Final Report: Guitar Buddy
ECE 445, Fall 2018
Project Number 15
TA: Channing Philbrick

Austin Born and Chris Horn
December 12, 2018

CONTENTS

. Introduction

L1.1. Objective o i e e e
1.2. High-Level Overview et e e
1.3. BlockDiagram
1.4. Overall Design e

. Control Module

2.1. DesignProcedure

2.2. Microcontroller e e e
2.2.1. DesignDetails
2.2.2. Verification e

2.3. FlashStorage. e
2.3.1. DesignDetails e
2.3.2. Verification

. User Interface Module

3.1. DesignProcedure

3.2. Pushbuttons. e e
3.2.1. DesignDetails e
3.2.2. Verification e

. LED Output Module

4.1. DesignProcedure

4.2, LEDDIIVEr o o e e e e e e e e e
4.2.1. DesignDetails e e
4.2.2. Verification e

4.3. LEDAITAY o oo i e e e e e e e e e e e e e e
4.3.1. DesignDetails
4.3.2. Verification

. Power Supply Module

5.1. DesignProcedure

5.2. Li-ionBattery e e
52.1. DesignDetails
5.2.2. Verification

5.3. Li-ionManagement. e e e
53.1. DesignDetails
5.3.2. Verification e

. Software Module

6.1. DesignProcedure

6.2. Music ConversionProgram,
6.2.1. DesignDetails

NNNNOOOOO U A D

© © © © O

6.2.2. Verification
6.3. Bluetooth TransmissionProgram
6.3.1. DesignDetails e
6.3.2. Verification e
6.4. ESP32Firmware e e
6.4.1. DesignDetails
6.4.2. Verification

. Sensing Module

7.1. DesignProcedure

7.2. CircuitBoard Contacts i
7.2.1. DesignDetails
7.2.2. Verification

7.3. Analog-to-Digital Converter it
7.3.1. DesignDetails
7.3.2. Verification

. Costs

. Conclusion

9.1. Accomplishments e
9.2. Challenges e
9.3. Ethicsand Safety

Appendix A. Additional Diagrams

Al. GuitarBodyPicture
A2. ModelPicture e e e
A.3. Software Module e e
A4. GuitarFretNotesmap o v vttt e e e e e e e
A.5. ESP32 Firmware Flowchart
A6. ControlBoard e e e
A.7. Thermal Verification

Appendix B. Requirements and Verification Table

Appendix C. Core Programs

C.1. MIDIToBytes.cpp for MIDI Conversion
C.2. transmit.py for Bluetooth Transmission
C.3. ESP32Controller.ino for On-Board Processing

16
16
16
16
16
17
17
17

18

19
19
19
19

21
21
21
22
22
23
23
24

25

1. INTRODUCTION

1.1. OBJECTIVE

The Guitar Buddy system is intended to give learners on a budget the ability to gain real-
time feedback about hand position and technique. Traditional instructors can help students
with reading music, hand and finger arrangements, speed and quality, and they often have the
benefit of prior experiences from when they were still learning to play an instrument. However,
paying for private music lessons every week can be prohibitively expensive. Based on a 2014
national study by takelessons.com, music lessons typically range from $30 to $50 per hour [1].
If a student attends just one hour-long lesson each week, this costs between $1,500 and $2,500
per year. The Guitar Buddy system solves this problem by giving new guitarists a way to learn
the proper way to play without needing to attend private weekly lessons.

1.2. HIGH-LEVEL OVERVIEW

The device consists of a control board connected to any number of printed circuit boards
(PCBs) in series, with each board consisting of six LEDs, six steel string contacts, and associated
control logic. The LEDs are mapped to the notes on the guitar such that given a basic MIDI
file for a song, the device can map them to the array of LEDs to show the student where to
depress the strings to play the proper notes. The original high-level requirements proposed
for this device were that it could display chords near real-time, it could accurately sense if
the correct notes were depressed by the user, and that the device could be powered internally
up to 2 hours. As of now, the first and third requirements have been met, with the second
requirement verified in individual board tests, though not after full integration. Majority of
the requirements have been met and verified, with only a few specific verification failures that
prevented the device from reaching full functionality.

1.3. BLOCK DIAGRAM

The high-level block diagram (Figure 1.1) is broken down into six main modules. The
power supply module is responsible for the power management of the guitar, including
charging and discharging circuits as well as additional safety hardware. The sensing module is
responsible for detecting when the user depresses any strings along the neck of the guitar, and
reporting that information to the primary microcontroller. The control module houses the
primary microcontroller, an ESP32, and is responsible for communication with the software
module, storing song information, and sending the control signals for driving the LEDs. The
LEDs are driven by the LED output module, which is responsible for managing the 30 LEDs
from only a few I/0 pins on the primary microcontroller. The final module is the software
module, which is responsible for processing music and sending the binary song data to the
ESP32 over Bluetooth. Over the course of the project, the only major changes were the use
of on-board Analog-to-Digital Conversion in the ESP32 instead of externally, the addition of
the ESP32 firmware as software, and the use of the internal memory on the ESP32 instead of
external memory. The first change was to reduce the complexity of the sensing module, which
saved significant overhead at the expense of some ESP32 processing speed (though ultimately

insignificant). The second change was simply an addition of expected software. The third
change was the result of expected ease of use of on-board memory, though this proved difficult
as the project progressed (explained further in report).

[43]
dJ
g
=
Q0
Qm
S 9
2w
am
0
14
FryY s
A
T
=
W
=
m
=
1]
=]
W

Software Module (on computer)

Analog-to-Digital :
Converter
Copper

Bluetooth Transmission
Program

-
m
]
Y
@

Y

-
m
o
g
Y

Music Conversion
Program

Power Module

1
. Ej :
I)
. Li-lon Voltage I
1
I Ll_lon Baﬂew RegUIator :
: 1
1

Data

Bluetooth

Figure 1.1: Guitar Buddy System Block Diagram from the original design document.

1.4. OVERALL DESIGN

The physical design consists of five PCBs fixed between the second through seventh frets
of the guitar, affixed with non-damaging hot glue. The control PCB is fixed to the body of
the guitar along with the power supply, and each PCB is connected serially along the neck of
the guitar. The control board and wires are routed so they do not interfere with the player’s
hand positions. The design of the PCB requires 12 header pins on each PCB to connect data
and power lines, with individual wire strips connecting to each board. The control board
can function wirelessly due to the on-board power supplied by the battery, and Bluetooth
connection to an external laptop allows it to wirelessly send song data as needed. A diagram
of the Guitar Buddy system on the guitar is shown in appendix A.1 and a model user of the
device is shown in appendix A.2.

2. CONTROL MODULE

2.1. DESIGN PROCEDURE

The control module’s role is to manage the external Bluetooth connection with the host
laptop, send data to the LED output modules, and manage song data. An ESP32 is used for this
purpose, due to its built in Blutooth and WiFi capabilities, built in 4MB of non-volitile flash
storage, its high clock rate of up to 240 MHz, and its generous number of GPIO pins [2]. The
control flow for the device is managed from the firmware running on the ESP32, and manages
populating the frame buffer for upcoming notes, sending and receiving data from the software
module, and sending data to the fret PCBs. A picture of the control board can be found in
appendix A.6.

Alternative microcontrollers, including the ATMega 328p and MSP430, were considered
as potential options for the primary microcontroller. However, lack of RAM, non-volatile
storage, and lack of built in wireless capabilities made these inferior choices.

2.2. MICROCONTROLLER
2.2.1. DESIGN DETAILS

The control module is connected to the rest of the device through a few important
connections: a serial connection with the fret boards, a power connection to the power
module, and a wireless Bluetooth connection with the software module.

The serial connection with the fret boards consistent of three connections: a serial data
line (SOUT), a clock line (CLK), and a load effective (LE) line. When a timer interrupt fires
on the ESP32, signalling that it is time to update the frame displayed on the frets, the ESP32
immediately starts sending serial data out to the boards. For each rising edge of CLK, all data
in the fret’s shift registers is shifted, and the value of SOUT is sent to the first board. After all of
the data has been serially sent to the fret boards (which requires N * 8 CLK cycles for N fret
boards present), LE is cycled and the new data is displayed on the LEDs.

The power connection to the power module consists of two power connections (one for
Vpar and another for GND), as well as one ADC input to monitor battery temperature. When
not sending data to the fret boards or loading song data over Bluetooth, and control module
is constantly monitoring the battery temperature to ensure that is stays within the operating
range (see Section 5: Power Module for more information).

The Bluetooth connection is composed of a wireless serial interface running at a baudrate
of 115,200 bits per second. The ESP32 hardware, along with accompanying libraries, abstracts
most of the Bluetooth implementation away, so it can be treated like any other serial port. On
boot up, the ESP32 waits for a packet to arrive through the Bluetooth connection, and then
parsing the incoming song data and loads it into RAM. From there, it plays the song until a
new song is loaded.

Due to time constraints during development, the on-board flash storage is not used to
store song data across reboots. The current software implementations allows for up to 100 kB
of song data to be loaded into memory. Initial approaches to use the on-board flash storage
involved use of the provided ESP32 NVS (non-volitile storage) libraries, but delays caused by

blocking portions of code created unacceptable delays and hangs while driving the fret PCBs.
As a result, future work involves utilizing off-board storage, likely in the form of EEPROM or an
SD card (as originally planned).

2.2.2. VERIFICATION

To verify that the ESP32 was fast enough to update the fret PCBs in time with music,
an oscilloscope was used to monitor the output signals from the SOUT and CLK lines. The
ESP32 was capable of shifting out bits at a rate of approximately 2 MHz (or 2 Mbits/s) at
maximum speed, which is well in excess of the minimum bandwidth necessary to drive the
display. The minimum bandwidth to drive N boards at Fy4rge, refresh rate can be calculate
with Fyqrger * 8 bits/boards * N. For the prototype with five boards and a targeted 200 Hz
refresh rate (ﬁ), the minimum bandwidth is 200 Hz * 8 bits/board * 5 boards = 8 kb/s.

The power consumption of the device also exceeded initial designed expectations, draw-
ing only approximately 80 mA during regular usage. Peak current can exceed 200 mA during
Bluetooth communication, which is also within the range specified in the original design plan.

2.3. FLASH STORAGE
2.3.1. DESIGN DETAILS

The initial design plan to use an external SD card as flash storage was changed part way
through the project. Due to the physical construction of the control module board, along with
the presence of internal flash memory, the external SD card route was originally found to be
clunky and unnecessary. However, limitations in both bandwidth and latency of the built in
ESP32 storage resulted in the flash storage component failing to meet some of the original
design goals.

