

Node-Based Range-Extending Recon Drone

Final Report
ECE 445 - Fall 2018

Team 27

Dhruv Diddi (diddi2)

Thomas Korenchan (kornchn2)

Michael Lally (mlally2)

TA: Hershel Rege

12 December, 2018

Abstract

Our project addresses limitations in operational space, the region in which an operator can

control a drone or robotic system, with the idea that a geometrically complex wireless network

can be established on-the-fly. Without a pre-established network, operators are often limited

to line-of-sight communication with their vehicle. This prevents complex operations around

obstacles or inside structures.

A node-based solution, in which the nodes are deployed by the main vehicle during operation,

can allow an operator to maintain control of the vehicle far outside of the original line-of-sight.

Nodes placed at strategic junctions can re-transmit operational commands, daisy-chaining them

from operator to lead vehicle.

A two-node vehicle make up the body of our project. The lead vehicle tows the intermediate,

unhooking it at desired locations. The lead is then free to operate anywhere in the

intermediate’s line of sight, effectively extending its operational space.

2

Contents

1. Introduction 4

1.1 Objective 4

1.2 Background 5

1.3 High Level Functionality 5

1.4 Systems Overview 6

2. Design 7

2.1 Design Procedure 7

2.2 Design Details 9

2.2.1 Controller 9

2.2.2 Vehicle 11

2.2.3 Software 12

3. Cost & Schedule 14

3.1 Cost 14

3.2 Schedule 15

4. Requirements & Verification 16

5. Conclusion 17

5.1 Accomplishments 17

5.2 Uncertainties 17

5.3 Ethical considerations 18

5.4 Future work 19

6. References 20

7. Appendix 21

7.1 Appendix A - Diagrams 21

7.2 Appendix B - Schedule of Work 23

7.3 Appendix C - Requirements & Verification Tables 25

3

1. Introduction

1.1 Objective
The utility of drones in reconnaissance roles is a large and expanding field. Drones are used to

assess the spread of both urban and forest fires. They’re increasingly used in search and rescue

roles in a variety of scenarios; they can fly to and deliver floatation devices to struggling

swimmers, locate lost or distressed hikers, and have been tested as a means of locating

survivors in building collapses and fires.

However, their utility is still largely limited to exterior action, either operating above the canopy

of the forest or in the air around a burning building, as examples. Their ability to operate is

limited by where their command signals can reach, making control in locations like building

interiors, forests floors, sewers or tunnels, or anywhere dense with obstructions unreliable.

Our objective was to address this issue with a node-based range-extending solution. With out

solution, as a drone reaches its command space limits, either due to range limits or interfering

obstructions, it deploys a node. That node, still within the operator’s command space,

retransmits the operator’s instruction. This strategy has several benefits. Nodes placed just

beyond a corner or obstruction, or at a nexus of corridors, transmit commands and allow

operators to maintain control of a drone beyond their line-of-sight. The drone may then

continue to operate around corners through corridors, further than previously possible while

relying on the original operator’s signal. Nodes placed near the outer limit of the operator’s

signal effectively increase the operators range. These benefits are achieved on-the-fly, without

the need to set up a network.

Our vehicle takes the form of two segments linked together; the lead segment is the main

vehicle while the intermediate segment acts as a node. While both segments are independent

vehicles capable of discrete movement, operator commands are received first by the node

which then retransmits them to the lead. The node is capable of detaching itself from the lead

and positioning itself at an advantageous retransmission position. It acts as a middleman,

routing instructions to the lead and allowing the operator to maintain control even as the lead

passes out of the operator’s line-of-sight.

4

1.2 Background
Our project wasn’t the first foray into drones as a means of reconnaissance and rescue. In the

days following the September 11, 2001 attacks in New York City, researchers from the

University of South Florida, funded by the National Science Foundation (NSF), were on-site at

ground zero using prototype robotic vehicles to search the rubble for survivors and remains.

They were limited in their ability, however, as their vehicles were tethered to their operators

with a maximum range of 100 feet. Our project improves on this maximum range with vehicles

that can deploy nodes at critical junctions and nexuses in their search space [1]. We waived the

need for a tether in favor of wireless commands, given that wireless routing between nodes

grants more freedom than a physically restrictive tether.

It’s also not the first exploration into the use of drones as a mesh network to extend

connection. In a recent paper from University of Waterloo, researchers discussed the utility of

drones as a means of extending vehicular networks. These networks enable self-driving cars to

communicate, share information, and avoid collisions. Their paper touches on “Line-of-Sight

Links”, the principle that “drones flying in the sky have a higher probability to connect ground

nodes” [2], specifically cars, due to their ability to establish line-of-sight connections over

ground-based obstacles like buildings, trees, and other vehicles. Ours leverages the same

principle: by deploying our nodes at locations that provide wide coverage over previously

obstructed regions, we achieve the same effectiveness as a direct line-of-sight link. Though

there is no direct line-of-sight between the operator and the lead segment, a daisy-chain of

retransmitting nodes provides a comparably effective connection.

