilloscope and insure
stable 3.3 V output.
C. Attach microcontroller, ensure stable 3.3 V
under load.

Figure 6. Control Unit Circuit Diagram

2.7.3 Web Server
This web server will be run on a personal computer, hosting a web UI that starts/stops a boba
making process and allows a user to customize the liquid and solid dispensers. It will also send
HTTP requests to the microcontroller, which host a micro web server to provide instructions on
when to start and stop dispensing the corresponding ingredients. HTTP requests generally take

12

100 ms round trip, which is negligible compared to the multiple seconds we are taking to
dispense liquids and solids.

Requirement Verification

1. Must be able to send HTTP requests
through port 80.

1A. Send a curl to ​https://google.com​ and
does it get a response back. Curl uses port 80.

2.8 Software
The software routes information between the main server and the microcontrollers controlling
the dispensers. All routing and information of transfer will be done via HTTP and thus TCP to
ensure accurate retrieval of information and instructions.

2.8.1 High level architecture
A main web server, running on a computer (personal computer) will serve the user-friendly web
User interface, which will receive user input in the configuring the amount of liquids and solids
to dispense. It will store, mutate, and retrieve the configurations on a MongoDB database. Based
on the load sensor input and the user configurations, the main server will send instructions to the
microcontrollers on whether to begin or stop dispensing their respective ingredients. All of this
must be done on the same Wi-Fi network, in order for the main server to contact the
microcontrollers via their IP address.

13

https://google.com/

Figure 7. Software High Level Architecture

14

2.8.2 Routing and Dispensing Logic
Figure 8 explains the network transfer logic when a user starts the boba making process,
beginning from the main server receiving that input. Essentially, once the boba making process
begins, the main server makes a request to the database for the configuration on how much
boba/liquid should be dispensed. Based on the configurations, it begins to give instructions to the
respective microcontrollers that control the liquid dispenser and the solid dispenser, sequentially,
starting with the the solid dispenser. Once a microcontroller linked to a dispenser receives a
request, it unpackets it and checks whether the request is a request to start the dispensing. The
main server will also start polling the microcontroller responsible for the load sensor and will
receive the load sensing data every half second (this interval will most likely change as we do
more experiments, but HTTP requests are around 100 ms round-trip so there’s plenty of room to
see how often we’d like to poll the load sensor microcontroller). Based on the weight, the main
server decides when to send a request to the dispensing microcontroller to stop.

To combat the deficiencies of networking (server crashing, network packet loss, etc), there will
also be a upper-bound on how long a dispenser dispenses for and the microcontroller must return
an acknowledge response back to the main server whenever it receives an instruction from it,
else the main server will make another response after waiting for an acknowledge response for a
specified amount of time.

The main server will contact the solid dispenser first, just in case a tapioca pearl gets stuck on the
gutter. Once the signal to stop the solid dispenser is sent and the acknowledge response is
received, we begin liquid dispensing. If a button to stop the boba making process is pressed, all
the dispensers will stop and everything will reset.

15

Figure 8. Routing and Dispensing Logic

2.8.2 Web User Interface
The Web UI will be implemented using the standard HTML/CSS/Javascript with a python web
server. The same server implementing this UI will also be controlling the microcontrollers
through HTTP requests in the boba machine. This will be integral to our project since we are
building for a user, which requires an interface.

16

https://www.draw.io/?page=1&scale=auto#G1ebFfiSrRSPAGjxylaABQLOM9WDdxIlDr

2.9 Tolerance Analysis
A critical aspect of our system is its ability to figure out how much liquid or solid it has
dispensed and act accordingly, so knowing when to continue or stop dispensing through the
opening of the solenoid valve for liquids and spinning of servo. This is done through finding the
relations between time and the amount of liquid/solids dispensed in coordination with the weight
of the ingredients in the cup as ingredients are dispensed. As described above in the
requirements, we have a load sensor detecting the weight of the cup, which sends its signal
through an amplifier and ADC, which is sent to a microcontroller. The main server will then
send HTTP requests to the microcontroller for the current weight as an ingredient is dispensing.
This data will allow the main server to make decisions on when to stop dispensing. Thus, we’d
like to analyze the tolerance in the accuracy of the load sensor as well as the time intervals
between the load sensor sending signals and the main server retrieving the data and whether this
system can tolerate this time interval.