While the exact source of the problem is still unknown, some limitations originally en-
countered with the internal storage have been resolved. On such problem was the inability
to allocate more than a few hundred kB of continuous memory within a 4 MB section of
flash. This error was ultimately attributed to the development environment’s inability to flash
custom partition tables onto the ESP32. However, this discovery occurred too late to provide
adequate time to address other timing related problems with the internal storage. As a result,
song data is only stored in RAM and must be reloaded on every restart.

2.3.2. VERIFICATION

While the internal flash storage was not fully functional, certain aspects of the original
design requirements were met. The requirement for 3 MB of space was, in theory, partially
met due to the 4 MB of storage available on the device. Data could be written to, and read
from, portions of flash, but not while in use with the rest of the firmware or in real time. As a
result, the original design requirement of R/W speeds of at least 512 kB/s was not met.

Future steps to address this problem include further development and improved imple-
mentation of the provided ESP32 NVS library, as well as the use of external storage in the form

of EEPROM or alternative flash storage. External storage would also provide the possibility of
substantially increased capacity.

3. USER INTERFACE MODULE

3.1. DESIGN PROCEDURE

The user interface module is responsible for interacting with the user through the means
of a single button mounted on the guitar. While away from the software module, the interface
module will be the user’s only way to control the settings of the guitar. The design originally
called for three separate buttons for user interactions, but this was limited to a single reset
button for the ESP32 to begin reading songs from the start again.

3.2. PUSH BUTTONS
3.2.1. DESIGN DETAILS

The on-board push button provides a tactile way for the user to navigate through the
guitar settings while they are away from a laptop. The button is mounted on the control board
mounted on the body of the guitar. This position was chosen because it is close to the user’s
right hand, and is near the location where the user strums for ease of access. The user input is
limited for simplicity of the device, though additional buttons can be added in the future.

3.2.2. VERIFICATION

This button was verified with a simple breadboard LED circuit that confirmed the button’s
continued use after several minutes of rapid, sustained pressing. The button had virtually no
visible degradation nor significant change in resistance.

4. LED OuTPUT MODULE

4.1. DESIGN PROCEDURE

The LED output module consists of the LED driver and the LED array itself. The driver is
responsible for turning a few control bits from the ESP32 into individually addressable high
current outputs. The LED array is distributed across the 30 LEDs located on the five PCBs
mounted along the neck of the guitar. The picture in Figure 4.1 shows a single fret circuit board
with the LEDs and contacts for each string labeled. Figure 4.2 contains the schematic for the
circuits to be mounted within each fret.

Contacts
/N

Tristate buff/érfé—

Figure 4.1: Diagram of the PCB for each fret with core components labeled.

10

L bbb b

|
i L EH TT
ok

T

-

T%H

AAAA
YWYy

Y

"I

|
N

Figure 4.2: Schematic of LED driver and array (one per fret).

4.2. LED DRIVER
4.2.1. DESIGN DETAILS

The LED driver submodule is composed of five 8-bit constant current shift registers.
The registers are distributed across five identical but independent PCBs (see figure 4.2 for
schematic). The use of the constant current registers eliminated the need for current limiting
resistors for each LED, which reduced the component count for the PCBs. The fret PCBs are
daisy chained together, which means that additional boards can be added without requiring
the need to expand the data bus or modify the design of any individual board. Each driver has
a shift in port for incoming data, and a shift out port to send data further down the line.

For a theorectical board count of 20 boards, the LED drivers would need to shift through
160 bits of data to refresh the entire frame. In order to complete this while meeting our
target Fyqrger Of 200 Hz (see Section 2: Control Module), the maximum clock frequency of the
registers needs to be I%O—IE?S =32 kHz.

4.2.2. VERIFICATION

The LED driver was verified using the basic tests outlined in the requirements and ver-
ification table in appendix B. Specifically, the drivers were confirmed to be able to shift in
all 30 bits of data to the five PCBs, and did supply the necessary current to clearly see all six

11

LEDs of a given board turn on, and the entire array of LEDs could light up without significant
temperature increase in any of the chips.

4.3. LED ARRAY
4.3.1. DESIGN DETAILS

The LED array is distributed across the fret PCBs. For the initial prototype, this consistents
of 30 LEDs spread across five boards. The LEDs are connected to the outputs of the LED drivers,
and are controlled through serially shifting data into the LED drivers. The LEDs themselves
are compact, bright, and efficient. While the luminosity of the LEDs is substantial enough to
be clearly seen from many meters away, the ergonomics of the boards results is some of the
LEDs being difficult to see while the guitar is in use. Additionally, the bright, intense light of
the LED can cause additional eye strain over long practice sessions. While the former design
challenge is difficult to overcome within the tight physical constraints of the guitar, the latter
can be addressed through the used of diffused LEDs. Diffused LEDs would provide a softer,
more natural light source that is still bright, but causes less eye strain.

4.3.2. VERIFICATION

The LED array is clearly visible from as much as 10 m away, and the LEDs are about 1
mm tall, which is half the maximum height necessary as per the requirements and verification
table. This satisfies all the necessary requirements laid out for the LED array itself.

12

5. POWER SUPPLY MODULE

5.1. DESIGN PROCEDURE

Alithium-ion (Li-ion) battery provides high power density for the system, and the Li-ion
battery management sub-module ensures the battery stays within safe operating conditions
at all times. Specifically, the 18650 Li-ion battery was chosen for its known record of safe
functionality, though a thermistor is included to ensure operation within safe temperatures
between 0 and 45°C. The voltage regulator steps down the variable Li-ion battery voltage to a
constant 3.3 V £ 0.1 V for the rest of the system.

5.2. LI-ION BATTERY
5.2.1. DESIGN DETAILS

The Li-ion battery serves as the sole energy source for the guitar. Due to the number of
LEDs that may be driven at the same time, high power density is also an important factor
for battery selection. In addition, due to the convenience of the package size, durability, and
safety, protected 18650 li-ion cells are used as the main power source.

5.2.2. VERIFICATION

In testing, the Li-ion batteries were confirmed to output under 150 mA during normal
use with all LEDs active, and with a nominal capacity of 2500 mAh, even at 15% of the rated
capacity, the chosen Li-ion batteries can power the device for the necessary two hours.

5.3. L1-ION MANAGEMENT
5.3.1. DESIGN DETAILS

Li-ion batteries provide large energy and power densities, but require specialized charging
and discharging. A Li-ion battery management Integrated Circuit (IC) is used to monitor the
voltage of the battery to protect against overvolting and undervolting, as well as monitoring
the discharging of current. The battery is not be charged while connected to the guitar, but the
battery management circuit is only responsible for ensuring safe discharge while in use. To
protect against thermal runoff, a thermistor is embedded in the battery holder such that any
excessive heat effectively disconnects the battery nodes.

5.3.2. VERIFICATION

The battery management system was tested and verified using the proper verification
tests from the requirements and verification table in appendix B, including verification of the
thermistor voltages as seen in appendix A.7.

13

6. SOFTWARE MODULE

6.1. DESIGN PROCEDURE

The software module is the only module not located on the guitar (instead it resides on
an external Bluetooth-enabled computer). The software module’s responsibilities include
generating the bytecode for LEDs from a MIDI file, transmitting the data to the ESP32 over
Bluetooth, and then processing of the song data on the ESP32 itself (shown in appendix
A.3). The decision was to have the device be able to convert MIDI files because they are an
accessible way to store song data, and there are thousands of MIDI files available online for
many well-known songs. Bluetooth was chosen as the transmission method due to ease of use
and the ability for the device to then become wireless.

6.2. Music CONVERSION PROGRAM
6.2.1. DESIGN DETAILS

The music conversion program’s role is to convert a given MIDI file into a bytecode that is
understandable to the ESP32. As shown in appendix C.1, MIDIToBytes.cpp is compiled with a
makefile, and once compiled, ./MIDIToBytes.exe can be called with a song name (equal to
the name given in songname.mid for some MIDI file) and the instrument channel number as
arguments, and it converts the MIDI file into a CSV with the given notes. The MIDI file format
information from McGill University was used when building the MIDI converter portion of
the program, which included most of the information used to build the parser [3]. The parser
builds the CSV line-by-line with the MIDI event information from the MIDI file, adding the
expected frame for an event, and the information about the event (note on, note off, system
exclusive message, system resets, etc.) is added to the CSV. After fully parsing a MIDI file, the
converter writes a binary file that contains one byte per fret per frame, with the first six bits of
each byte representing an LED on a fret. The notes are determined by the fret order on the
fret board, with a diagram of the note map example in appendix A.4. The frame number is
determined by the LED array’s refresh rate, and a calculation for the total size of a binary file in
this format is given below:

Binary file size (bytes) = t * r * f
t = song duration (s)
r = refresh rate (Hz)
f =number of fret PCBs

For a 5-minute song with five fret PCBs and a refresh rate of 32 Hz, the binary file for this
song will be 48 kB long.
6.2.2. VERIFICATION

To verify the music conversion program, a CSV is made of every song to ensure that the
MIDI file is being properly parsed, and a binary file can be checked to confirm that the chords
or individual notes match the expected frame array output. In all songs tested, the first and

14

last 10 frames of the binary were checked for correctness, with code to time the duration of
parsing. For Say It Ain't So by Weezer, the 4 minute and 19 second song can be parsed in
less than 400 ms, and Hotel California by the Eagles, a six minute and 30 second song can be
parsed in under 480 ms. This implies that up to 60, 5-minute songs can be parsed in under 30
seconds, far exceeding the requirements.

6.3. BLUETOOTH TRANSMISSION PROGRAM
6.3.1. DESIGN DETAILS

The Bluetooth transmission program is responsible for sending the binary file to the
ESP32. This code, given in appendix C.2, takes in a binary file and transmits the data to the
ESP32 over a serial port connection. This program is written in Python due to ease of use of
serial Bluetooth I/0. From there, the ESP32 firmware ensures proper retrieval of the data.

6.3.2. VERIFICATION

Once transmitted to the ESP32, the data was confirmed to have been properly stored in
the ESP32 frame buffer to verify correctness. This was tested by at least seven different songs
of different lengths and confirmed correct by checking against the original binary files sent.