1.3 High Level Functionality
● Our project’s lead vehicle can reach an unobstructed range of 500 feet, using the node

as an intermediary for commands from our controller. This exceeds the range that the

controller alone can transmit messages.

● Our project’s node vehicle, while in the line-of-sight of both the lead vehicle and the

controller, can route commands from the controller to the lead vehicle. This allows the

lead vehicle to operate in a location outside the controller’s direct line-of-sight.

● Each segment of our solution - controller, node segment and lead segment - can

maintain a network bandwidth of 64 kbps, which is the minimum data rate required to

send 802.15.4 messages.

● Our solution can maintain a minimum operation time of 30 minutes. This is based on the

information that industry-standard drones have an operational time of 20-30 minutes

[3].

5

1.4 Systems Overview
Our design can be described as three major systems: the Controller, Vehicle and Software. The

controller and vehicle systems are made up of Power Supply, XBee Module, and Processing

subsystems, which are described in detail later in this report. The Software system is considered

the “brains” of the design: it integrates the Controller and any number of vehicle systems

together.

Figure 1 outlines the major blocks used in our controller design. The overall functionality of the

controller is straightforward: a user controls four buttons and two switches to operate the node

and lead vehicles. The buttons are used for Latch Operation, Forward, Left and Right, while the

two switches are used to designate which vehicles is active (Node, Lead or both).

Figure 1. Controller Perfboard Schematic

Similar to our controller design, Figure 2 outlines the major blocks of our vehicle design. The

overall design is almost exactly the same as the controller, with the buttons and switches

replaced with the wheel and latch motors instead.

6

Figure 2. Vehicle Perfboard Schematic

The flowchart in Figure 10 (Appendix A) illustrates how our software loaded onto our

microcontrollers tie all of our design’s subsystems together. The Controller microcontroller

takes digital input from buttons and switches and encodes a data packet of one byte (8 bits).

This packet is transmitted over our XBee network to the node and lead vehicles, where the

packets are interpreted and processed.

2. Design

2.1 Design Procedure
Our solution design can be described as three major subsystems: Controller, Vehicle and

Software. Over the course of the design process, there were many opportunities to make

decisions that would impact components of our design. Here, we will elaborate on the more

crucial decisions made about these three subsystems.

A major modification made to our overall design was the utilization of perfboards, which was a

decision in response to the state of our Printed Circuit Board (PCB) towards the end of our

design process. After much review, our PCB design did not meet our functional requirements,

specifically as it pertained to our USB-to-UART conversion chip used to load Arduino sketches

onto our microcontrollers. The decision to use perfboards to integrate our subsystems together

as a replacement for PCBs was not only the most crucial decision we made but also a useful

one. With perfboards, we were able to replace the ATmega2560 microcontrollers we had

originally intended to use on our controller and vehicles with pre-bootloaded ATmega328P’s: a

7

simpler chip with through-hole pins, which was convenient for connecting/removing the chip

from our boards when testing our final design.

Another major decision made was the design of the physical vehicle body, which we

3D-printed. In one aspect, we had originally designed the body to use treads as the method of

movement, so as to obtain all-terrain maneuverability. In the end, we decided to use four

wheels with the front two wheels driving each vehicle: this allowed for sharper turning and

faster speeds. In the process, we ran into an obstacle with the wheels involving traction:

another decision made to wrap our wheels with rubber bands allowed us to obtain better

traction so our wheels could operate to our specifications.

Lastly, we decided to modify our software by changing the data packet encoding. Figure 3

shows our updated encoding, which enumerates all of our controller inputs as single bits. This

method of encoding not only allowed us to reduce the packet size to a single byte, but also

enables each vehicle to be distinguished from each other, so that they may process only

packets intended for them.

Figure 3. Data Packet Encoding

While our design did not require any major equations, we did have multiple tools that were

essential to the success of our project: XBee Configuration & Testing Utility (X-CTU) and the

Arduino Integrated Development Environment (IDE). X-CTU was crucial to our design

implementation, as its purpose was to enable configuration of the XBee radio module firmware.

The firmware configuration was the foundation that allowed our modules to be on the same

network, and communicate in the specific fashion that we determined through testing. Just as

crucial was the Arduino IDE, which of course we used to program our Microcontroller Units

(MCU) at all stages of design development, from testing XBee communication to motor

functionality to full integration.

8

2.2 Design Details
As described in the Systems Overview, our solution is comprised of the Controller, Vehicle and

Software systems. The subsystems of the Controller and Vehicle designs, as well as the

Software system design, are elaborated upon in the following subsections.

