
ThereminFreaks – Theremin-based Rhythm Game

Team 34
Esteban Looser-Rojas – looserr2

Yhoas Olivas Hernandez – olivash2
Michael Recklein – recklei2

TA: Amr Martini
ECE 445 – Spring 2019

Introduction
Objective and Background
There are many different kinds of rhythm games on the market, stretching back all the way to the 90s
and early 2000s with games like DanceDanceRevolution and Pump It Up, two dance games where one
steps on panels; beatmania IIDX, which is a “DJ simulator” and uses a turntable and 7 rectangular
buttons; and DrumMania which uses an electric drum set to simulate playing a drum. They typically
involve the player pressing a button or a touch screen and/or simulating a conventional rock instrument
like a guitar or a drum set. They also typically only allow discrete notes and when there is an analog or
continuous control, it’s usually not that precise, like the knobs in a game like Sound Voltex. The closest
thing to what we plan on making is the singing mode in Rock Band, which only takes the user’s voice
pitch into account.

We are planning on creating a theremin-based rhythm game for the PC platform. The hardware
component is a PC peripheral theremin where the capacitance is controlled by moving one's hands
closer or farther from the antenna-like plates on the theremin controller. We plan on using this
capacitance to affect an oscillator's frequency and capture this frequency as a variable on the PC
program using USB. Thus the theremin circuit will be connected to a USB controller which will
connect to the PC. On the software side, we will make a simple driver for this controller and a video
game written in C++ using OpenGL. The way the game works is there is a stream of notes coming at
the player. The vertical axis represents the volume to correspond with the loop antenna on the theremin.
The horizontal axis represents pitch to correspond with the straight antenna.

What makes this project unique is therefore the fact that it uses an unconventional instrument where
there is no contact between the player and the instrument. And the pitch and volume are continuous
rather than being discrete like pressing a piano. A game like Rock Band has a singing mode (actually
based off a previous game called Karaoke Revolution) that is somewhat similar to what we are doing,
but it only takes pitch into account and not volume [1].

Rhythm games with realistic controllers like the aforementioned DrumMania also have the advantage
of teaching people how the instruments they simulate are played. In the words of Ben Weinmann and
Chris Pennie from The Dillinger Escape Plan [2], “Being big fans of Konami games, we are extremely
happy to be a part of the newest versions of GUITARFREAKS and DRUMMANIA. We can remember
our first trip to Japan and having the pleasure of playing earlier versions of these games in the Arcade.
These Games are not only fun but a great way for young people to start looking at music in a more
intricate and educational way. Thanks Konami!”

High-level requirements

• The user interface and hardware be intuitive enough that a new player can learn how a theremin
works. They should then be able to play the theremin with some sort of skill outside of the
game.

• Playtesters should reach a consensus that the game is responsive and bug-free along with being
enjoyable and engaging.

• The sound engine should work properly such that it can sound like a real theremin and provide
a similar mapping between the distance of the hands from the antennas and the in-game pitch
and volume.

2

Design
Block Diagram

The data flow starts from the hands to the antennae, which will create two capacitances used to change
the frequencies of two Hartley oscillators. These oscillators will be mixed with another pair of
reference oscillators to create values dependent on hand distance to the antennae, which will be fed to
integrators and detectors to extract the frequency from the oscillating signal. The design then switches
to digital as the two signals pass through ADCs and a microcontroller sends the data through a USB
interface to the PC. With the amount of control we get from the software audio engine and game logic,
we should then be able to finely tweak how the scaling of the theremin is configured and how it sounds
while it is being played. The PC will run the rhythm game program.

The physical design, seen in figure 2, is a simple box to protect the PCB with holes for the two
antennae, a USB-B port, and a reset button for the microcontroller. The size depends mostly on how big
the PCB will be.

