

Assistive Shogi
Team 48 — Rahul Rameshbabu and Maxim Papushin

ECE 445 Project Proposal — Spring 2019
TA: David Hanley

Introduction

Objective
Shogi is a very difficult game for beginners to learn because of its complex set of rules.

One can try playing Shogi at first, but it would be very simple to violate one of its rules or not be
able to take advantage of more complex rules. There are a number of guides out there and one
can even attempt to play online Shogi; however, the complexity of the game remains
overwhelming due to the sheer number of types of pieces, each with their own unique moveset,
compounded with added complexity from the ability to replace captured pieces.

To rectify this issue, we propose an augmented Shogi board that helps interactively
teach a player all the valid moves that can be made using a piece that has been lifted from the
board. This will help players know all possibilities of where to move the pieces and prevent any
illegal moves from being made.

Background
While most Americans are at least vaguely familiar with the rules of Chess, if not able to

fully play it, far fewer are familiar with Shogi. Whereas Chess has an established community of
players and mentors willing to teach the game, Shogi has no such following, with few organized
groups, if any. Thus, prospective players are left either playing unbalanced games online with
far more experienced players, learning alone through a guide, or to start learning with other
beginners, where neither player has enough experience to notice when a rule has been
violated.

Chess is already a game where some of its more intricate strategies such as forks
(simultaneously threatening two or more pieces with a knight) and pins (a similar strategy using
a bishop, rook, or queen) are less utilized by beginner players, and even a decent number of the
basic maneuvers are less known to many. Shogi has a 9x9 board over Chess’s 8x8, but the
more significant difference is Shogi has a heavier emphasis on counter attacking strategies ​[1]​.
Also, in Shogi, unlike Chess, pieces are never out of play, and may be replaced on the board by
the capturer, creating an immense amount of possible moves compared to Chess. Finally,
Shogi has some obscure rules which beginners may easily forget about, such as optional
promotion, except under certain conditions where it becomes mandatory. Even though Shogi

and Chess pieces share similar names, they behave quite differently, which makes adapting
from Chess to Shogi quite difficult ​[1]​.

Chess has quite an astonishing number of people playing the game, 35 million in the US

[2]​. This growing community helps support the rise in popularity of the game. However, Shogi
does not have such a strong community, especially outside East Asia. While it is difficult to get
an accurate count of the number of Shogi players in the United States, an estimate can be
made by comparing the number of players well-known enough to have articles on Wikipedia,
which would suggest roughly 100 times as many Chess players (315) as Shogi players (3)
[3]​[4]​.

By making learning the game simpler, its popularity could rise significantly.

High-level requirements
● Board must recognize when a piece has been lifted and identify the possible moves for

that piece.
● Board must update game state when the piece is placed in a valid location, and give a

warning on the display if an invalid move is made.
● Touchscreen must allow for manual error correction, as well as indicating user error,

such as misplays.

Design

Block Diagram

The design of the augmented Shogi board has six major components. We have a Game
State/Compute Processing unit that handles maintaining the game state for each move made
and making the master logical decisions behind which LEDs should be illuminated and
processing the sensor I/O. This unit is responsible for back and forth communication with the
AtMega 328Ps in the Game I/O block.

The Game I/O block is responsible for handle I/O between the board electronics of the
LEDs and photoresistors, as well as for sending data over serial to the Raspberry Pi Zero in the
GS/CP unit.

The HID for Game Control/Error Correction is used to allow the user to correct any piece
detection errors, as well as to view the game state from the touchscreen display, and to provide
additional information to the players, such as warning them when an invalid move has been
made.

The Game Board Sensor block provides information about what pieces have been
moved with the use of photoresistors. They send data to be processed by the DAC in the Game
IO Processing unit.

The Game Board Indicator states what moves are valid to make with the piece selected.
They are controlled by signals from the AtMega chips in the Game IO Processing unit.

The Power Supply Block is responsible for handling power distribution to the electronics.

Physical Design Description

Shogi Board Grid Layout ​[5]

The board will be modified to include photoresistors underneath each of the 81 squares

on the board. For each square, a hole will be drilled through the center of the piece, and a
photoresistors will be attached into the hole, facing upwards. When a piece is present on that
square, the photoresistor is covered; without a piece, the photoresistor is lit by the ambient light
of the room. This difference in lighting will be used to detect when a piece is moved. All the
electronics will be connected underneath the board, except for the touchscreen, which will be
placed off to one side of the board, such that it is accessible to both players.

