

REMOTE FIREWORKS LAUNCHER

By

Daniel Middendorf

Michael Hlinka

 Trent Sanford

Final Report for ECE 445, Senior Design, Fall 2018

TA: Kexin Hui

December 2018

Project No. 5

ii

Abstract

Our senior design project is a remote fireworks launcher. The project consists of four physical
components: a controller, receiver, and two sensor pods. The controller is a custom-made user interface
to send launch commands to the receiver at a safe distance of 150 feet and display important system
information. The receiver is connected to a set of 32 electrical fuses to ignite fireworks, and along with
our two sensor pods, contains motion sensors to detect activity near the launch deck. Our project was
successfully able to ignite fuses, detect motion near the launch deck, and had reliable wireless
communication between all components.

iii

Contents

1. Introduction .. 1

1.1 Background ... 1

1.2 Components .. 1

2 Design ... 4

2.1 Power Supply Design ... 4

2.2 Control Unit Design ... 4

2.3 User Interface Design .. 6

2.4 Communication Module Design ... 7

2.5 Sensor Module Design .. 8

3. Design Verification .. 11

3.1 Power Supply Verification ... 11

3.2 Control Unit Verification ... 11

3.3 User Interface Verification .. 12

3.4 Communication Module Verification .. 12

3.5 Sensor Module Verification .. 13

4. Costs .. 14

4.1 Parts .. 14

4.2 Labor ... 15

4.3 Total Prototype Cost ... 15

5. Conclusion ... 16

5.1 Accomplishments .. 16

5.2 Uncertainties ... 16

5.3 Ethical Considerations ... 16

5.4 Future Work .. 17

References .. 18

Appendix A Requirements and Verifications Table .. 19

Appendix B Work Schedule .. 23

1

1. Introduction

1.1 Background
There are many annual occasions where fireworks are a staple in celebrating. These occasions, most
notably the Fourth of July, often have large shows where fireworks are launched by professionals.
Unfortunately, there are also plenty of amateurs during these events that launch fireworks privately. In
2016, it was estimated that 11,100 people were injured and 4 deaths were reported as firework related
[1],[2]. These numbers have varied a bit over the past decade, with the lowest estimate being 7,000 in
2008 and the highest estimate being 11,900 in 2015 [1]. Most minor injuries from fireworks are from
sparklers, while most of the firework related deaths are due to users being in close proximity while
lighting off mortar firework rounds.

“On July 4, 2016, a 42-year-old male from Florida suffered fatal injuries when the fireworks device he
was lighting malfunctioned. According to the county deputies, the victim was trying to set off large
mortar-type fireworks in a PVC pipe that was anchored to the ground.” [1]

There is not much to be done about the individuals’ safety while using sparklers, but more can be done
to help prevent the more serious accidents. Our solution for the more serious types of injuries was to
design and implement a wireless launcher that can ignite mortar rounds for amateur consumers. The
user would be able to observe and control the launching of the fireworks a safe distance from the
launch deck, approximately 150 ft away. Our design would be equipped with motion sensors to detect
anyone within proximity of the fireworks launching platform. We want our project to emphasize safety
above all else. While backyard fireworks are always dangerous, our goal is to help minimize injuries at an
affordable cost.

Right now, there are some products similar to the ones we just described. Cobra Firing Systems provides
professional equipment for large shows. This equipment ranges from $500, at its cheapest, to $1350 [3],
[4]. This is obviously not reasonable for the average consumer. Firefly Firing System offers a cheaper
alternative for firework enthusiasts, at $200 [5]. While this is cheaper than the professional firing
systems, there are no safety measures in place to indicate when someone may be in danger around the
fireworks.

Our completed solution is cheaper and, more importantly, safer than what is currently available on the
market. Our project has reliable communication between the controller and the receiver from 150 ft
away, can set off our igniters at a 95% success rate and reliably detect anyone within an 8 ft radius of
the firework launch deck with our motion sensors. Additionally, our project is rather affordable and is
less than our initial price goal of $120.

1.2 Components
Our design consists of four separate components: a controller, receiver, and two identical sensors pods.
The individual block diagrams for these components can be found below in Figure 1.2.1, Figure 1.2.2
and Figure 1.2.3.

2

Figure 1.2.1 Controller Block Diagram

Figure 1.2.2 Receiver Block Diagram

Figure 1.2.3 Sensor Pod Block Diagram

3

Even with separate components, a few of our blocks are shared among all three. Each component has its
own power supply with 3.3V and 5V voltage regulators to power all the different IC components. The
three components also have their own microcontroller and RF chip to communicate with each other.
The controller uses one acknowledge button, a four digit seven-segment display, and a set of thirty-two
buttons and LEDs as a medium between the user and our project. A serial multiplexer (MUX) is used to
send button input to the controller’s microcontroller for processing. Both the receiver and the sensor
pods use PIR motion sensors to detect motion around the launch deck. Additionally, the receiver uses a
set of power MOSFETs controlled by the receiver’s microcontroller to set off the electronic igniters.

Our group has made some small changes from what was originally laid out in our design document. The
type of battery used for the sensor pods was changed to a single 9V battery because we already had the
correct connectors and they fit more easily into the sensor pod’s 3D printed casing. The DEMUX
originally planned to be used in the receiver was cut due the large number of excess digital pins that
were available on the receiver’s microcontroller. Keeping the DEMUX added an unnecessary element of
complexity and its exclusion would reduce costs.