6.4. ESP32 FIRMWARE
6.4.1. DESIGN DETAILS

The ESP32 must be flashed with a program to retrieve data, store it, and then play it back
to the LEDs properly. When connected properly to a laptop, the ESP32 can easily receive data
over a serial Bluetooth port. There are delays in the code due to Serial buffer hand-offs with the
Bluetooth transmission program on the laptop, but once it has stored all transmitted bytes in
the frame buffer, it can replay the songs in real-time. This code must handle properly shifting
bytes and loading them onto each fret PCB, but this is done with simple control signals sent by
the ESP32 control module to each board serially. A high-level flowchart of this portion of the
software is shown in appendix A.5.

6.4.2. VERIFICATION

To confirm that the ESP32 firmware worked as expected, we probed the outputs of the
ESP32 with an oscilloscope on a regular input stream, confirming that the proper control
signals have been sent. This program was not described in the requirements and verification
so does not have formal requirements, but the implied requirement of sending proper control
bytes and reading binary data accordingly has been verified with proper LED array output
after the final integration.

15

7. SENSING MODULE

7.1. DESIGN PROCEDURE

The sensing module is responsible for detecting when the user depresses a string using
a contact per string per fret. Contacts for each potential finger position was chosen because
having contacts next to the LEDs on each board seemed like an elegant solution to determining
user accuracy. Another option was to verify that the user played the correct notes with external
audio processing, but this would not have been able to tell if the user was playing the correct
finger position since different positions on a guitar’s fret board can produce the same note (on
the same octave).

7.2. CIRCUIT BOARD CONTACTS
7.2.1. DESIGN DETAILS

Each fret contains a small board that houses the LEDs and six bare contacts (one under
each string). These contacts are connected to 3.3 V through a large pull up resistor. When the
user depresses a string, the conductive guitar strings make contact with the pad. The guitar
strings are connected to ground through a smaller (but still relatively large) pull down resistor.
When the string makes contact with the pad, it pulls the voltage of the pad down to near 0 V.
By measuring the voltage of the pads through the use of an Analog-to-Digital converter (ADC),
the device can determine which locations the string is being depressed. Since the PCB is lower
than the fret bars, they do not interfere with the functionality of the guitar.

The contacts are connected to the string data bus through tristate buffers. The contact is
directly connected to the bus if the corresponding LED is turned on; otherwise, the tristate
buffer maintains a high impedance output to prevent multiple contacts from attempting to
write to the bus with different values.

7.2.2. VERIFICATION

The contacts were verified by testing an individual test PCB outside of the full system.
This test PCB underwent the verification described in the requirements and verification table
in appendix B. The contacts passed all continuity tests with the data bus when the contacts
were not connected vs. tied to 0.0 V, confirming that they worked as designed. However, the
tristate buffers did not have well-defined expected behavior in the final requirements and
verification document, and this may have been a source of error in the final product. The
LEDs sometimes exhibited a dim light when they should have been off, and this is likely due to
high-voltage signal outputs from the ESP32 that were not a high enough voltage to actually
turn off the tristate buffers completely. This, however, was only a problem in some LEDs, and
can be fixed by adding a resistor in parallel to the LEDs to tie the voltage down properly.

16

7.3. ANALOG-TO-DIGITAL CONVERTER
7.3.1. DESIGN DETAILS

The Analog-to-Digital converter (ADC) sub-module is responsible for reading data from
the string data bus and determining which pads are in contact with a string. This is done
directly through the main ESP32, with six channels of input, as is required to read data from all
six bits of the string data bus at the same time. The ESP32 processes the voltage values from
the data bus and converts them to digital values that can be used in the control logic of the
device. This was originally meant to be processed through another MSP430 microcontroller,
but the ESP32 on-board processing was sufficient for the device’s functionality, making the
MSP430 obsolete for our purposes.

7.3.2. VERIFICATION

The data processing was confirmed on the ESP32 with a basic serial print of the input from
the data bus to the ESP32. Due to direct processing in the ESP32, latency and voltage power
levels did not need to be verified with the same tests as described in appendix B, but basic
verification of timing ensured that the ESP32 could process the data bus input in near-real
time.

17

8. COoSTS

The hourly development cost is taken from a reference for the average yearly salary of com-
puter engineering graduates as reported by the University of Illinois at Urbana-Champaign,
extrapolating to 2018 with a 3% salary raise from 2017 [4]. The University’s average reported
salary for Computer Engineering graduates was $88,000 in 2017, which is extrapolated to

$90,640 in 2018 [5]. With a 40 hour work week and 50 work weeks (assuming two weeks paid
vacation), the average hourly salary of a Computer Engineering graduate from UIUC comes
out to roughly $46 per hour. Throughout the semester, the average number of work hours

per week was 15 hours per person per week. Therefore, the total estimated labor costs for the

semester is:

2 people 4 246 . 15 hours . 16 weeks

team

The final estimated cost for our prototype, not including the guitar, is roughly:

hour week 1 semester

* 2.5 =$55,200

At bulk prices, the cost per unit would roughly be:

] Part | Cost |
ESP32 development board | $19.50
Push button $0.25
TLC5919N x5 $5.63
CD74HCT125x 10 $2.40
LED x 30 $3.00
18650 Li-ion battery $14.95
PCB manufacturing x10 $5.00
Wire (36 ft) $5.00

| Total | $55.73 |

Part | Cost |
ESP32 development board | $6.80
Push button $.12
TLC5919N x5 $3.50
CD74HCT125x 10 $1.75
LED x 30 $0.30
18650 Li-ion battery $7.00
PCB manufacturingx10 | $5.50!
Wire (36 ft) $1.00

Total | $25.97 |

1 The bulk price is more expensive than the prototyping cost due to incentives by manufacturer that don't scale at

volume

18

9. CONCLUSION

9.1. ACCOMPLISHMENTS

The project as a whole encountered a number of setbacks throughout the course of the
semester, but most of the functionality for each module has been proven in isolation. Starting
with the power module, the battery can successfully power the device with low enough power
output to power the device for the required duration for a typical practice session, and the
battery management system has been proven to shut off at excessive temperatures. The
control module successfully communicates with the off-board laptop through Bluetooth, and
can correctly play notes as encoded by the files it receives. The LEDs successfully light up with
the control signals sent by the LED driver, and the bits shift through the serially-connected
boards as designed. Finally, the software module parses any given MIDI file as needed, and can
convert the input MIDI file for a typical 5-minute song into a device-readable byte array within
200 ms. Overall, the device can provide many of the features defined in the design document,
including processing input MIDI files, sending the data over Bluetooth to the device, having
the device read and record the data, and transmitting the correct bytes to the fret PCBs as
needed. However, there are some challenges explained in the next section that prevented
Guitar Buddy from performing certain functionalities.

9.2. CHALLENGES

The Guitar Buddy has had many successful outcomes, but a few minor challenges pre-
vented the device from exhibiting every functionality from the original design. First, there
were difficulties writing large files to the ESP32. Although the ESP32 purports to have 4 MB of
internal memory, this is not easily accessible to the user without advanced implementation of
a file system, so the device was unable to hold the full data of the number of songs desired.
Without the addition of EEPROM or other external memory, the device could only hold enough
information for half of one 5-minute song given the current data organization. In addition, the
LED array has had difficulties with the turnoff voltage for the LEDs. Specifically, as described
in Section 7: Sensing Module, the LEDs appeared to have a dim light at times when the tristate
buffer did not receive the necessary voltage from the input signal. This could be mitigated
with resistors in parallel with the LED to adjust the turn-on voltage accordingly.

9.3. ETHICS AND SAFETY

As a consumer-oriented device, it is especially important that the Guitar Buddy system
does not harm any users, other persons, other devices or other objects. In compliance with
code one of the IEEE Code of Ethics, the Guitar Buddy team maintained safe engineering prac-
tices to mitigate any potential safety concerns to the user [6]. One such safety concern was the
Li-ion battery source for the apparatus. These batteries can be damaged if the temperature is
outside the range of 0 - 130 °C, and damage to the battery can result in potentially catastrophic
failure and harm to the user [7]. A basic thermistor is incorporated into the battery holder to
verify that the battery remains within normal operating range. In addition a voltage regulator
ensures that the voltage output does not exceed the rated voltage.

19

In addition, there is a potential safety hazard in connecting the guitar strings to the
sensing circuit. To prevent any harm to the user, the strings are all tied to ground such that
there is no case of current passing between strings, potentially injuring the user. In support of
expectations enumerated by the National Institute of Standards and Technology, if the device
is ever offered to users in the future, there will be warnings of potential hazards from improper
use of the device [8].

With the mapping of music to the LEDs, one difficulty is ensuring that the artists for songs
are properly attributed for their musical works. In support of the writers of musical works
used in this project, and following section 1.5 of the ACM Code of Ethics, credit is given to
the writers of any songs used for the Guitar Buddy system, and MIDI files are only taken from
properly attributable sources [9].

REFERENCES

[1] TakeLessons.com. What people pay for music lessons, annual report. [Online].
Available: https://support.takelessons.com/hc/en-us/article_attachments/200377329/
What-People-Pay-for-Music- Lessons.pdf

[2] ESP32 Technical Reference Manual, Espressif Systems, 9 2018, version 3.8.

[3] M. University. Standard midi-file format spec. 1.1, updated. [Online]. Available: http:
/ l'www.music.mcgill.ca/~ich/classes/mumt306/StandardMIDIfileformat.html#BMA1 _

[4] S. Miller. 2018 salary forecast: Smaller real wage increases in the u.s. and globally.
[Online]. Available: https://www.shrm.org/resourcesandtools/hr-topics/compensation/
pages/2018-salary-forecast-us-global.aspx

[5] U. of Illinois at Champaign-Urbana. Salary averages. [Online]. Available: http:
/lecs.engineering.illinois.edu/files/2018/03/Engineering Report_2016-2017_FINAL.pdf

[6] IEEE.org. Ieee code of ethics. [Online]. Available: https://www.ieee.org/about/corporate/
governance/p7-8.html?WT.mc_id=Ip_ab_ico

[7] BatteryUniversity.com. Lithium ion safety concerns. [Online]. Available: https:
/ /batteryuniversity.com/learn/archive/lithium_ion_safety_concerns

[8] MIST.gov. A guide to united states electrical and electronic equipment compliance
requirements. [Online]. Available: https://www.nist.gov/sites/default/files/documents/
2016/11/15/11-04-2016-8118-guide_to_us_electrical_and_electronic_products.pdf

[9] ACM.org. Acm code of ethics and professional conduct. [Online]. Available: https:
/ Iwww.acm.org/code- of-ethics

20

A. ADDITIONAL DIAGRAMS

A.1. GUITAR BODY PICTURE

Fretboard

Control Board

Headstock and
Tuning Keys

Guitar Buddy Fret Body
Circuit Boards

Figure A.1: Diagram of Guitar Buddy with control board and fret PCBs attached.