Functional Overview
Game State/Compute Processing​ - The goal of the Game State/Compute Processing

block is to receive process input from the Game I/O Processing block AtMega 328P
microcontrollers and also process any board state correctional data provided through the
touchscreen interface from the HID For Game Control/Error Correction block. Once it receives
game state updates, the Raspberry Pi Zero then processes the updates to be reflected both on
the touchscreen and sent to the AtMega 328Ps to update the respective LEDs for the valid
moves that can be made.

Game I/O Processing​ - The Game I/O Processing blocks goal is to handle the large
number of sensory inputs and digital indicator outputs needs for the assistive Shogi board. This
block sub-divides the work of piece detection and LED illumination but does not know about the
big-picture setup of the overall game board. Therefore, the AtMega 328Ps used in this block
must use Digital I/O serial communication with the Raspberry Pi Zero in the Game
State/Compute Processing block to update the Pi with sensor information that lets the Pi update
the overall game state. Any detection of a lifted piece should be sent over the the Pi Zero, which
in turn sends a signal back to the appropriate AtMega chips to tell them, which LEDs to
illuminate, thus indicating to the players which spaces are valid moves given the piece which
was lifted from the board.

HID For Game Control/Error Correction​ - This block consists of a touchscreen that
interfaces back to the Raspberry Pi Zero and used to as mechanism to both provide information
about the current board state perceived by the Raspberry Pi Zero and let the user update it due
to any errors, such as pieces being accidentally bumped or moved.

PSU​ - The PSU block is used to distribute power to the various electronics involved in
the system. However, power will be provided to most of the individual components through the
AtMega 328P microcontrollers and the Raspberry Pi Zero, which are able to provide power as
needed to the rest of the electronic systems. For instance, the Raspberry Pi Zero will use the
power it is given from this block and provide power to the touchscreen through its GPIO.

Game Board Indicators​ - This block consists of LEDs used to indicate when each
position is valid to move to on the 9x9 Shogi board. These indicators are physically updated by
the AtMega 328Ps, which are in turn signalled to enable or disable certain LEDs to light up by
the Raspberry Pi Zero.

Game Board Sensors ​- This block contains a series of photoresistors placed at each
position on the 9x9 Shogi board. These sensors send their input into an analog-digital converter
within the Game IO Processing unit subsystem, and the converted sensor data is passed into
one of the AtMega 328P microcontrollers.

Block Requirements

Block Name Technical Requirement Functional Requirement Quantitative
Requirement

Game
State/Compute
Processing

Must be able to
interface a
touchscreen and
somehow
communicate with
multiple microcontroller
devices.

Should be able to update
the game state of the
board from the data
provided by multiple
AtMegas and from any
user error corrections
provided.

Needs to utilize a
single board
microprocessor such
as a Raspberry Pi
Zero to interface with
four AtMegas over
serial and use GPIO
to interface to a
touchscreen.

Game I/O
Processing

Must be able to
provide sensor input to
a microprocessor as
well as drive LEDs
based on signals
provided from a
microprocessor over
serial.

Should be able to take
signals over serial for
LED states provided
from the microprocessor
and turn indicated LEDs
respectively on or off to
indicate which positions
are valid to move to.
Also, should be able

Due to massive
amount (81 analog
input and 81 digital
outputs) of I/O
involved, we plan to
utilize 4 AtMega
328Ps with analog
I/O multiplexed with 1
DAC for each
AtMega.

HID For Game
Control/Error
Correction

Must be an interface
compatible with the
microprocessor that
allows for both
visualizing how the
game is interpreted by
the microprocessor
and allowing for that
interpretation to be
corrected by the user
through a some form
of touch-input capable
display

Should allow the user to
be able to both view the
state of the board as
recognized by the
microprocessor and
allow the user to update
that state if any errors
have occurred in the
game state

1 touchscreen
interface for the
players to be able to
provide correction or
to view the game
state

PSU Must be able to power
the 4 AtMega 328Ps
and the Raspberry Pi
Zero and indirectly
handle these devices

Simply must be capable
of providing the needed
power for the board to
fully function.

One 9V, 7A (or
greater AMP) power
supply and one 5V,
2A power supply for
the Raspberry Pi

providing power to the
other peripherals such
as the touchscreen
and LEDs.

Zero

Game Board
Indicators

LEDs must be
controllable from the
AtMega 328P in order
to indicate valid
moves.