4

2 Design

2.1 Power Supply Design
When considering power supply, we needed to consider the physical size, ideal output voltage, and in
the case of the receiver, the max current the battery could supply. Since we used IC chips, we knew that
we needed at least 5V at the source to meet the power supply requirement for those chips and for our
wireless communication chips. With the minimum size of the controller limited by the length needs of
our user interface, we were free to use a larger battery pack of 4 AA batteries in series.

The size of the battery became a problem when dealing with the sensor pods. Originally, we were
planning on using a similar type of battery pack as the controller with AAA batteries instead. We
realized that even these smaller batteries still would have a hard time fitting into our cases. After
discussing the issue, we decided to use a single 9V battery, which can fit inside our pod casing without
any problems.

When figuring out the battery needed for the receiver, we needed a more powerful supply than the
previous two. The igniters we chose required at least 12V and 1A to be set off consistently. After doing
research online, we chose an ABENIC 12V Li-ion battery since it was cheaper than other rechargeable
batteries and met the power needs for our igniters. A visual representation of what the power sub-
circuit looks like can be seen in Figure 2.1.1 below.

Figure 2.1.1 Power Circuit for Igniters

Along with the different batteries, each device also needed two voltage regulators to step down the
voltage to 5V for the IC components and 3.3V for the wireless communication chips. The receiver also
required n-type MOSFETs to act as a barrier switch that can be triggered by an IC chip while still being
able to handle the current and voltage needed for the fuses.

2.2 Control Unit Design
When choosing the parts for our microcontrollers we considered how many programable pins are
available and how much supporting software and documentation the chips have online for programing

5

them. We settled on using two different chips for our project: Atmega2560, Atmega328p. The
Atmega2560 offers eighty-six general programing pins while the Atmega328p offers 23. We specifically
chose these two chips specifically because they are both chips that are used in a widely used breakout
microcontroller company called Arduino.

Our controllers’ functionality was managed by an Atmega2560 microcontroller paired with a serial MUX
to process user input. An Atmega2560 was specifically chosen to ensure that our design had enough
digital I/O pins for both our user interface and wireless communications. This microcontroller was
programmed to follow the state system shown below in Figure 2.2.1. Following the states shown in the
figure, the user can press one of the 32 launch buttons on the controller to enter the ‘Queue’ state. The
user can change the currently queued igniter number by pressing a different launch button. After
confirming the launch number by pressing the acknowledge button, the ‘Wait’ state is reached and the
controller sends a wireless launch message to the receiver. If an acknowledge message from the
receiver is read, we move to the ‘Complete’ state, signifying a successful launch. Afterwards, there will
be a short 10 second cooldown in the ‘Cooldown’ state before the user can start the process over to set
off another igniter. While in the ‘Wait’ state, if there is no response from the receiver after 3 seconds,
the controller will transition to the ‘Fail’ state and must be acknowledged by the user. All of these states
can be interrupted if the controller gets a motion error message from the receiver, moving the
controller into the ‘Error’ state. This state will return to the ‘Start’ state with no buttons queued after 15
seconds but, the timeout will restart if another motion error is received while still inside the ‘Error’
state.

Figure 2.2.1 Controller State Flowchart

The receivers’ control unit is somewhat simpler than that of the controller. The receiver also used an
Atmega2560. With all the pins offered on the 2560, we were able to simplify our design and omit the
DEMUX by tying the gates of our MOSFETs directly to digital pins on the microcontroller. The receivers’
control unit is responsible for forwarding wireless messages and processing launch commands from our
controller as illustrated in Figure 2.2.2. When a launch command is received, the microcontroller will set
the appropriate MOSFET gate to high, allowing current to flow through the MOSFET and igniter, setting
it off. Afterwards, the microcontroller uses our communication module to send an acknowledge

6

message back to the controller and return the MOSFET gate to low. If instead, a motion error is received
from one of our pod units, or generated from the receiver itself, a motion error message will be sent to
the controller and the receiver will begin a 15 second timeout where no launch operations can be
performed. This timeout will be restarted if another motion error occurs while still in the timeout.

Figure 2.2.2 Receiver Software Flowchart

The sensor pods’ control unit is a simpler version of that in the receiver. The sensor pods’
microcontroller constantly monitors the readings from their internal PIR sensors and sends a motion
error signal to the receiver if a spike is detected (more on this in section 2.5). Because the sensor pods
only need to do this one operation, we used the smaller surface mount Atmega328p microcontroller in
each of the sensor pods.

On each of our components PCB’s we added breakouts for the 5V, GND, RX, TX, MISO, MOSI, SCK, and
RESET pins. These breakouts allowed us to upload the Arduino bootloader and Arduino sketches onto
our microcontrollers without having to programing beforehand. This made code debugging in all of our
components much easier.