2.2.1 Controller

The power supply consists of a single 9V alkaline battery and two voltage regulators, one for

3.3V and 5V respectively. Figure 4 illustrates the power supply subcircuit. The regulated 3.3V

was used only to supply power to the XBee module subcircuit, whereas the regulated 5V was

used to supply both the microcontroller subcircuit as well as the 3.3V regulator, since it

required an input voltage no greater than 6.5V [4].

Figure 4. Controller Power Supply subcircuit

The XBee module subcircuit consists only of the module itself, as depicted in Figure 5.

Interfacing with XBee modules was very simple: it requires a regulated 3.3V supply (Pin 1), a

grounding connection (Pin 10), and has two pinouts which connect to our microcontroller: Data

Out and Data In (Pins 2 and 3, respectively) [5]. These pins allow the XBee to communicate with

the microcontroller Serial Data ports for real-time data transfer.

Figure 5. XBee Module subcircuit

9

A major design decisions that we made in the early stages of development was the

configuration of our XBee modules. The models that we used are outdated, and do not have

Zigbee protocol capability (Zigbee is based on the 802.15.4 protocol). As a result, the modules

could not be configured as routers (two-way communication). However, through a clever

configuration in the modules’ firmware, we were able to achieve the network we needed, as

depicted in Figure 6. The Pan ID must be the same for all XBees to talk to each other. To specify

how they should talk, the Destination Low (DL) and Source Address (MY) addresses were used

as depicted [6]. To test our configuration, we set up a simulation: we connected three XBee

modules to three Arduino Uno boards to simulate the roles of the Controller, Node and Lead

vehicles respectively. The Controller sent an encoded message intended for the Node, which

would send back an acknowledgement packet. The Node would then transmit a message to the

Lead, which would send back an acknowledgement after reception. The Node, upon receiving

the Lead’s acknowledgement, would retransmit it to the Controller. This test was successful,

proving that our configuration would work for the scope of our design.

Figure 6. XBee Network Configuration

Our input processing subcircuit, as shown in Figure 7, is comprised of seven components: four

digital buttons, two digital switches, and the ATmega328P chip. The chip takes a regulated 5V

supply from our regulator. As the input processing and control unit, the microcontroller

interfaces the button and switch inputs with the XBee module. The inputs are read through six

digital Input/Output (I/O) pins, and are encoded into a single byte packet. The microcontroller

then sends the packet over the Serial Data port, using its RX and TX Serial Data pins (Pins 0 and

1, respectively), to the XBee module to be transmitted through our network to the node and

lead vehicles [7].

10

Figure 7. Input Processing subcircuit

To test our input processing, we made a decision to modify our previous data encoding. For more

information, see Section 2.2.3.

2.2.2 Vehicle
The power supply for our vehicles, shown in Figure 8, is exactly the same as our controller: a 9V

alkaline battery which interfaces with two voltage regulators at 5V and 3.3V. In addition, we

include a 9V Lithium-Ion battery which exclusively powers our wheel motors. Lithium-Ion

batteries have better capacity than alkaline ones, and our wheel motors require a considerably

higher voltage and current relative to all of our other components.

Figure 8. Vehicle Power Supply subcircuit

11

The XBee subcircuit and network configuration simulation is exactly the same as that of the

controller. See Figure 5.

Our output processing subcircuit, depicted in Figure 9, is very similar to the input processing

subcircuit on our controller. We again use an ATmega328P microcontroller chip which takes a

regulated 5V input voltage from our regulator, and grounding connections. The chip’s RX and TX

pins (Pins 0 and 1, respectively) are again connected to the XBee to communicate with the

controller and other vehicle. Instead of digital button and switch input, however, the vehicle

microcontroller instead outputs a Pulse-Width Modulation (PWM) signal to the two wheel

motors and latch motor. The latch motor takes the PWM input directly, whereas the two wheel

motors take it indirectly through an Electronic Speed Control (ESC) module. This module

converts the PWM signal into a 3-phase signal, which is used to control the wheel motor’s

rotation [8]. Both the wheel motor ESC’s and the latch motor take regulated 3.3V input and

grounding connections along with the PWM data.

Figure 9. Output Processing subcircuit

To test our output processing, we made a decision to modify our previous data encoding. For more

information, see Section 2.2.3.

2.2.3 Software

The software flowchart detailing packet encoding on our Controller microcontroller is shown in

Figure 11 (Appendix A). Figure 12 (Appendix A) illustrates how our Vehicle microcontrollers

process packets from the Controller and update the wheel and latch motors accordingly. Using

these programs, we simulated both input and output processing.

12

Table 1 enumerates the steps and per-step results for our input processing. Table 2 depicts the

same type of information for output processing.

Steps Per-Step Results

1. Read inputs from digital I/O pins 3-8.
Print to console.

2. Encode values into byte packet. Print
packet to console, press Forward
button (should be bit 2 HIGH).

3. Encode values into byte packet. Print
packet to console, change
Lead_Active switch (should be bit 7
HIGH).

4. Encode values into byte packet. Print
packet to console, change
Lead_Active switch and press Forward
button (should be bit 7,2 HIGH).