A.2. MODEL PICTURE

Figure A.2: Model of Austin Born holding the guitar and integrated Guitar Buddy system.

21

A.3. SOFTWARE MODULE

m

id

A

r

Note
Extractor

A

r

LED Array

Fra

Builder

Y

.CSV

¥

.bin

Figure A.3: Diagram illustrating the main mechanism of the software module.

A.4. GUITAR FRET NOTES MAP

Strings

E2 A2 D3 G3 B3 E4

1 F2 B°2 E°3 AP3 ca Fa
2
3
4
Frets 5
6

7 B2 E3 A3 D4 G°4 B4

8 C3 F3 B"3 EP4 G4 c5

9 D3 G°3 B3 E4 AP4 D5

10 D3 G3 ca F4 A4 DS

Figure A.4: Map of notes on the fret board PCBs.

22

A.5. ESP32 FIRMWARE FLOWCHART

loop() timerinterrupt()

frameData = frameBuffer[frame_count]
frame_count++
fret=0

Device
management

False Populate buffer
?
frameBufier ull? >————» "t

True

fret++; 1—‘

fret = fret_count? sendByte{frameData[fret])

True Record string
press (flash)

¥

Reset string flag

Write to bluetcoth
serial

Figure A.5: High-level flowchart for firmware running on the control module (some features
excluded).

A.6. CONTROL BOARD

:sgarkfun . TEIC

SP32 Thing “v

Figure A.6: Picture of the control board used on the guitar.

23

A.7. THERMAL VERIFICATION

; R!}wr'n!m =10512 Q)
Reutorr = 8850 Q2
/ Rp[u'.t'up =9754 Q)

Rt'm‘r;_)‘ f
Vewtof f = —rttll__ 1,58V

R;:UHH]J"‘ Rrumjj

Figure A.7: Diagram of the verification of voltage ranges for the thermistor.

24

B. REQUIREMENTS AND VERIFICATION TABLE

Microcontroller Requirements and Verification

Requirement

Verification

1. Powered by input voltage 1. a)
of3.3V+0.1V.
b)

c)

d)

e)

Power controller with variable voltage source,
starting at Vi, =3.2 V.

Upload code setting all output pins to high
output.

Probe each output voltage, ensuring Vo, = 3.3
V+0.1V.

Upload song data through Bluetooth connec-
tion and ensure the microcontroller doesn’t
crash.

Set input voltage to 3.4 V and repeat b)
through d).

2. Operating current Iy < 2. a)
500 mA at 3.3 V = 0.1
V during radio transmis- b)
sion.

c)

d)

e)

Power controller with 3.3V + 0.1V, attaching
an ammeter in series with supply.

Connect variable voltage source to input pin
1 on controller at 0 V and ground to the GND
pin.

Execute program with constant wireless trans-
mission outputting pin 1 to terminal.

Alternate variable voltage source between dig-
ital low and digital high, and confirm that con-
troller is sending wireless signal.

Ensure I;ax < 500 mA.

Continued on next page

25

Microcontroller Requirements and Verification (Continued)

Requirement

Verification

3. Operating current liypical
< 200 mA at 3.3V + 0.1
V during non-radio oper-
ation.

a)

b)

c)

Power controller with 3.3V £ 0.1V, attaching
an ammeter in series with supply.

Execute regular, non-communication pro-
gram.

Ensure I;ax < 200 mA.

4. R/W compatibility with
external SD storage.

a)
b)

c)

d)

Power controller with 3.3V + 0.1 V.
Insert SD card into the SD card reader.

Execute SD card test program to write to and
read from SD card.

Output data from SD card to terminal to verify
that data is stored on SD card.

5. At least 10 GPIO pins
for communication with
other modules.

a)
b)

c)

d)

e)

f)

g)

Power controller with 3.3V £ 0.1 V.

Connect variable voltage source to first GPIO
pin on controller at 0 V and ground to the GND
pin.

Alternate variable voltage source between 0 V
and 3V, and confirm that controller is receiv-
ing signal from pin.

Repeat previous step for at least 9 other GPIO
pins on the controller.

Disconnect variable voltage source from pins
and connect a voltmeter to pin 1 and the
ground to GND pin.

Run pin output program to verify that the pin
outputs 0 V when low and 3.3 + 0.1 Vwhen
high.

Repeat previous step for the other 9(+) GPIO
pins.

Continued on next page

26

Microcontroller Requirements and Verification (Continued)

Requirement

Verification

6. At least 1125 kB of
SDRAM.

6.

a)
b)

c)

Power controller with3.3V £ 0.1 V.
Write data to at least 112.5 kB of on chip RAM

Verify that all data was written and is accessi-
ble.

Flash Storage Requirements and Verification

Requirement

Verification

1. 3 MB or larger storage ca-
pacity.

a)

b)

c)

Connect the flash storage to the microcon-
troller and power the system with 3.3V £ 0.1
V.

Write data to atleast a 3MB portion of the flash
storage.

Read the written data to ensure that all data is
still accessible.

2. R/Wspeeds of atleast 512
kB/s.

a)

b)

c)

Connect the flash storage to the microcon-
troller and power the system with 3.3V £ 0.1
V.

Write data to at least a 1MB portion of the
flash storage. Record the transfer time and
ensure that the average write speed is at least
512 kB/s.

Read the written data. Record the transfer
time and ensure that the average read speed
is at least 512 kB/s.

27

Push Button Requirements and Verification

Requirement

Verification

1. Durable and reliable op-
eration; >1000 click life
span.

a)

b)

c)

d)

e)

f)

Mount the switch to a convenient platform
(such as a breadboard).

Time the duration it takes to press the button
100 times.

Continually press the button for 15 times as
long as it took to depress it 100 times.

Repeat for two other switches.

Connect all three switches to 5V on one in-
put, and a pulldown resistor to ground on the
other.

Press each switch and measure the voltage of
the output of the switch to ensure it is con-
necting to 5V.

LED Driver Requirements and Verification

Requirement

Verification

1. Atleast 60 bits of storage

a)

c)

Connect the LED driver sub module to the
microcontroller submodule. Power the system
with3.3V+0.1V.

b) Shift in 60 bits of digital low through the shift

registers. Verify that all outputs are digital low.

Shift in 60 bits of digital high through the shift
registers. Verify that all outputs are digital
high.

Continued on next page

28

LED Driver Requirements and Verification (Continued)

Requirement Verification
2. Minimum fgoci,, 0f 3.2 2. a) Connect the LED driver sub module to the
kHz microcontroller submodule. Power the system
with3.3V+0.1V.
b) Shift in 60 bits of alternating digital high and
low signals at a frequency of at least 3.2 kHz.
c) Verify that all outputs match the expected
value.
3. Supply a minimum Ipax 3. a) Connect the LED driver sub module to the

of 50 mA + 1 mA per chan-
nel while maintaining a
temperature below 50°C

b)

c)

d)
e)

f)

microcontroller submodule. Connect a LED
of the LED array to the first output of the LED
driver. Power the system with 3.3V + 0.1 V.

Set the current output of the chip to 50 mA +
1 mA by using the current trim input on the
constant current shift register (specific to IC)

Verify with ammeter that output current is 50
mA + 1 mA.

Allow to run for at 5 minutes.
Verify the output current is still 50 mA + 1 mA.
Verify the temperature of the IC is below 50°C.

Continued on next page

29

LED Driver Requirements and Verification (Continued)

Requirement

Verification

4. Minimum I,,x of 400 mA
+ 8 mA per chip

a)

b)

c)

d)

e)

f)

Connect the LED driver sub module to the mi-
crocontroller submodule. Connect one LED
of the LED array to each output of the LED
driver (for 8 total). Power the system with 3.3
V0.1V

Set the current output of the chip to 50 mA per
channel by using the current trim input on the
constant current shift register (specific to IC).

Verify the total output current is at least 400
mA + 4 mA.

Allow to run for at 5 minutes.

Verify the total output current is still 400 mA
+ 4 mA.

Verify the temperature of the IC is below 50°C.

LED Array Requirements and Verification

Requirement

Verification

1. LEDs are easily visible
from at least 1 m away
without being uncomfort-
ablely bright

a)

b)

c)

Connect a LED to an output of the LED driver
module. Power the system with 3.3V + 0.1V.

Power the LED with no more than 50 mA.
Check the LED is visible from 1 m + 10 cm.

2. LEDs are less than 2 mm
tall (surface mount)

a)

Measure the height of the LED with a caliper.
Ensure that it is less than 2mm.

30

Lithium-Ion Battery Requirements and Verification

Requirement

Verification

1. Peak I, must be at least
1.5 A continuously for 1
minute while maintain-
ing a temperature under
60°C

a)

b)
c)

d)

Connect the battery submodule to a load that
draws at least 1.5 A.

Verify that output current is at least 1.5 A.
Allow to run for 1 minute.

Verify that the output current is still at least 1.5
A, and that the battery temperature is under
60°C.

2. Minimum 1500 mAh ca-
pacity

a)

b)

c)

Connect the module to a 25 €2 load and an
ammeter

Allow the battery to drain until battery module
cuts power (due to low voltage).

Calculate the capacity of the battery and verify
that it is at least 1500 mAh

3. Weight must be under 250
g

a)

Weigh the battery; confirm the battery weights
under 250 g

4. Battery must be under 10
cm along its largest axis,
and less than 2 cm thick.

a)

b)

Use a mechanical caliper to measure the
longest axis. Ensure that it is less than 10 cm

Use a mechanical caliper to measure the diam-
eter of the battery. Ensure that it is less than 2
cm.

31

Lithium-Ion Management Requirements and Verification

Requirement

Verification

1. Protect the battery from

over discharging by dis-
connecting the battery
when the battery voltage
dips under 3.0 V + 0.05V.

a)

b)
c)

d)

Fully charge the battery, and then connect it
to the battery management system.

Connect the battery to a voltmeter.
Connect the module toa 10 €2 + 1 () load.

Allow to discharge until the battery manage-
ment system disconnects the battery and
stops outputting power. Ensure the battery
voltage does not drop below 2.95 V for any pe-
riod of time.