3

Figure 1: Block Diagram

Hardware:

Pitch and volume sensors – The pitch and volume sensors start with two antennae that act as variable
capacitors for two Hartley oscillators. Crude experimentation shows that a human touching a piece of
metal creates a capacitance of around 100 pF, so the changes in capacitances are on the order of
picofarads. Figure 3 shows a simulation of such Hartley oscillator, showing a frequency on the order of
4 MHz for the types of components we are using. There will be two more oscillators with fixed
capacitors acting as reference oscillators. Modulating the reference oscillator with the variable-
frequency oscillator using a mixer will result in a sinusoid with its frequency dependent on the distance
from the hand to an antenna. Careful tuning is required to make sure that the output is very low-
frequency when one has their hand away from the antennae.

4

Figure 2: Theremin physical design

Requirements Verification
1. Mixer should create a stable sinusoid with

frequency dependent on that of the
difference between two input sinusoids,
with input frequencies up to 1 to 4 MHz

2. Oscillators should be able to produce low-
frequency signal below 10-20 Hz when
mixed in order to create a “default” state
where the reference and variable oscillators
match

1.
1. Connect function generator to each

mixer input, one to simulate reference
oscillator and the other to simulate the
variable oscillator

2. Probe output of mixer with oscilloscope
3. Turn on signal generators to MHz range,

go through range of values from
matched frequencies to differences in
tens of kHz

4. Verify that oscilloscope shows product
of the two sinusoids

2.
1. Probe output of reference oscillator with

oscilloscope to have a reference of what
the base frequency is.

2. Probe output of variable oscillator onto
oscilloscope, make sure one can read
the frequency of the signal.

3. Probe output of signal mixer with
oscilloscope

4. Verify that oscilloscope shows a low
frequency of 10-20 Hz at mixer output
as both oscillators should be matched.

5

Figure 3: LTspice simulation of Hartley oscillator

Frequency detection – This module will be used to convert the output of the sensors into an analog
signal that can be sampled. The output from a sensor will go into an integrator. This should give us
back a sinusoid whose amplitude is proportional to its inverse frequency. After that we simply pass the
signal through a peak detector to take the amplitude as a DC signal.

Requirement Verification
1. Detector must have high enough bandwidth

to respond to sensor output, up to 30 kHz
1.

1. Probe output of detector with respect to
ground using voltmeter

2. Connect function generator to input of
detector with respect to ground

3. Turn on function generator, send range
of sinusoids from 20 Hz to 30 kHz

4. Verify on voltmeter that inverse
dependency on frequency is achieved
throughout frequency range

Analog to digital converter – This module is used to digitize the signal from the frequency detector.
Because we don’t expect the signal to change very frequently, being a musical instrument played by a
human, we selected the 20-pin MAX1166 16-bit ADC due to it being small and low power and meeting
our sampling frequency needs. In order to avoid having 8 more pins it alternates between sending the
LSB and MSB, with a pin on the chip indicating which one is being sent.

Requirement Verification
1. ADCs can send at least 1000 samples per

second
1.

1. Probe 8-pin parallel interface and EOC
pin, should give digital outputs

2. Send range of values appropriate for
simulating frequency detection outputs
made through experimentation

3. Check to see if data-out pins and EOC
pin change accordingly

Microcontroller – The microcontroller must read data from the analog to digital converters and send it
to the PC. A separate module will handle USB communication; all we need to do is to program the
microcontroller to send the theremin data through RS-232 UART. We are using a PIC16C65 since we
already have some and are familiar with using this kind of microcontroller.

Requirement Verification
1. Able to send samples from ADC to RS-232

interface
1.

1. Create program that will read data in
and send it through RS-232

2. Check to see if data is being sent to PC
with USB cable plugged in

6

USB to RS-232 converter – In order to simplify the software design, a virtual RS-232 interface will be
used. One of us has already made RS-232 interfacing software for the microcontroller we are using, so
there shouldn’t be much hassle communicating with the theremin this way.

Requirements Verification
1. Able to interface with PC through USB
2. Able to interface with microcontroller

through RS-232 UART

1.
1. Connect USB cable from converter to

PC
2. Verify that a new COM port device

appears on PC
2.

1. Program microcontroller with simple
program that sends a string to the
computer

2. Connect USB cable from converter to
PC

3. Use RS-232 terminal program to read
text input from virtual COM port

4. Verify that string appears in terminal

7

Schematic:

Software:

Graphics engine and game logic – The video game will generate a “map” that the player has to try to
imitate with the theremin and will judge the player based off of how close their pitch and volume is to
said note map. We are using OpenGL to render the game menus and the game itself, using two
dimensions on a plane for the pitch and volume and the z direction as time.