1. All buttons/switches show visible
change in digital signal. Noted that
they are ACTIVE LOW.

2. Read encoded packet on console:
00000100 (Forward HIGH)

3. Read encoded packet on console:

10000000 (Lead_Active HIGH)

4. Read encoded packet on console:
10000100 (Lead_Active and Forward
HIGH)

Table 1. Input encoding simulation steps

Steps Per-Step Results

1. Hardcode encoded packet for Lead to
move Forward (10000100). Print
received messages from Vehicle to
Serial Monitor.

2. Test updateMovement() functionality.
Hardcode 1300 PWM input to wheel
motors (lowest speed) if packet is
10000100.

3. Test Node_Active switch HIGH,
Forward HIGH from switch/button.
Hardcode 1300 PWM input to wheel
motors (lowest speed) if packet is
01000100.

4. Test updateLatch() functionality,
Node_Active switch HIGH, Latch HIGH
from switch/button. Hardcode 2000
PWM input to latch motor (raise up) if
packet is 01010000.

1. Read Serial Monitor: 10000100 prints
indefinitely.

2. Read Serial Monitor: 10000100 prints

indefinitely. Wheel motor spinning.

3. Read Serial Monitor: 01000100 prints
indefinitely. Wheel motor spinning,
updateMovement() processes packet
correctly.

4. Read Serial Monitor: 01000100 prints
indefinitely. Latch motor raised
indefinitely, updateLatch() processes
packet correctly.

Table 2. Output processing simulation steps

13

3. Cost & Schedule

3.1 Cost
The following section outlines the development costs of the project and delineates the different

parts required during the development of the project. We’ve also added additional costs of

processes like 3D Printing, Labor effort and PCB printing which are key components in the

development of the project. Our Bill of Materials is listed in Table 3.

Part Cost (prototype) Cost (bulk)

Microcontroller * 3
(Microchip, ATMEGA2560V-8AU)

$6.45 $5.37

XBee Radio chip * 3
(Digi-Key, 602-1892-ND)

$75.00 $51.00

Wheel motors * 4
(Amazon, YoungRC A2212 1000KV
Brushless Motor)

$59.94 $59.94

Latch motors * 1
(Amazon, KOOKYE 1PCS Servo Motor
Metal Gear 180 Degree Rotation)

$8.99 $8.99

Batteries * 3
(Energizer, 522 9 Volt Alkaline Battery)

$9.39 $9.39

Batteries * 4
(Energizer, 522 9 Volt Lithium Battery)

$20.00 $8.00

PerfBoard $2.00 $0.50

Assorted circuit components (resistors,
capacitors, ICs, etc)
(Digikey; est.)

$10.00 $4.0

3D printer filament 1kg * 2
(Hatchbox, 3D PLA-1KG1.75-BLK)

$39.98 $17.99

Total $271.73 $165.18

Table 3. Bill of Materials

Additionally, we include a cost of $2 per hour of 3D printer time over 30 hours. We incur an

additional cost of $60.

14

Our labor costs estimate a $45/hour salary per engineer. They also estimate a 10 hour per week

work schedule per engineer, over the 15 week duration of ECE 445. 3 engineers are working on

our team.

.5 50, 25.00 $45
1 hour * 1 week

10 hours * 1
15 weeks * 3 * 2 = $ 6

Our estimated cost of labor is: $50,625.00

With the following costs:

- Parts: $271.73

- 3D Printing: $60.00

- Labor: $50,625.00

Our projects grand total is: $50,956.73.

3.2 Schedule
Our project was completed between the weeks of September 30th and December 12th. For a

specific per-week and per-member breakdown of work, see Table 4 in Appendix B.

15

4. Requirements & Verification
Our project combined multiple electrical components which we had to individually verify

requirements, before integrating the circuit together. The components has to be tested and

verified in a specific order to minimise chances of damage to the circuitry and the design.

Following is a summary of requirements of verifications of important components of our

project:

● Power Supply - The power circuit involved the batteries and the voltage regulators

required to supply sufficient voltage and amperage to all the components. We used two

kinds of batteries, alkaline and lithium, which both have different tolerance and delay

ranges. We were able to ensure that the batteries were sufficient for our power needs

by performing charge tests on the batteries. We were also able to confirm reliable

output through the linear regulators through multimeter measurements.

● Wheel and Latch Motors - After testing out the power circuit, we connected our motors

to an arduino to simulate MCU control and tested the torque and lift abilities of the

motors. We were able to confirm that the motors were powerful enough for the project.

● XBee Modules - Through the X-CTU interface, we were able to configure and test the

network of the XBee modules.