. Battery management
must not exceed 80 °C
under maximum load
(note: this temperature
applies to the battery
management IC and any
components for the man-
agement submodule. The
battery itself has a lower
maximum temperature,
specified in the battery
submodule.)

a)

b)

c)

d)

e)

f)
g)

Fully charge the battery, and connect it to the
battery management submodule.

Apply aload to the system that resultsina 1.5
A £ 0.1 A current draw.

Allow to run for 1 minute.

Measure the temperature of the battery man-
agement system and ensure that it is under
80°C.

Apply a new load to the system that results in
a0.5A £ 0.05 A current draw.

Allow to run for 30 minutes.

Measure the temperature of the battery man-
agement system and ensure that it is under
80°C.

Continued on next page

32

Lithium-Ion Management Requirements and Verification (Continued)

Requirement

Verification

3. Battery management sys-
tem must cut power if
temperature of battery ex-
ceeds 60°C.

a)

b)

c)

d)

e)

f)

Remove the thermistor from the battery hous-
ing.

Connect a charged battery to the battery man-
agement system.

Apply a 100 2+ 10 Qload across the output of
the battery management system.

Use an ammeter to confirm that there is cur-
rent flowing through the load.

Using a heat gun and a thermometer, heat the
thermistor to 60°C to simulate a warming bat-
tery. Do not do this while the thermistor is still
attached/next to the battery to avoid unneces-
sarily putting the battery at risk.

When the thermistor reaches 60°C + 1°C, use
the ammeter to confirm that the battery man-
agement system cut power from the battery.

4. Battery management sys-
tem must cut power if cur-
rent draw exceeds 2.5 A +
0.1Afor0.5s+0.5s.

a)

b)

c)

d)

Connect a charged battery to the battery man-
agement system.

Probe the output of the battery management
system with a voltmeter.

Connect with outputs of the battery manage-
ment system with a high power 1 Q+ 0.1 €2
load. Start a timer.

Verify the battery management system cuts
power to the output within 0.5s + 0.5 s.

33

Music Conversion Program Requirements and Verification

Requirement

Verification

1. Generate the proper byte-
code and parity bits

a)

b)

c)

d)

Using the conversion program, generate the
bytecode for a sample song.

Using a USB connection (or Bluetooth connec-
tion if it has been independently confirmed to
work) transfer the bytecode the guitar.

Visual compare the LED indicated chord pat-
tern against tabs for the same sample song.

Confirm that the displayed chords match.

2. Capable of converting 5
minutes worth of song
notes within 30 seconds

a)

b)

c)

Pick any 5 minute + 15 s music video for
YouTube.

Use the conversion program to generate the
bytecode. Time how long the software takes
to run.

Repeat steps a) and b) for 4 other songs.

Bluetooth Transmission Program Requirements and Verification

Requirement

Verification

1. Verify and transmit byte-
code song data to ESP32
with 95% accuracy, and
that any failed transmis-
sions are resent.

a)

b)

c)
d)

e)

f)

Use the conversion software to generate the
bytecode for 30 five minute songs.

Turn on the guitar and place it 2 m + 20cm
away.

Transmit the bytecode data to the ESP32.
Log any failed transmissions.

Clear the flash storage on the ESP32, and re-
peat step a)-d) four more times.

The total number of failed transmissions can
not exceed 95%. Any failed transmissions
must also be reattempted automatically.

Continued on next page

34

Bluetooth Transmission Program Requirements and Verification (Continued)

Requirement

Verification

2. Transmission rate of at
least 500 kbps at 2 m dis-
tance

a)

b)

c)

Turn on the guitar and place it 2 m + 20 cm
away.

Transmit 2 MB worth of song data. Record the
time it takes.

Ensure the average data transmission rate is
at least 500 kbps.

3. Adjust settings on the gui-
tar with < 1.5 s latency
while laptop is 5 m away.

a)

b)

c)

d)

e)

Turn on the guitar and place it 2 m + 20 cm
away.

Connect the guitar via Bluetooth to the trans-
mission program.

Change a setting by using the transmission
program.

Use a software timer to measure the time be-
tween input the setting and receiving the con-
firmation packet from the guitar.

Verify the latencyis < 1.5s.

Copper Contacts Requirements and Verification

Requirement

Verification

Continued on next page

35

Copper Contacts Requirements and Verification (Continued)

Requirement

Verification

1. The copper contacts must
endure the equivalent of
atleast 1,000 hours of play
time (without more than
20% increase in the resis-
tance.

a)

b)

c)

d)

e)

f)

Connect one of the 6 guitar strings of different
gauges and a copper contact to the input and
output respectively of an ammeter.

Sample and record the resistance of the string-
contact circuit with at least 10 different loca-
tions of contact between string and copper
contact.

Simulate 1,000 hours of play time by rubbing
the string against the contact rigorously for at
least 15 minutes.

Once again, sample and record the resistance
of the string-contact circuit with at least 10
different locations of contact between string
and copper contact.

Confirm that the maximum resistance after
the rubbing procedure is no more than 20%
greater than the maximum resistance before-
hand.

Repeat this full procedure for each of the other
5 different gauges of guitar string.

2. Closed circuit current
must be below 1 mA.

a)

b)

c)

d)

e)

Connect a battery to the system and turn it on.

Temporary insert an ammeter between the
pull down/current limiting resistor between
the guitar strings and ground.

Close the circuit by depressing the guitar
string onto any copper contact pad.

Ensure that the current is less than 1 mA.

Repeat for each of the 6 different guitar string
gauges.

Continued on next page

36

Copper Contacts Requirements and Verification (Continued)

Requirement

Verification

3. Voltage of the copper con-
tact must equalize to <0.2
V within 1 ms of firm con-
tact with the guitar string.

a)

b)

c)

d)

e)

Connect a battery to the system and turn it on.

Attach on probe of an oscilloscope to the
ground and another to the first bit data bus.

Shift in a high bit to the shift register on the
top fret’s top E string. This will connect the
top fret’s left most copper contact to the data
bus.

Depress the string and measure the time it
takes for the data bus voltage to drop to < 0.2
V. Ensure that it is less than 1 ms.

Repeat for each of the 6 different guitar string
gauges.

4. Contact must be discon-
nected from string data
bus through the tristate
buffer when the corre-
sponding LED is turned
off.

a)

b)

c)

d)

e)

f)

Connect a battery to the system and turn it on.

Turn on an LED on the top fret by shifting in a
single high bit.

Verify that the corresponding string bus’s volt-
age is digital high.

Depress the string corresponding with turned
on LED.

Verify that the corresponding string bus volt-
age is digital low.

Repeat for each of the 6 different guitar string
gauges.

Continued on next page

37

Copper Contacts Requirements and Verification (Continued)

Requirement

Verification

5. Resistance between cop-
per contact and guitar
strings contact point
must contribute less than
10 €2 to resistance.

a)

b)

c)

d)

Connect a string and copper contact in series
to an ammeter.

Firmly depress the string against the contact.

Ensure that the net resistance between 1 cm
away from the contact point on the string and
the opposite end of the copper contact is less
than 10 €.

Repeat for each of the 6 different guitar string
gauges.

Analog-to-Digital Converter Requirements and Verification

Requirement

Verification

1. Poweredby3.3V+0.1V

a)

b)

c)

d)

e)
)

g)

Connect the V.. of the ADC submodule to a
variable voltage source.

Set the V. t0 3.2 V.

Connect an input on the ADC to ground, and
verify the binary output from the ADCis0V +
0.1V.

Connect an input on the ADC to 3.2V, and
verify the binary output from the ADCis 3.2V
+0.1V.

Set the V¢ t0 3.4 V.

Connect an input on the ADC to ground, and
verify the binary output from the ADCis0V +
0.1V.

Connect an input on the ADC to 3.4V, and
verify the binary output from the ADCis 3.4 V
+0.1V.

Continued on next page

38

Analog-to-Digital Converter Requirements and Verification (Continued)

Requirement

Verification

2. ADC obtains precision of
0.1 V of the Vj, within 1
ms.

a)

b)

c)

d)

e)

f)

Power ADC with a variable voltage source at
Vin=3.3V.

Connect ADC input to function generator with
a square-wave function set to 250 Hz fre-
quency with Vig, = 0 V and Vpigh = 3V, and
PWM set to 50%.

Determine the ADC binary output for 0.03 V
and 3 V from the ADC.

If the binary output for 0.03 V is n bits long,
find the most significant bit less than the nth-
least significant bit of the 3 V binary output
which is 1. Determine the ADC pin that corre-
sponds to this bit.

Connect the function generator and the deter-
mined ADC pin to an oscilloscope.

Confirm that the pin output switches high
within 1 ms of the rising edge of the square
wave.

3. Minimum 8 GPIO pins
(including 6 allocated to
ADC)

a)

b)

c)

d)

Power ADC with a variable voltage source at
Vip =3.3V.

Connect ADC input to function generator with
a saw-tooth function set to 0.5 Hz frequency
with Vi, =0V and Vhigh =3V

Connect the function generator to an oscillo-
scope.

For each of at least 8 GPIO pins, connect the
pin to the oscilloscope and confirm that the
pin switches between low and high at a reg-
ular interval. If the pin appears to remain
high, steadily increase the function frequency
and observe if the pin simply switches too fre-
quently to be seen at 0.5 Hz.

39

Requirements and Verification Point Assignments

Module High-Level Requirement Points
Microcontroller must manage wireless com-
Control Module munication, read song data from flash stor- 15
age, and generate control signals.
The microcontroller must be able to play 5-
minute songs over the course of at least 2
hours of play time.
Must provide reliable interface buttons for
User Interface the user to maneuver the device’s settings. 5
Module
LED array must be able to hold 60 bits of light-
LED Output ing information and refresh within 25 ms. 10
Module
Power supply must be powerful enough to
Power Supply keep the device running continuously for at 5
Module least 2 hours.
Battery management system must keep bat-
tery within safe operating range.
Music conversion program must take online
Software Module input (for example as MIDI files) and convert 5

it to a format to be transmitted to the device.

Transmission program must send packets of
data to device while ensuring data is not lost
in transmission.

Continued on next page

40

Requirements and Verification Point Assignments (Continued)

Module High-Level Requirement Points
* Copper contacts should provide robust sens-
Sensing Module ing points throughout the duration of the de- 10

vice’s lifespan, without significant degrada-
tion.

* Analog-to-Digital Converter should be pre-
cise enough to read the proper voltage
changes.