First off, let’s look into the accuracy of the load sensor. The factors that influence the accuracy
are nonlinearity, hysteresis error, repeatability, and temperature effects on zero balance and span.
The combined error characteristic combines non-linearity, hysteresis error, and repeatability
[11]. Thus, the accuracy of this load cell is

 ε / W))) ε √ (ε> c
2 + (z * L * N * t + (εs * t

2

where is the Accuracy of the load cell (%), is the combined error in %, is the temperatureε εc εz
effect on zero balance (%/C), is the temperature effect on span (%/C), L is the rated capacityεs
of the load cell, N is the number of load cells to be used, W is the maximum load to be measured,
t is the temperature variation range of the load cell. Thus, from the TAL221 Load Cell datasheet,
we come up with the following equation.

ε > (0.05 (0.1 1500kg / 1500kg) (0.1)) .033%√ 2 + * * 1 * 1 + * 1 2 = 0

Thus, the scale will be sufficiently accurate if the resolution is 1/3000. Now, let’s put this in the
perspective of our system. We’ll be first dispensing boba, in which a ~5 g plastic standard
medium 16.9 fl. oz cup is placed on the platform with the load sensor underneath it. Each tapioca
pearl is around 4 mm wide in diameter, a pearl is approximately <= 1g since there are 152 g per
cup of dry tapioca pearls [10]. A cup generally has 20 to 30 pearls per drink, meaning there
should be around 20 to 30 g + 5 g from the cup. The lower bound, with the error percentage
would be 0.66 g while the upper bound would be 0.99, meaning that if there weren’t any delays
in the data transfer and instructions sent and the dispenser would immediately be closed once the
cup reaches a certain weight, we would have an error of at most one pearl. For the milk tea, or

17

any liquids in this case, the error would be 1 mL of the corresponding liquid, which isn’t much
since a standard plastic medium cup is 500 mL or 16.9 fl oz.

Now, let’s look into the time difference between the measurement of weight sent to the
microcontroller until it reaches the main server, in which it will decide whether to stop the
dispensing. An average HTTP request takes around 500 ms for the round trip with TLS (security
protocol) [12]. However, we won’t be using HTTPS nor will we need a Domain Name Server
lookup since we would be operating in the same network, which cuts down the entire response
time down to 200 ms [12] with the majority of time for the microcontroller to respond. Now the
data transfer from the load sensor to microcontroller is pretty negligible in this case, since they
are all data transfers, which means the majority of time would be because of the HTTP requests.
Thus, the lower bound in which the main server retrieves the correct load time and sends the
instruction to stop dispensing would be 200 ms while the upper bound would be 399 ms such
that the microcontroller receives data from the load sensor right after it already sent back a
response to the main server, requiring the main server to send another request to realize it needs
to send an instruction to stop.

However, 399 ms is very negligible in this system compared to the accuracy of our load sensor,
which would have an effect of plus or minus one tapioca pearl and 1 mL. As a summary, the
system can handle the tolerance of 399 ms and the 0.033% error of the load sensor since 1
tapioca pearl or 1 mL is something we can tolerate.

3 Costs and Schedule

3.1 Cost Analysis

3.1.1 Labor

We assume a reasonable salary of $50 / hour. Further, we estimate that each group member will
work an average of 12 hours a week for 15 weeks. Therefore, the estimated labor cost is