● MCU and Software - We were able to upload sketches and process input data packets

from the XBee at the expected baud rates. We are also able to send PWM signals to

control the motors through the ESC. We confirmed that we were able to send reliable

signal out from the pins and the software processed the packet buffer properly.

● Circuit Peripherals - USB-to-UART was an unsuccessful attempt to upload sketches to

the MCU. We overcame this failure and accomplished our original goal through the

Serial Programmer on the Arduino. We were able to test the reliability of switches

through a simple circuit. Light-Emitting Diodes (LED) were not implemented in the final

design, but are a simple addition to the MCU output.

For further data regarding requirements and verifications, refer to the tables in Appendix C.

16

5. Conclusion
This section describes the project accomplishments as well as obstacles faced during

development. The status of the project’s three main components - the vehicle, the controller

and the software - is discussed. Through the project’s design phase, our project goals were met

while making adapting to our original proposal and technology. The following sections

elaborate on the different aspects of the project.

5.1 Accomplishments
The project successfully met our original requirements. In conclusion we were able to showcase

the following:

● A working prototype of a daisy chained networked components which can communicate

upto 500 feet in outdoor environments.

● A vehicle node being controlled by a controller node with a reliable packet transfer rate

of upto 64 kbps for a scalable modules of nodes

● The ability to have controller and vehicle nodes operational more than 30 minutes at a

stretch

● Comprehensive control of wheel as well as latch motors with are reactive to controller

signals for navigation

● A scalable design for circuit module which could be housed in multi-functional systems

like flying drones, aquatic drones etc.

Through the course of the project we were exposed to various elements of the design process

such as PCB design, soldering, embedded systems, signal processing, and control systems.

Together, we significantly deepened our technical skills; our soft skills needed for

communication and work distribution were also further developed. Our team successfully

collaborated to complete the project’s requirements.

5.2 Uncertainties
Over the course of the project we overcame multiple challenges to fulfil the project’s goals.

Adaptations to our technology and structural design were necessary to reach on operational

project.

One major cause for uncertainty in the project was PCB design. Unfamiliarity with the PCB

design software meant that we had limited ability in PCB design. This led to delays in delivery of

PCB design printing . The prototype PCB design traces were not consistent with the pin layout

for certain components and the traces had potential misconnections. In the interest of time, we

decided to solder our components onto a perf board and make good connection with a

17

combination of single core and threadwire. We were able to verify the viability of perf boarded

components through unit and integration tests.

Another hiccup in our development was the delay in 3D printing prototyping. 3D Printing

facilities around campus had unexpectedly long queues which delayed the number of design

iterations we could test for the project. Alternatively, we were able to buy housing and wheel

components from local vendors. This reinforced our confidence in the modularity of the node

circuits.

5.3 Ethical considerations
Safe and ethical practices were a concern in the completion of this project as multiple

components of the vehicle that required safety considerations. In development of the radio

module, we fully adhered to Federal Communications Commission (FCC) standards for amateur

radio communication, so as to avoid harmful interference with other entities. We ensured that

the channels of communication for the RF module were not susceptible to attacks from proxy

controllers. XBee RF series 1 modules allow encrypted transmission and the Pan ID-based

network access model ensures only network-configured XBee devices are able to communicate

reliably on our network [5].

Another area for consideration was the battery. We planned on using alkaline and lithium

batteries to power our vehicle segments, which can be dangerous if handled incorrectly. In

order to “hold paramount the safety, health, and welfare” [9] of us and those around us we

strictly followed standard safe battery handling procedures.

Lastly, all circuits were unexposed and use good engineering practices to ensure circuitry is

properly soldered and tested for temperature conditions with the battery loads. The motors

from the circuit are also susceptible to overheating and damage from running at improper

voltage inputs. All components of the project are protected by voltage regulators which ensure

that the connected devices receive proper inputs to maintain a good working state. PLA

filament has a glass transition temperature of 60–65°C and a melting temperature of

173–178°C. With proper mounting we ensured that the 3D printed design is not affected by the

heat from the circuitry or the motors.

18

5.4 Future work
In the development of the project, we demonstrated the viability of a node-based system in

extending a drone operator’s effective command space. In future versions of the project, we

would like to add the following features:

● Better wheel design for navigation in rough terrain

● Mesh packet routing to be able to address non-daisy chained nodes

● Higher communication bandwidth to support camera feed and larger network size

● The ability to house and test this circuitry in airbourne and aquatic drones

● Increase robustness of circuit housing to operate in extreme temperature and pressure

conditions

Network access is an important aspect in the drones control systems of the future. With robots

become viable for more jobs which are considered unsafe for humans, it’s important to deploy

systems like our project that extend their effective range, increasing the operational abilities of

these robots.

19

6. References
[1] nsf.gov. At WTC Search, Graduate Students Deploy Shoebox-Sized Robots, 2001 [Online].

Available: https://www.nsf.gov/od/lpa/news/press/01/pr0178.htm [Accessed 20 Sep.