2.3 User Interface Design
When first considering how we wanted the user interface to look and what it consisted of, we first
needed to decide how many unique igniters the user would be able to set off before needing to reset
the system. We set our starting number of unique launches to be twenty-five since any number less
than that would require too much setup from the user without sufficient reward. After declaring this
minimum, we turned our attention to different ways we could minimize the number of inputs to our
microcontroller. We found a 32:1 serial mux that reduced out total number of microcontroller pins
needed from thirty-two to three. After finding out the number of buttons we are going to use, we
concentrated on how we would arrange the buttons on the face of the controller. We decided to go
with a 2D matrix of eight columns and four rows as this was the most visually appealing arrangement to
us.

7

After taking care of the input side of the user interface, we then discussed how we wanted to represent
that the user has already set off one of the igniters. Wanting to keep the design simple to understand,
we decided to use a similar dimensioned 2D matrix of LEDs as shown in Figure 2.3.1 below. A lit LED
indicates that the igniter has not been set off yet; conversely, a darkened LED indicates to the user that
they have already pushed that button and the receiver has set off that igniter. Looking at this set up,
there is no way to potentially power all thirty-two LEDs at the same time. To make it appear that all the
LEDs are on at the same time, we trick the human eye with a phenomenon called “Persistence of Vision”
or POV for short. What this trick entails is to cycle through the different rows fast enough that the
human eye cannot discern which row of LEDs are powered on and which are not. This tricks the human
eye into believing that all the rows are always powered.

Figure 2.3.1 LED Matrix Representation

Since our project does more than mindlessly set of igniters, we have multiple states our system can be
in. Each of these states requires different actions to be taken by the user. This meant that we needed to
include some type of display to aid the user and inform them of what state the system is in and the
actions they can take at that moment. We chose to use a four digit seven-segment display to convey
this information. Our display will tell the user if motion has been detected by the launch platform,
which button they have queued up, if the system is ready to take another button input, and whether the
launch packet has been receiver by the receiver. We found that the most logical position on our
controller interface for our display is centered at the top, right next to the acknowledge button since
one of the main functions of the display is to parrot the launch number back to user and wait for the
signal from the acknowledge button to send the launch packet.

2.4 Communication Module Design
The communications module is one of the most important blocks of our design and enables the primary
safety feature of this project. To facilitate this block as much as possible, we used multiple NRF24L01
transceiver modules in our design. Research suggested that these modules were easy to use with

8

Arduino combatable microcontrollers and should meet our 150 ft minimal range requirement.
Originally, we were considering using the ESP8266 Wi-Fi modules instead, but after researching how to
use the modules we concluded that we would need to have two per component for reliable two-way
communication. Communication over Wi-Fi also added other networking complexities to the design
where simple RF communications would suffice.

Our project communicates with its fellow components using 3-byte messages sent using the NRF24L01
(with help from the RF24 Arduino library). An example data packet can be seen in Figure 2.4.1.

Figure 2.4.1 Sample Data Packet

Each message begins with a byte long opcode signifying the message type (a full list of message types
can be found in Table 2.4.1). The second byte contains data relevant to the packet and the final byte is
an appended CRC8 checksum for error checking. The 8-bit version of the CRC checksum was used due to
our messages’ small size. The CRC8 checksum also helps in preventing random signals being potentially
interpreted as firework launch commands.

Type Opcodes Data
Launch L Button/Fuse #

Acknowledge A Button/Fuse #
Motion Error E Sensor #

Table 2.4.1 Wireless Message Types

2.5 Sensor Module Design
The objective of these sensors is to detect motion within an 8 ft radius around the launch area. The
sensor module of our system is designed to utilize the IRA-S210ST01 passive infrared sensors, paired
with the IML-0866 lens, and gather readable information for our microcontroller to interpret as
described in Section 2.2. Our project uses three of these sensor modules in an equilateral triangular
setup to maximize our field of view when attempting to detect motion around the launch area. The
sensors and lens we used had a field of view of 6 meters across and 3 meters deep as seen in Figure
2.5.1. The physical layout of our motion sensing area can be seen in Figure 2.5.2.

9

Figure 2.5.1 IRA-S210ST01 Field of View [6]

Figure 2.5.2 Physical Layout of Detection Area

The specific sensor circuit went through a few design iterations before our module could reliably detect
motion within our detection area. These motion sensors are capable of outputting a minimum of 0.2V to
a maximum of 1.5V via the source pin [6]. We started our design by using the test circuit for the sensors
source voltage seen in Figure 2.5.3.

Figure 2.5.3 Test Circuit for Source Voltage [6]

After testing this circuit for source voltage, we moved to make the circuit more barebones to see if we
could receive the same results as the test circuit. The change in output voltage is what we were
concerned most with because measuring this change from the sensor was how we would detect motion
within the launch deck. We found that even though the operational amplifier did amplify the source

10

voltage, it had no effect on the range of voltages given by the sensor. We found that when testing with
an Arduino Uno, the 10nf capacitor and 33kΩ resistor were seemingly unnecessary for our
measurements also. In hindsight, these two components created a low-pass filter to help reduce noise
from our input voltage. When we moved to testing on our PCBs, it was apparent there was much more
noise present than the test on the Arduino Uno. Our final sensor circuit iteration re-added the filtering
capacitor to stabilize the output we were receiving on the source voltage pin as seen in Figure 2.5.4.