Requirement Verification
1. The game should run at least at a constant

60 fps to ensure a smooth gaming
experience

1. There will be a frames per second counter
on the screen. We just have to make sure it
doesn’t dip below 60.

Audio engine – Takes in pitch and volume data from the theremin, along with background music files
and plays the background music along with a synthesized theremin track manipulated by the player.

8

Figure 4: Theremin Schematic

Requirements Verification
1. Should be able to play a song synchronized

with the video game so that there is no
noticeable lag between what is on the
screen and what is being heard

2. Should be able to generate theremin-like
sound for a range of at least 4 octaves

1.
1. Have a decently-sized sample of people

play the game (probably 4 or more)
2. If there is a consistent shift in timing

towards late or early timing, the game is
probably not synced correctly

2. A very subjective requirement, it can
nevertheless be tested by going through the
full 4 octave range and comparing it to
recordings of real theremins

Device Driver – This piece of software will communicate with the USB COM port and will provide the
game logic with a stream of 32-bit samples comprising of a 16-bit pitch sample and a 16-bit volume
sample. Thus the game logic and audio engine should have easy access to the data arriving from the
theremin, as a C struct consisting of two 16-bit integers.

Requirement Verification
1. Should provide a steady stream of 32-bit

samples from the theremin at a high enough
bandwidth to minimize delay below 50 ms
in order to prevent input lag.

1.
1. Set up microcontroller to send varying

output through USB to PC
2. Print out stream of data coming from

device driver
3. Check to see if time difference between

microcontroller generating output and
device driver output exceeds 50 ms

Software Flowchart:

9

10

Tolerance Analysis
The oscillators pose the greatest risk for the success of our project. We have to tune them precisely so
that the user’s movements are tracked accurately and faithfully to how a real theremin operates. If we
are careless with how we approach this part of the theremin circuit, we could have a very inaccurate
frequency. For example, the oscillators work at megahertz frequencies, so if they are off by a kilohertz,
then we’ll have a tone of a kilohertz out of nowhere, throwing everything off.

Running LTspice simulations for our Hartley oscillator circuits, it is apparent that the oscillators we are
using are going to be quite sensitive. A picofarad change in capacitance in the tuned circuit leads to
about a 17 kHz change in frequency. We are unsure whether or not this will be a problem. On one hand,
the change in capacitance between a hand being close to a metal rod and being farther away by a
centimeter or so is going to be tiny. But we have no way to verify exactly by how much the capacitance
changes until we actually build the theremin.

To try to remedy this, we have been looking at the different signal transformers available on the market,
and we have come up with a list of three that we are going to test. They differ in turn ratios, having 1:2,
1:3, and 1:4, such that they each have different inductances. Since the resonance frequency of the tuned
circuit depends on the inverse of the square root of the product of inductance and capacitance, we are
using different transformers to give ourselves ample room to tune and tweak the oscillators so that they
work reliably.

11

Figure 5: Flowchart of game logic

Costs and Schedule
Cost Analysis
The average salary for ECE graduates with a BS is around $40 an hour, and we have around eight
weeks or so to work on the project. Assuming we work for ten hours a week with three people in the
team, that amounts to about $24,000 in labor costs.

Costs for the parts necessary to build the theremin are included in the following table:

Parts Costs
PIC16C65A microcontroller $9.00
MAX1166 16-bit analog-to-digital converter x2 $23.90
UJ2-BH-1-TH USB-B connector $0.65
Silicon Labs CP2102 USB to RS-232 interface $1.33
2N222 transistors, any manufacturer x4 $1.00
Vishay Semiconductors 1N4148 diode x2 $0.40
BCW68GVL PNP transistor x4 $0.68
BCW66GVL NPN transistor x4 $0.72
Gilbert cell transistors x12 $4.00
TL3305AF260QG SMD push button $0.23
Indicator LEDs $0.80
WBC2-1TLB RF ferrite core transformer x4 $20.00
Total $62.71