41

w
=

*

*/

C. CORE PROGRAMS
C.1. MIDIToBYTES.CPP FOR MIDI CONVERSION

MIDI to CSV and Streamable Binary format
By Austin Born, Fall 2018

C++ program to convert notes in MIDI files to a readable CSV and a
compressed byte map format to send to the ESP32.

The byte map will contain basic header information on song name,
tempo, and then a sequence of frames for the entire LED array.
Each byte in a frame represents one fret of the guitar, so a

single frame will have n bytes of data where n is the number of frets.

If there are roughly 32 frames per second, then the byte map for a
5-minute song will be ~100 kB.

About the MIDI Format:

Format:

<Header Chunk> = <MThd><length><format><ntrks><division >
<Track Chunk> = <MTrl><length><MTrk event>+...

<MTrk event> = <delta—-time><event>

<event> = <MIDI event> | <sysex event> | <meta—event>

//Include external libraries
#include <unistd.h>
#include <Windows.h>
#include <fstream>
#include <iostream>
#include <queue>
#include <string>
#include <ctime>
#include <cmath>
#include <sstream>
#include <map>

#include <iomanip>
#include "MIDIToBytes.h"

using namespace std;

//Initialize note and octave lists

string notes [12] = {"C", "C#", "D", "D#", "E", "E", "F#", "G", "G#", "A", "A#", "B"};

string octaves [L11] = {"0", "1", "2", "3", "4", "5", "g", "7", "8", "9",

//Initialize note map for binary format
map<string, int> note_map = {//Notes below lowest fret remapped

{"cz2", 25}, {"C3", 25},
{"Cc#2", 33}, {"C#3", 33},
{"D2", 41}, {"D3", 41},
{"D#2", 49}, {"D#3", 49},
{"E2", 18}, {"E3", 18},

"10"}:

42

60

61

62

80
81
82
83
84
85

86

88
89
90
91
92
93
94
95
96

97

{"F2", 8}, {"F3", 26},

{"F#2", 16},

{"G2", 24},

{"G#2", 32},

{"A2", 403,

{"A#2", 48},

{"B2", 17},

|/ Frets 2-7

{"F#3", 16}, {"B3", 17}, {"E4", 18}, {"A4", 19}, {"C#5",
20}, {"F#5", 21},

{"G3", 24}, {"C4", 25}, {"F4", 26}, {"A#4", 27}, {"D5", 28},
{"G5", 29},

{"G#3", 32}, {"C#4", 33}, {"F#4", 34}, {"B4", 35}, {"D#5",
36}, {"G#5", 37},

{"A3", 40}, {"D4", 41}, {"G4", 42}, {"C5", 43}, {"E5", 44},
{"A5", 45},

{"A#3", 48}, {"D#4", 49}, {"G#4", 50},/=C#5 abovex/{"F5",
52}, {"A#5", 53},

// Notes abo
{"B5", 35},
{"CG", 43}’
("C#6"

//Other constants
const int BUFFER_SIZE = 4;
const int byte_frame_freq = 32;

int main(int argc, chars+ argv) {

//Input checking
if (arge != 3){

ve highest fret remapped

201}

cout << "Incorrect number of arguments. Requires 2 arguments: <Song name> <note

channel>" << endl;
return O0;

int channel_num

if (channel num < 0 || channel num >
cout << "Given note channel is
return O0;

//Initializations
char buf [BUFFER_SIZE];
int i 0;

//Start clock
clock_t begin

clock () ;

//Open MIDI file
fstream infile;
string infile_name

"MIDI_Files/"

strtol (argv([2], NULL, 10);

16) {
outside total number of channels."

<< endl;

+ string(argv[1]) + ".mid";

43

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150

151

if (FILE =file = fopen(infile_name.c_str(), "r")) {
fclose (file);

} else {
cout << "File does not exist" << endl;
return false;

}

infile .open(infile_name, fstream::in ios::binary);

//Create output file

fstream outfile;

string outfile_name = "CSV_Files/" + string(argv([1]) +
remove (outfile_name.c_str());

.csv'";

outfile .open(outfile_name, fstream::in | fstream::out | fstream::trunc);

//Get MIDI file length

infile .seekg (0, infile.end);

long file_length = infile. tellg();
long bytes_left = file_length;
infile .seekg (0, infile.beg);

//Get "MIhd", but do nothing with it
readFromFile (infile , buf, 4, bytes_left);

/1Get length of Header file
readFromFile (infile , buf, 4, bytes_left);
long length = buf[0];
for (i = 0; 1 < 4; i++4)
length = (length << 8) + (unsigned char)buf[il];

/1 Get format of Header file
readFromFile (infile , buf, 2, bytes_left);
short format;
for (i = 0; i < 2; i++)
format = (format << 8) + (unsigned char)buf[i];
outfile << "File format — " << (unsigned int)format << endl;

// Get number of tracks
readFromFile (infile , buf, 2, bytes_left);
short ntrks;
for (i = 0; i < 2; i++)
ntrks = (ntrks << 8) + (unsigned char)buf[i];
outfile << "# of Tracks — " << ntrks << endl;

//Initialize Time Variables
bool tpq_timing = false;
long fps, tpf, tpq, tempo;
double time_multiplier = 0;
short division;

//Get time division
readFromFile (infile , buf, 2, bytes_left);
for (i = 0; 1 < 2; i++4)
division = (division << 8) + (unsigned char)buf[il];

44

178

179

180

181

182

183

184

185

186

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

//'1f division bit 15 = 1, division[14:8] is negative fps, division[7:0] is ticks per

frame

if (division & 0x8000) {
fps = —(int) (division & 0x7F00) ;
tpf = division & 0x00FF;
outfile << "Frames/second —
outfile << "Ticks/frame — "

<< fps << endl;
<< tpf << endl;

}
/1 Else, division[14:0] is ticks/quarter note
else{
tpq_timing = true;
tpq = division & 0x7FFF;
outfile << "Ticks/quarter note — " << tpq << endl;
}

//Initialize track variables
long trk_length;

long trk_bytes_left;

float total_time;

int round_time;

int track_num = 0;

unsigned char prev_status;

//Loop through each track
while (bytes_left > 0){

//Increment track number

track_num += 1;

outfile << endl << "Start of track " <<track_num <<
bytes_left << endl;

at Byte

//Get "MTrk" but do nothing with it
readFromFile (infile , buf, 4, bytes_left);

//Get length of track
trk_length = 0;
readFromFile (infile , buf, 4, bytes_left);
for (int i = 0; i < 4; i++)
trk_length = (trk_length << 8) + (buf[i] & 0x00FF);
outfile << "Track length: " << trk_length << endl;

//Initialize MIDI Event variables
std :: queue<long> delta_time_q;
bool vlq_left;

long long delta_time = 0;

long vlq_byte;

//Loop through each MIDI Event
trk_bytes_left = trk_length;
total_time = 0;

round_time = 0;

unsigned char status;

bool using_previous;

<< file_length -

45

204

205 while (trk_bytes_left > 0){

206

207 /1Get delta time of MIDI event

208 vlg_left = true;

209

210 //Push variable length quantity to queue

211 while (vlq_left) {

212 readFromFile (infile , buf, 1, bytes_left);

213 trk_bytes_left —= 1;

214 delta_time_q.push(buf[0]) ;

215 if (!(buf[0] & 0x80))

216 vlq_left = false;

217 }

218

219 //Initialize delta_time to 0

220 delta_time = 0;

221

222 //For byte in variable length quantity, add to total delta_time value

223 while (! delta_time_q.empty()) {

224 vlg_byte = delta_time_q.front();

225 delta_time_q.pop() ;

226 delta_time = (delta_time << 7) | (vlq_byte & O0x7F);

227 }

228 double delta_float = (double)delta_time;

229 delta_float *= time_multiplier;

230

231 total_time += delta_float;

232 round_time = round(total_time);

233

234 //Peek status bytes for MIDI event

235 status = peekFromFile(infile);

236

237 /I Prepare status loop boolean

238 using_previous = false;

239

240 do{

241 //Parse Status

242 if ((status >> 4) == 0x8) { //Note off event

243 if (!using_previous) {

244 readFromFile (infile , buf, 1, bytes_left);

245 trk_bytes_left —= 1;

246 }

247

248 //Get Note number (and skip velocity)

249 readFromFile (infile , buf, 2, bytes_left);

250 trk_bytes_left —= 2;

251 unsigned char note_num = buf[0];

252

253 //Record in CSV

254 outfile << round_time << ",Off," << noteFinder(note_num) << "," << (
status & 0xF) + 1 << endl;

255 break;

256 }

46

257 else if ((status >> 4) == 0x9) { //Note on event
258 if (using_previous) {

259 readFromFile (infile , buf, 1, bytes_left);
260 trk_bytes_left —= 1;

261 }

262

263 //Get Note number, use velocity to tell if on or off
264 readFromFile (infile , buf, 2, bytes_left);

265 trk_bytes_left —= 2;

266 unsigned char note_num = buf[0];

267

268 //Record in CSV

269 if (buf[l] != 0x00)

270 outfile << round_time << ",0On," << noteFinder (note_num) << ",
<< (status & 0xF) + 1 << endl;

271 else

72 outfile << round_time << ",Off," << noteFinder (note num) << ","
<< (status & 0xF) + 1 << endl;

273 break;

274 }

275

276 //Other unimportant MIDI events

277 else if ((status >> 4) == 0xA){ //Polyphonic key pressure

278 if (!using_previous) {

279 readFromFile (infile , buf, 1, bytes_left);

280 trk_bytes_left —= 1;

281 }

282 readFromFile (infile , buf, 2, bytes_left);

283 trk_bytes_left —= 2;

284 outfile << round_time << ", Polyphonic key pressure event" << ",
Channel: " << (status & OxF) + 1 << endl;

285 break;

286 }

287 else if ((status >> 4) == 0xB){ //Control Change

288 if (!using_previous) {

289 readFromFile (infile , buf, 1, bytes_left);

290 trk_bytes_left —= 1;

291 }

292 readFromFile (infile , buf, 2, bytes_left);

293 trk_bytes_left —= 2;

294 outfile << round_time << ", Control change event" << ", Channel: "
<< (status & O0xF) + 1 << endl;

295 break;

296 }

297 else if ((status >> 4) == 0xC){ //Program Change

298 if (!using_previous) {

299 readFromFile (infile , buf, 1, bytes_left);

300 trk_bytes_left —= 1;

301 }

302 readFromFile (infile , buf, 1, bytes_left);

303 trk_bytes_left —= 1;