Figure 2.5.4 Final Sensor Circuit Schematic

11

3. Design Verification

3.1 Power Supply Verification
Part of our requirements for our batteries was that they could fit, along with other electrical
components, inside the physical devices we created. This was easily tested and verified by simply wiring
up all the components and seeing if they could all fit inside our devices. All of our power supply units
did end up fitting inside our devices along with the other components of each system.

Each power system also included a 5V and 3.3V voltage regulator to step down the supply voltage for
the IC chips and IR communication chip respectively. The verification of these regulators was done by
providing a source voltage of 6V to the input of the regulator and observing the output voltage using a
multimeter. For both the 5V and 3.3V regulators we observed the ideal output voltage plus or minus the
allowed tolerance of 5%. We continuously supplied the regulators with power for over an hour to make
sure that they would not overheat with constant use and after over an hour of use we observed no great
increase in temperature in the regulators.

Along with the battery supply and voltage regulators, the receiver also required n-type MOSFETs to
protect the IC chips from the power needs when setting off the fuses. To test that our chosen MOSFETs
worked, we applied a 12 V source to a resistor connected to the drain of our MOSFET. Refer to Figure
2.1.1 for clarification. With the source pin connected to ground we set the gate pin to 5V, representing
what the signal from the microcontroller would send, and measured the voltage different across the
resistor before and after turning on the MOSFET. Measuring the voltage drop across the resistor before
applying 5V to the gate, we observed a voltage drop of 0V. After setting the voltage to our gate to be
5V, we observed that the voltage drop jumped up to being within our tolerance of acceptable voltages
to set off our igniters.

3.2 Control Unit Verification
The separate control units for out controller, receiver, and sensor pods have their own set of
requirements and verifications as seen in Table A, but many of these requirements are overlapping. To
test the full functionality of the logic from the controller and receiver’s microcontroller shown in Figure
2.2.1 and Figure 2.2.2 respectively, we developed the code by unit testing and debugged with help from
the Arduinos’ serial monitor. For the controller specifically, we printed our current state on the serial
monitor to ensure that the state transitions happened when expected and produced the intended
behavior. We also used the serial monitor to test if the controller can identify if the user has pressed a
button and the specific button pressed. This was done by printing the button value that the
microcontroller thinks were pressed to the serial monitor and checking the value. For the receiver we
connected our MOSFET drain to a LED in series with a resistor. We then wrote a simple program that
would switch the MOSFETs’ gate voltage from 5V to 0V repeatedly. If the MOSFET has been solder
correctly, then the LED would blink on and off.

We were able to show that our components had the intended software functionality and could send
data over the communication module in our project’s demonstration. Our controller had unique

12

messages display for each state from Figure 2.2.1 and our receiver could set of a specified igniter when
a launch signal was sent from the controller.

3.3 User Interface Verification
The verification for the user interface happened in two stages. After getting all the parts we tested the
functionality of each part individually. For the buttons we made a simple pullup resistor circuit
connected to one terminal with the other one tied to ground. Measuring the voltage of the terminal
with the pullup resistor, we pressed the button and observed if the voltage would go from 5V to 0V. The
LEDs were a bit simpler. For those we just touched the two ends of the LED to a CR2032 Maxell 3V
battery and observed if the LED would light up. The seven-segment display screen was the most
complicated unit test of the interface components. For this we wired up each terminal to an Arduino
UNO and, using an existing library, tested some basic output features that we would be using in our final
implementation discussed in section 2.3.

The second stage for verifying our user interface implementation was at the end of our project by
connecting all the components together on the inside of the controller device and observing that
everything worked as expected. For the buttons we wired one terminal of each button together and
connected that to a ground breakout pin. The other ends were individually connected to pullup resistor
breakouts. For wire management purposes, we designed our PCB board such that each vertical column
of buttons’ wires could be broken out as a ribbon cable and attached to the board that way. For the
LEDs we attached each rows cathode (-) together and connected those rows to a ribbon cable to attach
to the breakouts implemented. We then attached the anodes (+) of each column together to a breakout
ribbon cable. Unlike the original testing and verification, the seven-segment display was the easiest to
install in the controller face. All we needed to do attach ribbon cables to all the pins such that they could
be plugged into the breakout pins of the PCB. After installing all the components, we then connected all
the ribbon cable breakouts, turned on our device and observed the functionality of our controllers’ user
interface.

3.4 Communication Module Verification
The key function of our communications module is to ensure that the control units of each component
can properly communicate with each other. To test this, we used an Arduino Uno connected to one of
our spare RF transceiver modules to test if each was able to send and read wireless messages. The
Arduino’s were uploaded with test programs that we wrote beforehand with the help of Dejan
Nedelkovski’s tutorial for the NRF24L01 transceiver modules on the How To Mechatronics website [7].
We used the serial monitor on both the Arduino and our components microcontrollers to check that the
communication worked successfully and use that information to debug our system.

Additionally, we tested that the transceiver modules used in our components could reliably
communicate between each other from a minimum range of 150 ft as specified in our high-level
requirements and the RF module section of Table A. This was tested using two Arduino Unos connected
to RF transceivers. One Arduino will send a specific message to the other and the other Arduino
responds by sending a unique message back. We took these two Arduinos to opposite ends to the hall
outside of the ECE Senior Design lab (with distance of roughly 200 ft) and confirmed that the sender

13

could display the receiving Arduino’ s unique message back on its serial monitor. This confirmed that our
wireless communications met our requirements.