Must visually indicate to
the user valid moves by
the piece currently
selected on the Shogi
board

81 LEDs will be
needed to indicate
valid moves on the
Shogi board, one for
each space.

Game Board
Sensors

Photoresistors whose
varying resistance can
be read by the AtMega
328Ps in order to
determine whether a
specific Shogi piece
has been lifted or not.

Some sensory input that
indicates when a piece
on the Shogi board has
been lifted to determine
which LEDs should be lit
for indicating the valid
moves with that specific
piece.

81 Photoresistors will
be needed to sense
every piece on the
board, one for each
space.

Risk Analysis
The most difficult part of the project construction will likely be the circuitry needed to read

from the photoresistors. Since there are 81 inputs, the amount of wiring needed to connect each
photoresistor to an input on the PCB will be extensive, and will likely cause errors. Furthermore,
the amount of inputs needed are more than any single AtMega chip is able to support. As such,
it will be necessary to add input multiplexers in order to reduce the number of inputs to a
manageable amount, which will in turn add additional complexity to the wiring, as well as require
larger amounts of work on each AtMega to poll all inputs consecutively.

Similarly, each square on the board will have to show one or more LEDs, which will also
have to be controlled individually by the AtMega chips. In order to avoid having to use so many
output lines, it may be necessary to create simple LED controller circuits with latches to save a
state, so that they can be programmed with fewer data output lines, instead of creating a
81-wide one-hot bus to control LEDs, which would further complicate wiring.

Ideally, a circuit could be designed in such a way that only one or two AtMega chips are
necessary. This will not only reduce the cost of the entire board, but should also simplify the
code needed for the controlling Raspberry Pi to interact with each of the AtMega chips in turn.
According to the AtMega 328P datasheet, each chip has 23 programmable I/O pins ​[6]​, which
would have to be shared between the input photoresistors and the output LEDs.

The physical construction of the board is not expected to be difficult, as a relatively large
margin of error is acceptable for the photoresistors to fit in the holes while still being entirely
covered by the pieces. This is not expected to require any more precision than what could be
achieved with a simple drill press. However, depending on what sort of board is used for the
design, some effort may be needed to fit electronics into a relatively small space, or otherwise to
lift the board up with some supports in order to create more space underneath the board.

Ethics And Safety
Due to our project’s lack of data collection from the users, the ethics concerns involved

seem to be negligible. Our project also operates under a low voltage environment, minimizing
many electric safety concerns, though not removing them completely.

One possible issue is the issue of undervoltage in the case of large loads ​[7]​. We need
to be careful when developing the PSU to be sure we accurately accounted for the power
consumption needs of the entire design. If not, we might damage our hardware over time due to
operating electronics at inconsistent voltages. If we did so, we would be delivering a product
that is not capable of sustaining itself, which would be unacceptable as a consumer product.

We should also be very of the case of using incorrect or unregulated power supplies that
may result in an overvoltage and thus burn or damage the ICs and other electronic components
used in this project. However, aside from power supply concerns, this project operates using
mostly low voltage systems and does not take in an special input or sensitive data, reducing the
amount of ethical and safety concern significantly. Even though our project itself does not seem
to violate any ethical or safety concerns, we as developers should be sure to follow a code such
as the IEEE Code of Ethics ​[8]​.

References
​̂[1]​https://www.gnu.org/software/gnushogi/manual/Differences-between-shogi-and-chess.html
​̂[2]​https://en.chessbase.com/post/che-redux-how-many-people-play-che-
​̂[3]​https://en.wikipedia.org/wiki/Category:American_chess_players
​̂[4]​https://en.wikipedia.org/wiki/Category:American_shogi_players
​̂[5]​https://upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Shogiban.png/350px-Shogiban.

png
​̂[6]​https://www.sparkfun.com/datasheets/Components/SMD/ATMega328.pdf
​̂[7]​https://www.captech.com.au/2016/05/06/common-issues-with-power-supply/​^
​̂[8]​https://www.ieee.org/about/corporate/governance/p7-8.html

https://www.gnu.org/software/gnushogi/manual/Differences-between-shogi-and-chess.html
https://en.chessbase.com/post/che-redux-how-many-people-play-che-
https://en.wikipedia.org/wiki/Category:American_chess_players
https://en.wikipedia.org/wiki/Category:American_shogi_players
https://upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Shogiban.png/350px-Shogiban.png
https://upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Shogiban.png/350px-Shogiban.png
https://www.sparkfun.com/datasheets/Components/SMD/ATMega328.pdf
https://www.captech.com.au/2016/05/06/common-issues-with-power-supply/
https://www.ieee.org/about/corporate/governance/p7-8.html