2018].

[2] W. Shi, H. Zhou, J. Li, W. Xu, N. Zhang and X. Shen, "Drone Assisted Vehicular Networks:

Architecture, Challenges and Opportunities," in IEEE Network, vol. 32, no. 3, pp.

130-137, May/June 2018.

[3] Wondershare Inc., “Top 10 Drones with Longest Flight Time for 2018”, 2018 [Online].

Available:

https://filmora.wondershare.com/drones/drones-with-longest-flight-time.html

[Accessed 4 October 2018]

[4] ABLIC Inc., “Ultra Low Current Consumption and Low Dropout CMOS Voltage Regulator”,

3.3V Linear Regulator Datasheet, 2015. [Online]. Available:

https://www.mouser.com/datasheet/2/360/S1206_E-20108.pdf

[5] Digi International Inc., “XBee/XBee-PRO RF Modules”, XBee Series 1 RF module datasheet,

2009. [Online]. Available:

https://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf [Accessed

4 October 2018].

[6] Daniel Godrick, “Maker Challenger: Wirelessly Control Lights and Motors Using XBee

Communication!”, 2018 [Online]. Available:

https://www.teachengineering.org/makerchallenges/view/cub-2219-xbee-lights-motors

-arduino-wireless-communication [Accessed 11 November 2018].

[7] HobbyTronics, “Arduino ATmega328 Pinout”, ATmega328P pinout, 2018. [Online]. Available:

http://www.hobbytronics.co.uk/arduino-atmega328-pinout [Accessed 1 December

2018].

[8] “30A BLDC ESC”, Electronic Speed Control Product Manual, 2012. [Online]. Available:

https://www.optimusdigital.ro/index.php?controller=attachment&id_attachment=451

[Accessed 10 November 2018].

[9] IEEE, “IEEE Code of Ethics”, January 2018. [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html [Accessed 4 October

2018].

20

7. Appendix

7.1 Appendix A - Diagrams

Figure 10. High-Level Software flowchart

Figure 11. Input encoding flowchart

21

Figure 12. Data Packet Processing flowchart

22

7.2 Appendix B - Schedule of Work

Week Task Delegation

9/30 Prepare for Mock Design Review, work on Design Document Dhruv

Prepare for Mock Design Review, work on Design Document Michael

Prepare for Mock Design Review, work on Design Document Thomas

10/7 Finalize controller PCB designs Dhruv

Design software flow diagrams Michael

Design wheel, treads, and chassis models for 3D printing Thomas

10/14 Finalize vehicle PCB designs Dhruv

Finalize software flow diagrams Michael

Print version 1 wheels, treads, and chassis Thomas

10/21 Begin version 2 PCBs, order components Dhruv

Begin coding packet transmission protocol Michael

Test node connections (controller: movement inputs) Thomas

10/28 Finalize version 2 PCBs and order Dhruv

Configure XBee radios for group communication Michael

Configure XBee radios for group communication Thomas

11/4 Test components, finalize controller design Dhruv

Design node connection tests Michael

Design node connection tests Thomas

11/11 Integrate original microcontroller with circuit Dhruv

Test software logic for node connections and LED control Michael

Debug node connection tests and XBee firmware Thomas

23

11/18 Design Test Dhruv

Test node connections with motor controls Michael

Test node connections with motor controls Thomas

11/25 Design Test Dhruv

Design Test Michael

Design Test Thomas

12/2 Node and vehicle design modifications and fixes Dhruv

Software bug fixes and improvements Michael

Controller and node design modifications Thomas

12/9 Final Presentations, finish final paper Dhruv

Final Presentations, finish final paper Michael

Final Presentations, finish final paper Thomas

Table 4. Schedule

24

7.3 Appendix C - Requirements & Verification Tables

Vehicle Power

Requirement Verification

● Alkaline Battery must maintain
at least 8V voltage to meet
operational requirements for
30 minutes

● Lithium Battery must maintain
at least 8V voltage to meet
operational requirements for
30 minutes

● Charge test
○ Connect fully charged battery to a resistor

circuit
○ Discharge battery using resistor circuit for

0.5 hours
○ Use voltmeter to measure final battery

voltage

● Charge test
○ Connect fully charged battery to a resistor

circuit
○ Discharge battery using resistor circuit for

0.5 hours
○ Use voltmeter to measure final battery

voltage

Justification

Alkaline Battery
- Connected fully charged 9V battery as power for servo circuit
- Continuously powered the servo as it alternated between its raised and lowered

configurations for 30 minutes
- Final voltage: 8.9V ± 0.1V

Lithium Battery

- Connected fully charged 9V battery as power for one motor circuit
- Continuously powered the motor as it rotated at drive speed for 30 minutes
- Final voltage: 8.7V ± 0.1V

25

Voltage Regulators

Requirement Verification

● Provide component-specific
output voltage (see above)
reliably from a 9V source