304 outfile << round_time << ", Program change event" << ", Channel: "
<< (status & O0xF) + 1 << endl;

305 break;

47

306
307
308
309
310
311
312
313

314

315
316
317
318
319
320
321
322
323

324

325
326
327
328

329

354
355
356

357

}
else if ((status >> 4) == 0xD){ //Channel Pressure
if (!using_previous) {
readFromFile (infile , buf, 1, bytes_left);
trk_bytes_left —= 1;
}
readFromFile (infile , buf, 1, bytes_left);
trk_bytes_left —= 1;

outfile << round_time << ", Channel Pressure event" << ", Channel:
<< (status & O0xF) + 1 << endl;

break;
}
else if ((status >> 4) == 0xE){ //Pitch Wheel Change
if (using_previous) {
readFromFile (infile , buf, 1, bytes_left);
trk_bytes_left —= 1;
}
readFromFile (infile , buf, 2, bytes_left);
trk_bytes_left —= 2;

outfile << round_time << ", Pitch wheel event" << ", Channel:
status & OxF) + 1 << endl;

"

// outfile << "status:" << (status & OxFF) << endl;

break;
}
else if (status == 0xF0){ //System Exclusive
if (!using_previous) {
readFromFile (infile , buf, 1, bytes_left);
trk_bytes_left —= 1;
}
readFromFile (infile , buf, 1, bytes_left);
trk_bytes_left —= 1;
outfile << round_time << ", System Exclusive event" << endl;
break;
}
else if (status == 0xF2){ //Song Position Pointer
if (!using_previous) {
readFromFile (infile , buf, 1, bytes_left);
trk_bytes_left —= 1;
}
readFromFile (infile , buf, 2, bytes_left);
trk_bytes_left —= 2;
outfile << round_time << ", Song position pointer" << endl;
break;
}

else if (status == 0xF3){ //Song Select
if (!using_previous) {
readFromFile (infile , buf, 1, bytes_left);
trk_bytes_left —= 1;
}
readFromFile (infile , buf, 1, bytes_left);
trk_bytes_left —= 1;
outfile << round_time <<
break;

"

, Song select event" << endl;

"

<< (

48

358 else if (status == 0xF6){ //Tune Request

359 if (using_previous) {

360 readFromFile (infile , buf, 1, bytes_left);
361 trk_bytes_left —= 1;

362 }

363 outfile << round_time << ", Tune request" << endl;
364 break;

365 }

366 else if (status == O0xF7){ //End of Exclusive

367 if (using_previous) {

368 readFromFile (infile , buf, 1, bytes_left);
369 trk_bytes_left —= 1;

370 }

371 outfile << round_time << ", End of exclusive" << endl;
372 break;

373 }

374 else if (status == 0xF8){ //Timing Clock

375 if (!using_previous) {

376 readFromFile (infile , buf, 1, bytes_left);
377 trk_bytes_left —= 1;

378 }

379 outfile << round_time << ", Timing clock" << endl;
380 break;

381 }

382 else if (status == OxFA){ //Start

383 if (!using_previous) {

384 readFromFile (infile , buf, 1, bytes_left);
385 trk_bytes_left —= 1;

386 }

387 outfile << round_time << ", Start" << endl;
388 break;

389 }

390 else if (status == OxFB){ //Continue

391 if (!using_previous) {

392 readFromFile (infile , buf, 1, bytes_left);
393 trk_bytes_left —= 1;

394 }

395 outfile << round_time << ", Continue" << endl;
396 break;

397 }

398 else if (status == OxFC){ //Stop

399 if (!using_previous) {

400 readFromFile (infile , buf, 1, bytes_left);
101 trk_bytes_left —= 1;

402 }

403 outfile << round_time << ", Stop" << endl;

404 break;

405 }

406 else if (status == OxFE){ //Active sensing

407 if (!using_previous) {

408 readFromFile (infile , buf, 1, bytes_left);
409 trk_bytes_left —= 1;

410 }

411 outfile << round_time << ", Active sensing" << endl;

412

413

414

415

416

417

418

419

420

421

422

424

425

426

427

428

429

430

431

432

433

134

435

436

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

465

}

break;

else if (status == OxFF){ //Reset (escape for meta events)

if (!using_previous) {
readFromFile (infile , buf, 1, bytes_left);
trk_bytes_left —= 1;

}

//Get meta event type

readFromFile (infile , buf, 1, bytes_left);
trk_bytes_left —= 1;

char meta_event_type = buf[0];

//Get meta event length

readFromFile (infile , buf, 1, bytes_left);
trk_bytes_left —= 1;

char length = buf[0];

if (meta_event type == 0x00){ //Sequence Number
readFromFile (infile , buf, length, bytes_left);
trk_bytes_left —= length;
outfile << round_time << "

}

else if (meta_event_type == 0x01){ //Text Event
readFromFile (infile , buf, length, bytes_left);
trk_bytes_left —= length;
outfile << round_time <<
outfile << "Length of text:

n

, Text event" << endl;

}

else if (meta_event_type == 0x02){ //Copyright Notice
readFromFile (infile , buf, length, bytes_left);
trk_bytes_left —= length;
outfile << round_time <<

, Sequence number event" << endl;

<< (int)length << endl;

, Copyright event" << endl;

}
else if (meta_event_type == 0x03){ //Sequence/Track Name
readFromFile (infile , buf, length, bytes_left);
trk_bytes_left —= length;
outfile << round_time << ", Sequence/Track Name event" << endl;
}
else if (meta_event_type == 0x04){ //Instrument Name
readFromFile (infile , buf, length, bytes_left);
trk_bytes_left —= length;
outfile << round_time << ", Instrument name event" << endl;
}

else if (meta_event_type == 0x05){ //Lyric
readFromFile (infile , buf, length, bytes_left);
trk_bytes_left —= length;
outfile << round_time << ", Lyrics event" << endl;

}

else if (meta_event_type == 0x06){ //Text Marker
readFromFile (infile , buf, length, bytes_left);
trk_bytes_left —= length;
outfile << round_time <<

"

, Text Marker" << endl;

50

466
467
168
469
470
471
472
473
474
475
476
477
478
479
480
481

482

484

485

486

487

188

489

490

491

492

493

494

495

496

497

498

199

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

else if (meta_event_type == 0x07){ //Cue Point
readFromFile (infile , buf, length, bytes_left);
trk_bytes_left —= length;
outfile << round_time << ", Cue point" << endl;

}

else if (meta_event_type == 0x20){ //MIDI Channel Prefix
readFromFile (infile , buf, length, bytes_left);
trk_bytes_left —= length;
outfile << round_time << ", MIDI Channel Prefix" << endl;

}

else if (meta_event_type == 0x21){ //MIDI Channel Prefix
readFromFile (infile , buf, length, bytes_left);
trk_bytes_left —= length;
outfile << round_time << ", MIDI Port" << endl;

}

else if (meta_event_type == 0x2F){ //End of Track
readFromFile (infile , buf, length, bytes_left);
trk_bytes_left —= length;
outfile << round_time << " ,End of track" << endl;

}

else if (meta_event_type == 0x51){ //Set Tempo
readFromFile (infile , buf, length, bytes_left);
trk_bytes_left —= length;
tempo = 0;
for (i = 0; i < length; i++){

tempo = (tempo << 8) | (0x00FF & buf[i]);

}
time_multiplier = tempo*byte_frame_freq+0.000001/tpq;

outfile << round_time << ", Tempo to " << (long)tempo << " usec/
quarter note" << endl;
}
else if (meta_event_type == 0x54){ //SMPTE Offset
readFromFile (infile , buf, length, bytes_left);
trk_bytes_left —= length;
outfile << round_time << ", SMPIE event" << endl;
}
else if (meta_event_type == 0x58){ //Time Signature
readFromFile (infile , buf, length, bytes_left);
trk_bytes_left —= length;
outfile << round_time << ", Time Signature event" << endl;
}
else if (meta_event_type == 0x59){ //Key Signature
readFromFile (infile , buf, length, bytes_left);
trk_bytes_left —= length;
outfile << round_time << ", Key signature event" << endl;
}
else if (meta_event_type == 0x7F){ //Sequencer Specific Meta—Event
readFromFile (infile , buf, length, bytes_left);
trk_bytes_left —= length;
outfile << round_time << ", Sequencer—specific event" << endl;
}
break;
}
else {

51

//Use previous status byte as status
status = prev_status;
using_previous = true;

}
}while (using_previous) ;

//Update previous status bytes
prev_status = status;

//Open new binary file

string binfile_name = "BIN_Files/" + string(argv[1]) + ".bin";
remove (binfile_name.c_str());

ofstream binfile (binfile_name, ios::binary);

/IC array frame number for Chris’ use
int final frame_num = 0;

//Prepare byte_map

int MAP_BYTES = 5;

char byte_map [MAP_BYTES];

for(int i = 0; i < MAP_BYTES; i++)
byte_map[i] = 0x00;

//Convert CSV to Binary file
string str_in;

char = pch;

int cur_frame, last_frame = 0;
bool found_channel = false;
vector<string> str_vec;

//Open CSV file and start from beginning
outfile.clear();
outfile.seekg(0, ios::beg);

//Loop through lines in CSV
while (getline (outfile , str_in)){
char cstr[str_in.size () +1];
strcpy (cstr, str_in.c_str());
pch = strtok(cstr,",");
while (pch != NULL) {
str_vec.push_back(pch);
pch = strtok (NULL, ",");

/1'1f line has 4 comma-separated values, it’s a note
if (str_vec.size() == 4){
if (str_vec[3] == argv[2]) {
found_channel = true;
stringstream frame num(str_vec[0]) ;
frame_num >> cur_frame;
if (cur_frame != last_frame) {

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

//Print byte map (cur_frame — last_frame) times
for(int a = 0; a < (cur_frame — last_frame); a++)
for(int i = 0; i < MAP_BYTES; i++)
binfile.write (byte_map + i, 1);
last_frame = cur_frame;
}
//Adjust byte_map based on str_vec|[2]
int byte_ map num = note map/[str_vec[2]];
unsigned char fret_bits = 0x80 >> (byte_map_num % 8);
int fret = (byte_map num / 8) — 2;
if (str_vec[1] == "On")
byte_map[fret] |= fret_bits;
else
byte_map|[fret] &= ~fret_bits;
}
}
/1 1f end of track, exit
else if (found_channel)

if (str_vec.size() == 2)
if (str_vec[1] == "End of track")
break;

while (!'str_vec.empty())
str_vec.pop_back() ;
}

/1 Close files

infile.close () ;
outfile.close () ;
binfile.close () ;