To ensure that our checksum also met our requirements, we created a short test program using the
FastCRC library used in the code for our components. This test program took a sample set of (1,000,
10,000 and 100,000) randomly generated 3-byte messages and tested if any passed our CRC8 checksum.
We found that for each sample size we tried, 99.5% of the random values failed the checksum, meeting
our checksum requirement.

3.5 Sensor Module Verification
The verifications for our sensor module required detection of motion within 8 ft of the sensor. To
correctly identify motion within our detection area we first needed to understand the range of output
voltages we were dealing with. The way we tested this was by using the Arduino IDE serial monitor and
a digital multimeter. The sensors’ output was tied directly to an analog input pin on the Atmega328p
microcontroller and converted to an integer value of 0-1024 with a reference to 1.1V. To start, we
conducted a control test where everything within the detection area was motionless. We then had a
person walk across the field of view 8 ft away from the sensor and recorded the voltage range the
sensor outputted. The range we observed can be seen in Table 3.5.1.

Range Motionless Moving 8 ft Away
Low (mV)(Integer) 502mV (467 integer) 502mV (467 integer)
High (mV)(Integer) 506mV (471 integer) 517mV (481 integer)

Table 3.5.1 Sensor Voltage Test Range

Our main concern was determining what constitutes movement within this voltage range. As you can
see from Table 3.5.1, the voltage from the sensor changes very little when standing still. From our
testing, it seemed that the sensor would find a resting voltage when everything was stationary in its field
of view and would jump considerably, relative to the range of voltages we were getting, whenever there
was movement at 8 ft away, or closer. Due to this observation we designed our sensor code to poll the
analog output every fifth of a second and do a simple reference check to the previous sensor value. If
the difference between the current value and the previous value was greater than one, we marked that
as a motion spike. The delay in polling allowed us to safely disregard any minimal voltage change a still
detection area may give our sensor while allowing a great enough voltage change to occur if there was
motion in our detection area.

14

4. Costs

4.1 Parts
This project was designed and built with an average consumer in mind. This is the reason we made this
project as low cost as possible and set our upper limit to be $120. Many of the parts we used for the
prototype were purchased at the single unit cost. These same parts also had the option for bulk
purchases at a cheaper cost per unit. Ideally, if we took this project to market, we would order and
assemble our system in mass quantities so the limit of $120 applies to our mass production costs. The
breakdown of our parts cost for both our prototype and mass production units can be found below in
Table 4.1.1.

Along with the electrical parts, we required bodies for each of our components. We were lucky enough
to have access to a 3D printer for the development of our prototype as this did not increase our
prototype cost. This would not be possible for mass production. The alternative we investigated was
injection molding and came to an estimate of $5 per unit [8]. This brings our total estimate for mass
production cost per unit to $84.68 and keep us $35 under our cost limit.

Part Manufacturer Quantity Retail
Cost/Unit

($)

Prototype
Cost ($)

Bulk Purchase
Cost ($)

ATmega2560 Microchip 2 11.85 23.70 17.22
ATmega328p Microchip 2 2.07 4.14 3.44
IRA-S210ST01 Murata Technologies 3 3.12 9.36 3.72

IML-0688 Murata Technologies 3 3.30 9.90 4.08
LD1117S33TR STMicroelectronics 4 0.44 1.76 0.72
LD1117S50TR STMicroelectronics 4 0.44 1.76 0.72

NRF24L01 Nordic
Semiconductor

4 1.20 4.80 4.80

ADG731BSUZ Analog Device 1 10.67 10.67 6.23
SI1442DH-T1-

GE3CT-ND
Vishay Siliconix 32 0.57 18.24 2.88

TDCG1050M-ND Vishay
Semiconductor

1 2.91 2.91 1.02

A4YBS Uxcell UXCELL 33 0.39 12.87 12.87
A13122500ux0991 UXCELL 8 1.45 11.63 11.63

LEDS Areyourshop 36 0.01 0.36 0.36
Rechargeable 12V

Li-ion Battery
ABENIC 1 20.99 20.99 7.99

PCB PCBway 4 0.50 2.00 2.00
Body of

Components
N/A 1 N/A FREE 5.00

Parts Total 135.09 84.68
Table 4.1.1 Part Costs

15

4.2 Labor

Our labor cost comes from the average salary of students who graduated with a BS in Computer
Engineering in the ‘2014-15’ academic year. These students earned an average of $84,250 per year [9].
This salary divided by 2,080 because this is the amount of work hours in a year (40 hours per week * 52
weeks per year). This division yields and hourly rate of $40.50 which we rounded down to $40 per hour.