● Reliable voltage regulation test
○ Setup voltage supply of 9V from either a

voltage generator or a battery input
○ Measure output voltage and current using a

multimeter to be 9V and 50mAh
respectively

Justification

Voltage Regulators (5V)

- Tested regulators in with 9V supply before
integration into modules

- Powered the 3 project modules with 9V
source

- Controller
- Node vehicle
- Lead vehicle

- Measured voltage: 5V ±0.04V

Voltage Regulators (3.3V)
- Tested regulators in with 9V supply before

integration into modules
- Powered the 3 project modules with 9V

source
- Controller
- Node vehicle
- Lead vehicle

- Measured voltage: 3.3V ±0.02V

26

USB-to-UART Chip

Requirement Verification

● Transmit data between UART
and USB at 9.6 kbps

● USB-UART testing
○ Use a socket connection to connect a

computer to the MCU
○ Use Arduino online interface to upload

processing code to the MCU bootloader
○ Test connection reliability for different data

transfer rates
○ Ensure data rate of at least 9.6kbps is

achievable

Justification (Modified)

Modification:
- Errors in our PCB design rendered our UART/USB connection inoperable.
- Achieved data transmission to the MCU for programming in the following way:

- Switched from ATMega2560 to ATMega328 MCUs pre-bootloaded with Arduino
interface capabilities

- Fit MCUs into Arduino board’s pin headers
- Programmed MCUs through Arduino board, then transferred MCUs to project

modules
- Ran test programs to control LEDs, servos, and motors with MCUs, confirming

successful data transmission

27

Microcontroller Unit (MCU)

Requirement Verification

● Can receive and transmit data
from Serial interface at a
minimum rate of 256 kbps

● Can output PWM of duty cycle
50% signals to control motors
for to navigation and latch
control

● SPI testing
○ Connect MCU to Serial interface using FT232

chip to a terminal interface
○ Start timer and send data packet of

specified size
○ Echo data back from the MCU
○ Stop timer and calculate data transfer rate

and ensure at least 256 kbps

● PWM testing
○ Connect MCU general output pin to

breadboard
○ Make breadboard connection to

oscilloscope
○ Note PWM duty cycle range to be at least

functioning at 50%

Justification

MCU Data Transfer Rate
- Loaded 2 MCUs with SPI test code which passed data from one MCU’s transmission port to the

other’s receiving port and back again
- Observed a >2MB/s data transfer rate

MCU PWM Output

- Attached a “Servo” class output to an MCU pin and swept up from servo minimum to
maximum values

- Observed pin output on oscilloscope
- Observed PWM output over range: 10% - 90%
- MCU PWMs properly control the project servo and motors

28

XBee Radio

Requirement Verification

● Maintain baud rate of at least
100 kbps

● Each module should maintain
a transmission range of at
least 60 feet in outdoor
settings

● Baud rate testing
○ Connect XBee module to XBee Explorer and

open X-CTU interface
○ Use X-CTU interface to configure network

and send random data packets of different
data sizes

○ Use another XBee Explorer to collect data
from network and calculate baud rate

○ Test for different baud rates for both
receiver and transmitter and ensure
measurement of at least 100kbps

● Range testing

○ Connect Xbee module to XBee Explorer and
open X-CTU interface

○ Establish connection with another XBee
module to receive data packets

○ Measure at distances of 100, 200, 300, 400
and 500 feet (and at least 60 feet is
functional)

Justification

XBee Baud Rate
- Programmed MCUs with specified 9600 baud rate (standard serial output for ATMega328)
- Successfully passed packets back and forth between MCUs at >2MB/s, verifying successful

communication at given baud rate

Transmission Range

- Programmed MCUs with code using LEDs to verify established connections with other MCUs
- Established connections between MCUs via XBee modules
- Walked individual modules down the full length of the north ECEB hallway (outside Rm 2070),

greater than 60 feet

29

Vehicle Software

Requirement Verification

● Receive and acknowledge
instructions received
through the radio module

● Can correctly interpret

instructions

● Can facilitate the
re-transmission of
instructions from node to
node

● Connection testing
○ LEDs on the controller will be used to give a

visual indication that a node is receiving and
acknowledging instructions

● Instruction testing

○ Establish an acknowledged connection between
the controller and a node

○ Send instructions to change the configuration of
the latch and to drive the wheels

● Daisy-chain software testing

○ LEDs on the controller will be used as a visual
indication that a node is receiving and
acknowledging instructions

○ One node N1 will be placed inside the range of
the controller, another N2 outside the range of
the controller

○ If the indicator shows that N2 is receiving and
acknowledging instructions, this will show that
N1’s software is successfully facilitating a
re-transmission

Justification

Acknowledge Messages
- Programmed MCU with code receiving messages through serial port
- Verified by flashing onboard LEDs with reception of message

Message Interpretation

- Set up MCU to receive messages in the above way
- Encoded instructions in messages
- Programmed MCUs to move different motors depending interpreted instructions
- Verified that correct motors moved as instructed

Message Re-Transmission

- Set up 3 MCUs connected to each other via 3 respective XBee modules
- Used flashing LEDs driven by the MCUs to verify that messages were passed from node 1 (the

first MCU/XBee group) to node 2, the middle node, finally to node 3, then back again in the
opposite order, repeating indefinitely

30

Wheel Motors

Requirement Verification

● The torque requirements for
the latch servo is at least a
minimum of 1 kg/cm to propel
the node segment

● Temperature of the motors
does not exceed 60°C in
persistent (>2 minute) duty
cycle changes.