.5 5 weeks) 3 partners) 67, 00hr
$50 * 2 * (12 hrs

1 week * 1 * (= $ 5

3.1.2 Parts

Part Cost

Liquid Dispensing Mechanism $42.64

Brass Liquid Solenoid Valve - 12V (Digikey; 1528-1280-ND) $24.95

18

TIP120 Transistor (Digikey; TIP120GOS-ND) $0.69

DCJ0202 Barrel Jack (Mouser; 806-KLDX-0202-A) $0.90

1N4001 Diode (Digikey; 641-1310-1-ND) $0.11

Schumacher PC-6 120AC to 6A 12V DC Power Converter $15.99

Solid Dispensing Mechanism $13.16

Towerpro SG92 Servo (Digikey; 1528-1076-ND) $5.95

BSS138 - SMD (Digikey; BSS138CT-ND) $0.31

DCJ0202 Barrel Jack (Mouser; 806-KLDX-0202-A) $0.90

120VAC to 5V 2A DC Power Converter $6.00

Weight Sensing Mechanism $28.10

Load Cell - 500g (Digikey; 1568-1899-ND) $11.25

Load Cell Amplifier HX711 (Digikey; 1568-1436-ND) $9.95

DCJ0202 Barrel Jack (Mouser; 806-KLDX-0202-A) $0.90

120VAC to 5V 2A DC Power Converter $6.00

Microcontroller x 3 $59.70

ESP8266 ver. ESP-01 (Digikey; 1568-1235-ND) $6.95

Traco Power TSR 1-2433 (Digikey; 1951-2742-ND) $6.14

10uF Electrolytic Capacitors (Mouser; 661-EKXF451ELL100MJ2) $0.81

Non-Electrical Components $16.00

Liquid Container (Soda bottles) $1.00

Solids Container $5.00

General Structure $10.00

Total $159.60

19

3.2.3 Grand Total
$67,659.60rand total cost abor artsG = l + p =

3.2 Schedule

Week Hunter Timothy Jordan

2/25/2019 Design finalized Design finalized Design finalized

3/4/2019 Breadboard testing of
load sensing mechanism.

Physical design of load
sensing platform
sketched.

Breadboard testing of
liquid dispensing
mechanism.

Physical design of
liquids dispenser
sketched.

Breadboard testing of
servo mechanism.

Breadboard testing of
microcontroller system.

Physical design of liquid
dispenser + gutter
sketched.

3/11/2019 PCB of load sensing
mechanism done.

Physical designs verified
by machine shop.

PCB of liquids
mechanism done.

Physical designs
verified by machine
shop.

PCB for microcontroller
+ servo done.

Physical designs verified
by machine shop.

3/18/2019 Software configuration
of load sensing
mechanism done.

Software configuration
of liquids mechanism
done.

Start work on WebUI

Software configuration of
liquids mechanism done.

Software configuration of
multiple microcontrollers
system.

3/25/2019 PCB soldering
completion

PCB soldering
completion

PCB soldering
completion

4/1/2019 Assembly of physical
module

Assembly of physical
module

Assembly of physical
module

4/8/2019 Assembly of physical
module

Assembly of physical
module

Assembly of physical
module

4/15/2019 Prepare for demo Prepare for demo Prepare for demo

4/22/2019 Prepare for presentation Prepare for presentation Prepare for presentation

20

4/29/2019 Prepare for presentation
Complete final report

Prepare for presentation
Complete final report

Prepare for presentation
Complete final report

5 Ethics and Safety

5.1 Ethics

While working on this project, we will abide by the IEEE Code of Ethics and the ACM Code of
Ethics in their entirety. For this project, it is important to commit ourselves to #1 of the IEEE
Code of Ethics: “to hold paramount the safety, health, and welfare of the public, to strive to
comply with ethical design and sustainable development practices, and to disclose promptly
factors that might endanger the public or the environment” [2]. We will do so by following
safety precautions described in the next section. For instance, we will use certified transformers
to convert 120 V AC to 5 V DC and 12 V DC. Further, we will also be sure to commit ourselves
to #7 of the IEEE Code of Ethics: “to seek, accept, and offer honest criticism of technical work,
to acknowledge and correct errors, and to credit properly the contributions of others” [2].

5.2 Safety

The main safety hazard is the use of a 120 V AC power from a wall outlet. To mitigate this
hazard, we will use certified transformers (such as the Schumacher PC-6 DC Power Converter)
to immediately transform this to 5 V DC and 12 V DC and will never use 120 V directly in any
way. We will also abide by United States regulations regarding electrical devices such as those
described by NISTIR 8118r1 [3]. From the end user’s perspective, there are few safety concerns
since the user just has to interact with the web interface and then grab a cup of boba.