Name Rate ($/h) Hours (h) Total*2.5 ($)
Daniel 40.00 225 22,500.00
Michael 40.00 225 22,500.00
Trent 40.00 225 22,500.00
Total Labor 67,500.00

Table 4.2.1 Labor Costs

4.3 Total Prototype Cost

Total Parts ($) Total Labor ($) Grand Total Prototype Cost ($)
135.09 67,500.00 67,635.09

Table 4.3.1 Total Costs

16

5. Conclusion

5.1 Accomplishments
Our project was to design a remote fireworks launcher with an emphasis on safety. We accomplished
this by developing three different devices: a controller that will be the main medium between the user
and our product, sensor pods that will be placed around the launch area to help detect motion, and a
receiver that will set of the igniters and act as a communications hub between the controller and the
sensor pods. Our project worked just as purposed. The user can select between thirty-two buttons, each
corresponding to a unique igniter. Once the user selects a button, the seven-segment display will show
the requested number back to the user. If no motion errors have been detected by the receiver or the
sensor pods, then the user can hit the acknowledge button which sends a launch code packet to the
receiver where it will be interoperated and the corresponding MOSFET will be activated. This allows
current to flow from the Lithium-ion battery, past the igniter, and through the MOSFET to ground which
then sets off our igniters, lighting the fireworks fuse.

5.2 Uncertainties
One of the aspects of our project that we believe was unsatisfactory was the detection ability of our
sensor modules. While these modules worked great at detecting motion, they were unable to detect
stationary people, or foreign objects, within the launch area. Even in our array of sensors, once you give
all the sensors time to stabilize to a stationary environment, nothing will be detected unless you move.
Since much of our testing for our sensor modules was done with a single sensor, we had initially
believed that having all sensors present would help detect stationary targets within the detection area
but that was not the case with our current implementation. As mentioned in Section 3.5, the sensors
seemed to have resting voltage. There may have been potential to calibrate the sensor array to know
exactly what the resting voltage of each sensor should be when set up in the proper configuration, see
Figure 2.5.2. Once these resting voltages have been identified, we then might have been able to
compare that value with the most recently pulled value instead of using our existing method. This would
allow us to detect any anomaly within the launch area and potentially reveal any stationary person in
danger. Unfortunately, we were unable to test this theory.

Aesthetically the most important part of our project is the user interface. Even though functionality wise
the interface works perfectly, one thing we would have wanted to improve is the refresh rate of the
LEDs and display. Currently both parts appear to flicker slightly and can become a distraction to the
user. We would have liked to decrease this effect so that the LEDs and display appear to be more solid
instead.

5.3 Ethical Considerations
Due to the nature of our project there are some ethical, and legal concerns to consider. The primary use
of this project is to safely ignite pyrotechnic products, specifically mortar fireworks. When using these
products, federal and local laws/policies should be strictly followed. The use of fireworks is regulated
federally and are illegal in the state of Illinois, including the city of Urbana, without a proper permit.
However, smaller pyrotechnic devices such as sparklers, smoke devices, or trick noise makers can be

17

legally used in Illinois without any kind of permit. More details about these laws can be found in Illinois’
Pyrotechnic Use Act [10] and the city of Urbana’s firework policies [11].

Legal concerns aside, our project does encourage the use of fireworks, which may be in violation of the
1st and 9th clause of the IEEE code of ethics [12]. Fireworks can prove to be very dangerous, but the
purpose of our project is to make using fireworks safer for everyone by being able to set off these
devices remotely with significantly less risk of harm. If this project wasn’t used as intended, it can still
cause violations with the IEEE code of ethics. Unfortunately, there is no way for us to govern how our
project is used, but we believe that the increase of public safety due to the project’s safety features
being used as intended will outweigh the possible harm of its misuse.

5.4 Future Work
Although our project was able to meet all our requirements successfully, there is still room for
improvement. To start, our controller could use a standard 5:32 MUX instead of the 1:32 serial MUX that
we used in our design. We would be able to switch inputs on a 5:32 MUX much faster than with the
serial MUX, which would have lowered the amount of processing needed for checking the buttons on
the controller. The lowered processing requirements of polling a 5:32 MUX and further optimizations to
our controller code would also increase the refresh rate of the controller’s LEDs and hex display. This
would reduce the amount of noticeable flickering in the controller’s user interface. Another solution
that has been suggested to us, is to replace the physical controller entirely and replace it with a mobile
application. A mobile app replacement would significantly reduce our production costs, but more
software security measures would need to be added to our communication module.

One point of improvement for the receiver would be to replace the 12V li-ion battery with a less volatile
type of battery. These batteries can pose a fire hazard with improper usage due to high energy densities
coupled with the flammable organic electrolyte [13]. Having a li-ion battery approximately tree meters
away from active fireworks is a safety concern, even if it is protected by casing, and it’s something that
should be addressed.

Additionally, a revision needs to be made to both our receiver and sensor pods’ PCB designs. In the PCBs
we used in our current build we didn’t add a capacitor to work as a stabilizing low-pass filter to support
our PIR motion sensors. Luckily, we were able to add these capacitors using our programming
breakouts, but these should be included normally in the PCB design. We would also want to experiment
with other detection methods besides the PIR motion sensors we used. Our PIR motion sensors can
successfully detect motion but they are not able to detect if someone is standing still in the launch deck
area. If we move forward with this project this is another safety concern that we would address.