/IC array of file for Chris’ use

char file_bytes [(last_frame)*MAP BYTES];

fstream binfile2;

string binfile2_name = "BIN_Files/" + string(argv[1l]) + ".bin";

binfile2 .open(binfile2_name, fstream::in | ios::binary);

for(int i = 0; i < (last_frame)«MAP_BYTES; i++)
binfile2 .read (&(file_bytes[i]), 1);

unsigned char file_bytes_2d [MAP BYTES] [last_frame];

for(int i = 0; i < (last_frame)*MAP_BYTES; i++){
file_bytes_2d[i%5][i/5] = (const char)file_bytes[i];
/lcout << std::hex << (int)file_bytes_2d[i/5][i%5] << " ";

}

binfile2 .close ();

//Copy frame array to .txt for debugging
fstream songfile;
string songfile_ name = string(argv[1l]) +

n

.txt";

songfile .open(songfile_name, fstream::in | fstream::out | fstream::trunc);

songfile << "{{" << charToString(file_bytes_2d[0][0]);
for(int j = 0; j < last_frame; j++)

songfile << "," << charToString(file_bytes_2d [0][j]);
songfile << "}";
for(int i = 0; i < MAP_BYTES; i++){

53

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

songfile << " ,{" << charToString(file_bytes_2d[i][0]);
for(int j = 0; j < last_frame; j++)
songfile << "," << charToString(file_bytes_2d[il[j]);
songfile << "}";
}
songfile << "}";
songfile.close () ;

//Stop clock

clock_t end = clock();

cout << std::fixed << "Total elapsed time: " << int(end — begin) << " ms" << endl;
return 0;

}

//Helper function to read a number of bytes from MIDI file
void readFromFile (std:: fstream& infile , char = bytebuf, int length, long &bytes_left) {
for(int i = 0; i < length; i++)
infile .read (&(bytebuf[i % BUFFER _SIZE]), 1);
bytes_left —= length;
}

//Helper function to peek next 2 bytes from MIDI file (only used for peeking status
bytes)
unsigned char peekFromFile(std:: fstream& infile) {
return infile.peek();

}

//Helper function to map proper note and octave

5 std::string noteFinder(int note_num) {

string this_note = notes[note_num % 12];
this_note += octaves[(note_num / 12)];
return this_note;

}

//Used to debugging array copied to .txt
std::string charToString (unsigned char chari) {
int charint = (int)chari;
std::string hex;
int big = chari/16;
if (big < 10)
hex += "0x" + to_string(big);
else if (big == 10)
hex += "Oxa";
else if (big == 11)
hex += "0xb";
else if (big == 12)
hex += "Oxc";
else if (big == 13)
hex += "0xd";
else if (big == 14)
hex += "Oxe";
else if (big == 15)
hex += "0xf";

54

680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697 }

int little = chari%le6;

if (little < 10)

hex += to_string(little);

else if (little
hex += "a";
else if(little
hex += "b";
else if(little
hex += "c";
else if (little
hex += "d";
else if(little
hex += "e";
else if(little
hex += "f";

return hex;

- 10)
= 11)
== 12)
- 13)
== 14)

== 15)

Listing 1: MIDI to CSV, and CSV to Binary converter.

55

w

35

36

38

39

40

41

42

C.2. TRANSMIT.PY FOR BLUETOOTH TRANSMISSION

#Ilmport Modules

import sys

import serial

import os

import time

from array import array

Serial Preparations

ser = serial.Serial ()
ser.baudrate = 57600

ser.port = 'COM7’#COMI0 no work
ser.open()

Initialize song array

5 song = array(’'B’)

Open binary file

file name = 'BIN_Files/ +str(sys.argv[1])+’.bin’

file_size = os.path.getsize (file_name)

Send file size over Bluetooth
count = 0

size_1 = file_size & int(’0xff00’,16)
size_1 >>= 8

size_1 = size_1.to_bytes(1l, ’'big’)

; size_2 = file_size & int(’0x00ff’,16)
27 size_2 = size_2.to_bytes(1l, ’'big’)

print (size_1)
print(size_2)
ser.write(size_1)
ser.write (size_2)
time.sleep (0.5)

Send song bytes one at a time
with open(file_name, ’rb’) as file:
for i in range(file_size):

count += 1
byte = file.read (1)
if byte != "":

ser.write (byte)

Print bytes sent

3 print("sent "+str (count)+" bytes")

Listing 2: Bluetooth transmission of binary file to ESP32 (laptop end).

56

C.3. ESP32CONTROLLER.INO FOR ON-BOARD PROCESSING

» ESP32 Bluetooth Controller Program

+* By Austin Born, Fall 2018

+ Boilerplate code is in the Public Domain, by Evandro Copercini, 2018

» The code creates a bridge betweeon Serial and Classical Bluetooth (SPP),
+ and shows the functionality of SerialBT.

*/

//Libraries and variable definitions

3 #include "BluetoothSerial.h"
1 #include <stdio.h>

; #if !defined (CONFIG_BT ENABLED) || !defined (CONFIG_BLUEDROID_ENABLED)
7 #error Bluetooth is not enabled! Please run ‘make menuconfig‘ to and enable it
#endif

#define BOARDOOUNT 5
#define BUFFERDEPTH 15000

23 #define CLK 21
4 #define SDI 22
25 #define LE 19
s #define EN 14

//Variable initializations
int i = 0;

long frame = 0;

int board = 0;
int unavail =
; int line = 0;
+ unsigned char hex [4];

0;

5 int bytes_left = 0;

; long file_size = 0;

37 int file_size_2 = 0;

o o G

char frameBuffer [BUFFERDEPTH] [BOARDCOUNT] ;
long frame_count = 0;

bool song loaded = false;

BluetoothSerial SerialBT;

/] updateFrame () helper function to update current LED frame
void updateFrame () {
for(int fret = 0; fret < BOARDCOUNT; fret++){
sendByte (frameBuffer [frame_count] [fret]) ;
}
load () ;
frame_count++;

}

// Shift—high helper

3

void sh() {
digitalWrite (SDI, HIGH) ;
shift () ;
digitalWrite (SDI, LOW);

}

// Shift-low helper

void sl () {
digitalWrite (SDI, LOW);
shift ();

50}

/! Function to send a byte of data to frets
void sendByte(byte data) {

//mask last two bits since bits 7 and 8 are not used

70

71 char mask = O0xFC; // 0011 1111

72 data = mask & data;

73 //send data serially over SDI

74 //reverse order since first bit in is last bit
75 for (int 1 = 0; i < 8; i++) {

76 //shift 1000 0000 to right to change bit
77 mask = 0x01 << i;

78

79 //send data unmasked bit

80 if (data & mask) {

81 sh();

82 }

83 else {

84 sl();

85 }

86 }

87 }

88

8o // Shift helper

90 void shift() {

91 digitalWrite (CLK, HIGH);

92 digitalWrite (CLK, LOW) ;

93 }

94

95 // Load helper

9 void load () {

97 digitalWrite (LE, HIGH);

98

99 digitalWrite (LE, IOW);

100 }

101

102 // Testboards function for debugging
103 void testBoards(int numOfBoards) {

104 for (char i = 0x00; i != 0x40; i++) {
105 for (int j = 0; j < numOfBoards; j++) {

sendByte (i) ;

58

107 }

108 load () ;
109 delay (50) ;
110 }

111 for (int k = 0; k < 4; k++) {
112 for (char i = 0x01; i !'= 0x40; i =i << 1) {

113 for (int j = 0; j < numOfBoards; j++) {
114 sendByte (i) ;

115 }

116 load () ;

117 delay (50) ;

118 }

119 for (char i = 0x40; i != 0x00; i =i >> 1) {
120 for (int j = 0; j < numOfBoards; j++) {
121 sendByte (i) ;

122 }

123 load () ;

124 delay (50) ;

125 }

126 }

127 for (int i = 0; i < 4; i++) {

128 for (int j = 0; j < numOfBoards; j++) {
129 sendByte (0xFF) ;

130 }

131 load () ;

132 delay (300);

133 for (int j = 0; j < numOfBoards; j++) {
134 sendByte (0x00) ;

135 }

136 load () ;

137 delay (300);

138 }

139 }

140

141

42 [/ Initial setup

143 void setup () {

144

s /| Prepare serial i/o

146 SerialBT .begin ("ESP32-GuitarBuddy"); //Bluetooth device name
147 Serial. flush () ;

s Serial.begin(57600) ;

149

150 /] Initialize pins

151 pinMode (CLK, OUTPUT);

152 pinMode (SDI, OUTPUT) ;

153 pinMode (LE, OUTPUT) ;

154 pinMode (EN, OUTPUT) ;

155 digitalWrite (EN, HIGH);

156

157 // Wait to receive file size bytes over Bluetooth
158 while (1) {

159 if (SerialBT.available ()) {

160 file_size = (int)SerialBT.read();

161 if (file_size == 0){

162 delay(100);

163 continue;

164 }

165 file_size <<= 8;

166 delay (200);

167 file_size_2 = (int)SerialBT.read();
168 file_size += file_size_2;
169 Serial. print(file_size);
170 break;

171 }

172 }

173
174 /1 After file size is received, input rest of byte data to frameBuffer
175 bytes_left = file_size;

176 while (bytes_left > 0){

177 if (SerialBT . available ()) {
178 frameBuffer [frame] [board] = SerialBT .read();
179 if (board == 4){

180 frame++;

181 board = 0;

182 }

183 else

184 board++;

185 bytes_left —= 1;

186 }

187 }

188
189 // Print frameBuffer for debugging
90 for(int f = 0; f < frame; f ++){

191 Serial.print("[");

192 for (int fr = 0; fr < BOARDCOUNT; fr++){
193 Serial. print (frameBuffer [f][fr], BIN);
194 Serial.print(", ");

195 }

196 Serial . println("]");

197 }

198 }

199

200 // Loop through frameBuffer, sending each byte with a set delay
201 void loop () {

202 // while(1)

203 [/ testBoards (1) ;

204 board = 0;

205 frame = 0;

206 bytes_left = file_size;

207 frame_count = 0;

208 while (bytes_left > 0){

209 updateFrame () ;

210 bytes_left —= BOARDCOUNT;
211 delay (30);

212 }

Listing 3: Program flashed to ESP32 for binary receiver, storage, and playback.

61