Total development costs are therefore $24,063

Schedule

Week Yhoas Esteban Michael

2/25 Additive wave synthesis for
theremin sound

Finish circuit design taking all
options into account

Begin working on graphics
engine to draw 3D line in
space

3/4 Subtractive wave synthesis
and feedback distortion;
compare different methods

LTspice sim done; all
component values assigned;
PCB designs complete

Graphics engine complete

3/11 Background music program Mixer and detector
breadboard prototyping

Map generator using songs as
inputs

3/18 Theremin setup – theremin
antennae and oscillator testing

Oscillator prototyping; order
parts; PCB revision complete

Mesh generator, compose first
song

3/25 More testing and tweaking
theremin to stabilize oscillator
output

Finish MCU software for RS-
232 interface

Finish mesh generator,
compose second song

4/1 Theremin assembly – case
and fix antennas on

Theremin assembly –
soldering parts onto PCB

Gameplay mechanics – timing
judgements, scoring

12

4/8 Tweak music program and
synthesis program with
completed theremin

Finish theremin – oscillators
should be working fine by
now

Main menu and options menu

4/15 Last-minute debugging for
theremin before mock demo

More time in case oscillators
are wonky before mock demo

Song select menu, compose
third song

4/22 Compile together mock
presentation

Apply any feedback from
mock demo

Last-minute changes to video
game

4/29 Work on final paper and final
presentation

Final paper Final presentation

Ethics and Safety
The ACM code of ethics talks about reducing harm, including physical and mental injury and
unjustified harm to the environment [3]. We won’t be working with any lethal voltages, so the risk of
harming someone with our theremin is very low, comparable to the risk of someone having to plug in
any household appliance. And our theremin doesn’t use radio in order to communicate, so the risks
associated with interference are negligible if we shield the components well enough. Our video game is
simply a free musical instrument simulator without any micro-transactions, and the music we are
composing for it won’t have any explicit lyrics. So anyone of any age should be able to play it.

In another way, we will have to be responsible for our own safety when we use tools to solder and
assemble the theremin. Thankfully, we have all taken lab safety training and we have experience in
soldering electrical circuits. Much of the work involved in satisfying the design requirements for the
hardware is soldering chips onto our PCB and probing it with lab equipment.

The IEEE and ACM codes of ethics also mention honesty and trustworthiness, along with abiding by
copyright law [3][4]. We will disclose all the components we are using for the theremin and will keep
track of all our source code with appropriate licenses. That includes code used to control the theremin’s
microcontroller and the code for the video game. We will also create our own circuit schematics and
will only use software and libraries pursuant to their disclosed licenses. For example, OpenGL uses a
free license that allows us to use it for our project. As for the music used in the video game, we will
avoid infringing on copyright law by using either our own arrangements of public domain music or
music we have created ourselves.

The ACM code of ethics discusses user privacy and confidentiality [3]. We are not designing the
theremin or video game to communicate any information through the Internet or to store any kind of
user information. So users’ privacy rights are not at risk either.

13

References
[1] “Karaoke Revolution,” Wikipedia, May 17 2018. [Online]. Available: https://en.wikipedia.org/wiki/

Karaoke_Revolution. [Accessed Feb 7, 2019].

[2] “Panasonic Youth,” RemyWiki.com, Dec. 27 2018. [Online]. Available:
https://remywiki.com/Panasonic_Youth#Song_Production_Information. [Accessed Feb 1,
2019].

[3] Association for Computing Machinery, “ACM Code of Ethics and Professional Conduct,”
Association for Computing Machinery. [Online]. Available: https://www.acm.org/code-of-
ethics. [Accessed: Feb. 1 2019].

[4] IEEE, “IEEE Code of Ethics,” IEEE. [Online]. Available:
https://www.ieee.org/about/corporate/governance/p7-8.html [Accessed: Feb. 1, 2019].

14

https://en.wikipedia.org/wiki/Karaoke_Revolution
https://en.wikipedia.org/wiki/Karaoke_Revolution
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.acm.org/code-of-ethics
https://www.acm.org/code-of-ethics
https://remywiki.com/Panasonic_Youth#Song_Production_Information