18

References

[1] U.S. Consumer Product Safety Commission, ‘2016 Fireworks Annual Report’, 2017. [Online].
Available: https://www.cpsc.gov/s3fs-
public/Fireworks_Report_2016.pdf?t.YHKjE9bFiabmirA.4NJJST.5SUWIQJ [Accessed: 19- Sept- 2018]

[2] Andrew G. Simpson, ‘Facts About Fireworks: 11,000 Injuries, 4 Deaths in 2016’, Insurance Journal,
2017. [Online]. Available:
https://www.insurancejournal.com/news/national/2017/06/30/456213.htm [Accessed: 19- Sept-
2018]

[3] Cobra Firing Systems, ‘Handheld Remotes’, [Online]. Available:
http://www.cobrafiringsystems.com/remote.html [Accessed: 19- Sept- 2018]

[4] Cobra Firing Systems, ‘Modules’, [Online]. Available:
http://www.cobrafiringsystems.com/modules.html [Accessed: 19- Sept- 2018]

[5] Firefly, ‘Product Details’, 2018. [Online]. Available: https://shootfirefly.com/pages/product-details
[Accessed: 19- Sept- 2018]

[6] Murata Electronics, ‘Data Sheet Pyro Electric Infrared Sensor Fresnel Lens’. [Online] Available:
https://www.murata.com/~/media/webrenewal/products/sensor/infrared/datasheet_pir.ashx?la=e
n [Accessed: 4-Nov-2018]

[7] Dejan Nedelkovski, ‘Arduino Wireless Communication – NRF24L01 Tutorial’, How To Mechatronics,
2017. [Online] Available: https://howtomechatronics.com/tutorials/arduino/arduino-wireless-
communication-nrf24l01-tutorial/ [Accessed: 3-Nov-2018]

[8] Rex Plastics, ‘How much to Plastic Injection Molds Cost?’, 2013. [Online] Available:
https://rexplastics.com/plastic-injection-molds/how-much-do-plastic-injection-molds-cost
[Accessed: 8-Dec-2018]

[9] Department of Electrical and Computer Engineering, ‘Salary Averages’, 2018, [Online]. Available:
https://ece.illinois.edu/admissions/why-ece/salary-averages.asp [Accessed: 3-Oct 2018]

[10] Illinois General Assembly, ‘(425 ILCS 35/) Pyrotechnic Use Act’, 2009. [Online]. Available:
http://www.ilga.gov/legislation/ilcs/ilcs3.asp?ActID=1635&ChapterID=38 [Accessed: 15- Sept- 2018]

[11] City of Urbana, ‘Fireworks’, 2009. [Online]. Available: https://www.urbanaillinois.us/residents/fire-

safety/fireworks [Accessed: 15- Sept- 2018]

[12] IEEE.org, ‘IEEE Code of Ethics’, 2018. [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html [Accessed: 15- Sept- 2018]

[13] University of Washington, ‘Lithium Battery Safety’, 2018, [Online]. Available:
https://www.ehs.washington.edu/system/files/resources/lithium-battery-safety.pdf [Accessed: 15-
Oct-2018]

19

Appendix A Requirements and Verifications Table

Block Requirements Verification Verification
status

(Y or N)

Voltage
Regulators

1. Reduce any voltage >
5V to 5V +/-5%

2. Reduce any voltage >
3.3V to 3.3V +/-5%

3. Voltage regulators
operate continuously
for over 1 hour under
125 degrees Celsius

1. Verification for Requirement 1 & 2
a. With a power supply, apply 6V to

the input pin of the regulator and
connect GND to GND

b. Probe the output pin and GND pin
with a digital multimeter and read
output

c. Confirm that output on
multimeter is within 5(3.3)V +/-
5%.

2. Verification for Requirement 3

a. Apply 6V to each regulator.
b. Run circuit for 1 hour
c. Measure temperature of each

regulator and confirm it is less
than 125 degrees Celsius

Y

Y

Power
MOSFETS

1. The MOSFETs can
handle the required
12V +/- 1.2V & 1A +/-
0.1A needed to set off
the igniters

1. Verification for Requirement 1
a. Tie the drain of the MOSFET’s to a

12V source
b. Attach a resistor from the

MOSFET’s source pin to GND
c. Toggle the voltage at the gate of

the MOSFET between VCC (5V)
and GND and probe the voltage
drop across the resistor

d. Confirm the voltage drop and
current

Y

MUX 1. Take in all 32
different button
signals and output the
signal of the
numbered button
corresponding to the
binary representation
sent from the
microcontroller.

1. Verification for Requirement 1
a. Tie all inputs to VCC (5V)
b. Connect the selection data lines

and output to the microcontroller
c. Switch one input line to GND
d. Observe if the corresponding

binary number is represented
with the LEDs

e. Check for all 32 possible inputs

Y

Microcontroller
(Controller)

1. The microcontroller
recognizes input from
the MUX

1. Verification for Requirement 1
a. Tie output and selection lines of

the MUX module to GPIO pins on
the microcontroller

Y

20

2. Microcontroller can
be programed to
follow the logic in
Figure 2.2.1

3. Microcontroller can
send data to and from
the communication
module

b. Program microcontroller to cycle
through all 32 possible input lines

c. Tie one input line from the MUX
to GND

d. Program microcontroller to
output the binary number of the
data line that was tied to GND to
a bank of LEDs

2. Verification for Requirement 2

a. Write code following the logic in
Figure 2.2.1

b. Test software behavior given hard
coded inputs

3. Verification for Requirement 3

a. Setup 2 communication modules
with one using this
microcontroller

b. Attach a button to one of the
microcontroller’s GPIO pins for
both microcontrollers and have it
send a signal through the
communication module when
pressed

c. Have the receiving
communication module’s
microcontroller light an LED if it
receives a message