Another concern is potential health and disease issues. Boba, or tapioca pearls, are made of
tapioca starch and can be safety kept at room temperature for 10 hours [6]. Boba may be coated
with honey, which is itself antibacterial because of its high osmolarity (concentration), high
acidity, and presence of hydrogen peroxide [7]. On the other hand, room temperature milk tea
can only be safety kept at room temperature for 2 hours [8]. This could be a concern when
demand is low enough such that the milk tea is replenished infrequently. However, the station is
designed for use only with cold liquids, so milk tea can be safely kept for longer than 2 hours.

21

6 References

[1] “Everything You Need to Know About Bubble Tea”, 2016. [Online]. Available:
https://www.souschef.co.uk/blogs/articles/everything-you-need-to-know-about-bubble-tea
[Accessed February 6, 2019]

[2] “7.8 IEEE Code of Ethics”. [Online]. Available:
https://www.ieee.org/about/corporate/governance/p7-8.html​ [Accessed February 6, 2019]

[3] “A Guide to United States Electrical and Electronic Equipment Compliance Requirements”,
2017. [Online]. Available: ​https://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8118r1.pdf
[Accessed February 6, 2019]

[4] “TAL221: MINIATURE LOAD CELL” [Online]. Available:
https://cdn.sparkfun.com/assets/9/9/a/f/3/TAL221.pdf​ [Accessed February 7, 2019]

[5] “Milk Tea & Iced Tea” [Online]. Available:
http://www.sunnysboba.com/milk-tea--iced-tea.html​ [Accessed February 7, 2019]

[6] “Bubble Tea Supply” [Online]. Available: ​https://www.bubbleteasupply.com/faq/​ [Accessed
February 7, 2019]

[7] “Honey: its medicinal property and antibacterial activity” [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3609166/​ [Accessed February 7, 2019]

[8] “Danger Zone” [Online]. Available:
https://www.fsis.usda.gov/wps/portal/fsis/topics/food-safety-education/get-answers/food-safety-f
act-sheets/safe-food-handling/danger-zone-40-f-140-f/CT_Index​ [Accessed February 7, 2019]

[9] “Tapioca Pearls Products from AKFP” [Online]. Available:
http://akfponline.com/specialty-products/tapioca-products/tapioca-pearls/​ [Accessed February
19, 2019]

[10] “Tapioca, pearl, dry - 1 cup” [Online]. Available:
https://www.nutritionix.com/i/usda/tapioca-pearl-dry-1-cup/513fceb775b8dbbc21002ddc
[Accessed February 19, 2019]

22

https://www.souschef.co.uk/blogs/articles/everything-you-need-to-know-about-bubble-tea
https://www.ieee.org/about/corporate/governance/p7-8.html
https://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8118r1.pdf
https://cdn.sparkfun.com/assets/9/9/a/f/3/TAL221.pdf
http://www.sunnysboba.com/milk-tea--iced-tea.html
https://www.bubbleteasupply.com/faq/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3609166/
https://www.fsis.usda.gov/wps/portal/fsis/topics/food-safety-education/get-answers/food-safety-fact-sheets/safe-food-handling/danger-zone-40-f-140-f/CT_Index
https://www.fsis.usda.gov/wps/portal/fsis/topics/food-safety-education/get-answers/food-safety-fact-sheets/safe-food-handling/danger-zone-40-f-140-f/CT_Index
http://akfponline.com/specialty-products/tapioca-products/tapioca-pearls/
https://www.nutritionix.com/i/usda/tapioca-pearl-dry-1-cup/513fceb775b8dbbc21002ddc

[11] “How to Use Load Cells” [Online]. Available:
https://www.aandd.jp/products/weighing/loadcell/introduction/pdf/6-1.pdf​ [Accessed February
19, 2019]

[12] “Measuring HTTP response times with cURL” [Online]. Available:
https://ops.tips/gists/measuring-http-response-times-curl/​ [Accessed February 20, 2019]

[13] “A Beginner's Guide to the ESP8266” [Online]. Available:
https://tttapa.github.io/ESP8266/Chap01%20-%20ESP8266.html​ [Accessed February 19, 2019]

23

https://www.aandd.jp/products/weighing/loadcell/introduction/pdf/6-1.pdf
https://ops.tips/gists/measuring-http-response-times-curl/
https://tttapa.github.io/ESP8266/Chap01%20-%20ESP8266.html