● Torque requirements
○ Connect motors to voltage supply
○ Attach drive gear to the end of the motor
○ Connect latch sprockets and latch physical

design to the gear
○ Observe torque and latch acceleration for

different input voltages/current for the
motor and to ensure we have torque of at
least 1 kg/cm

● Temperature test

○ Connect servo motors to MCU output pin
○ Create different voltage inputs using serial

signal library for the MCU
○ Use IR thermometer to measure

temperature of the motor casing and ensure
measurement doesnt go above 60°C

Justification

Torque Range
- We were able to successfully drive the node vehicle using the motors
- The 3D printed wheels have a slippery outer layer which makes the vehicle gain less traction
- We are able to implement turning using variable voltage output from both the motors

Heat Tolerance

- We ran the wheel motors, with no load, at ESC control of 1600 (our operational top speed) for
2 minutes

- We measured the wheel motor temperature using an IR thermometer
- Final temperature: 32.3 ±0.1°C

31

Latch Motor

Requirement Verification

● The torque requirements for
the latch servo is at least a
minimum of 1 kg/cm to
support the weight of the 3D
printed latch.

● Temperature of the servo
motors does not exceed 60°C
in persistent (>2 minute) duty
cycle changes.

● Torque requirements
○ Connect servo motors to voltage supply
○ Attach drive gear to the servo end of the

motor
○ Connect latch sprockets and latch physical

design to the gear
○ Observe torque and latch acceleration for

different input voltages/current for the
motor

● Servo temperature test

○ Connect servo motors to MCU PWM pin
○ Create different duty cycle using serial signal

library for the MCU
○ Use IR thermometer to measure

temperature of the motor casing

Justification

Torque Range
- The latch is able to lift a hook weight
- Although less than the originally perceived torque requirement, the latch required less torque

Heat Tolerance

- Similar to the motor heat tolerance, we performed switched the latches configuration from
raised to lowered repeatedly for 2 minutes

- We measured the latch motor temperature using an IR thermometer
- Final temperature: 28.4 ±0.1°C

32

Controller Power

Requirement Verification

● Alkaline Battery must store at
least 50 mAh to meet
operational time requirement
of 30 minutes

● Charge test
○ Connect fully charged battery to a resistor

circuit
○ Discharge battery using resistor circuit for .5

hours
○ Use voltmeter to measure and ensure

battery voltage and ensure charge of at least
50mAh

Justification

Capacity Assessment
- A discharging resistor circuit is used to calculate the charge capacity of the Alkaline batteries
- Using the formula, R_min ~= (Cells_in_battery x 4000) / Charge_capacity, we get a resistor 80

ohm

Controller Software

Requirement Verification

● Software must be able to
transmit package instructions
correctly based on button
input

● Packet fidelity testing
○ Establish a connection between the

controller-mounted XBee radio and a radio
module inserted in a computer’s serial port

○ Motor packets received and ensure bits
properly align with what should be
transmitted

Justification

Correct Instructions from Buttons
- Programmed controller MCU with software that:

- Reads button inputs
- Structures instructions based on inputs
- Transmits messages

- Verified correct messages encoding structure through Arduino serial monitor

33

Input Buttons/Switches

Requirement Verification

● Buttons must be easily
pressable

● Switches must reliably switch
between on and off

● Button Test
○ Press button and ensure ease in pressing

down

● Switch Test
○ Connect switches to a breadboard
○ Attach voltage supply across the switches
○ Measure current using a multimeter in the

on-off states of the switch

Justification

Buttons Usability
- Verified user could easily press and release buttons

Switch Reliability

- Programmed MCU with software reading input from a given pin
- Designed small circuit with switch either opening or closing a connection to HIGH
- Verified correct switch functionality through input visualized in Arduino serial monitor

LEDs

Requirement Verification

● Must be visible from 1 meter
away with a suitable drive
current and voltage

● LED visibility test
○ Supply 1V input voltage using voltage

supply
○ Test visibility from 1m away

Justification

LED Visibility
- Designed a simple circuit using an LED, resistor, and voltage source to power the LED
- Verified that LEDs were sufficiently bright so as to be seen at a distance

34