Y

Y

Microcontroller
(Receiver)

1. Microcontroller can
be programed to
follow the logic in
Figure 2.2.2

2. Microcontroller can
read inputs detect
spikes in motion
sensor data (check if
current reading has a
difference greater
than a specified
threshold from the
previous reading)

3. Microcontroller can
send data to and from
the communication
module

1. Verification for Requirement 1
a. Write code following the logic in

Figure 2.2.2
b. Test software behavior with hard

coded inputs

2. Verification for Requirement 2
a. Power motion sensor and connect

its output pin to a GPIO pin for
our microcontroller

b. Program microcontroller to detect
a significant change between
readings and power a small LED
circuit when one is detected

3. Verification for Requirement 3

a. Setup 2 communication modules
with one using this
microcontroller

b. Attach a button to one of each
microcontroller’s GPIO pins and
have it send a signal through the

Y

Y

Y

21

communication module when
pressed

c. Have the receiving
communication module’s
microcontroller light an LED if it
receives a message from the
sending RF IC

Microcontroller
(Pods)

1. Microcontroller can
read inputs detect
spikes in motion
sensor data (check if
current reading has a
difference greater
than a specified
threshold from the
previous reading)

2. Microcontroller can
properly send data to
the Communication
Module

1. Verification for Requirement 1
a. Power motion sensor and connect

its output pin to a GPIO pin for
our microcontroller

b. Program microcontroller to detect
a significant change between
readings and power a small LED
circuit when one is detected

2. Verification for Requirement 2
a. Setup 2 communication modules

with one using this
microcontroller

b. Attach a button to one of the
microcontroller’s GPIO pins and
have it send a signal through the
communication module when
pressed

c. Have the receiving
communication module’s
microcontroller light an LED if it
receives a message from the
sending RF IC

Y

Y

7-Segment
Display

1. The 7-segment
display must be able
to display the value
given to it by the
microcontroller, using
the same frequency
as the LEDs

1. Verification for Requirement 1
a. Program a microcontroller to send

a test message to the hex screen
using 15 GPIOs. Use 4 of those
GPIO pins to cycle through the
common anode pins and the
others to specify which segments
to light

b. Verify that the intended message
is displayed on the hex display

Y

Buttons 1. Must be easily
pressable

1. Verification for Requirement 1
a. Press button and ensure that it

can be done without strain

Y

22

LEDs 1. The microcontroller
must remember what
buttons have received
success signals and
have the
corresponding LED
light up.

2. The microcontroller

must make 100 cycles
every second, since
there are four rows
for every cycle, we
need the switching
rate to be at least 400
per second.

1. Verification for Requirement 1
a. Program microcontroller to

decode binary representation of
the button number [0-4]

b. Wire output pins to LEDs in series
with resistors tied to GND

c. Send binary signals through
microcontroller and check that it
lights the corresponding LED

2. Verification for Requirement 2

a. Connect microcontroller to LED
circuit in Figure XXXX

b. Program the microcontroller to
have at least one LED on per row

c. Observe LED array for any sign of
flickering and that each LED can
be lit up independently

Y

Y

RF Module 1. Communicate reliably
(95% success rate) at
a range of at least 150
ft with another
communications
module.

2. Use control unit
microcontroller to
perform error
checking on received
data packets.

1. Verification for Requirement 1
a. Set up 2 communication modules

150 ft away from each other
b. Send sample data from one

module to the other 20 times
c. Verify sample data isn’t changed

95% of the time

2. Verification for Requirement 2
a. Setup communication with

another RF IC
b. Use CRC checksum library
c. Send random n-bit signals to the

other RF IC and check that they
are flagged as errors 95% of the
time

Y

Y

Motion Sensors 1. IR motion sensors
must be able to
detect movement
from 8 ft +/- 1 ft
away.

1. Verification for Requirement 1
a. Power sensor with 5V Vcc
b. Use an oscilloscope to check the

analog signal and see if there are
fluctuations when we create
motion 8 ft in front of the sensor

Y

Table A Requirements and Verifications

23

Appendix B Work Schedule

Week Of Michael Trent Daniel Checkpoints
10/8 Solidify power

solution for lighting
fuses

Research how to
program
microcontrollers

Start wireless
communication
tests

Order first round of
parts

10/15 Start Eagle PCB
design for controller
and receiver

Test PIR motion
sensors for
responsiveness

Continue wireless
communication
tests. Start Eagle
PCB design for
sensor pods

10/22 Finish first iteration
of controller PCB
design

Determine the
sensitivity of the
sensors and design
method for
determining motion

Finish first iteration
of sensor pod PCB
design

First round of PCB
orders (10/25)

10/29 Finish first iteration
of receiver PCB
design

Start programming
microcontrollers
(load
bootloaders/test
programs)

Test serial MUX

11/5 Convert Controller
and receiver PCBs
to breakout version

Write code for
sensor pods and 7-
segment display

Make final PCB
adjustments.
Solidify
microcontroller
programming
procedure

Final round of PCB
orders due (11/8)

11/12 Begin final designs
of physical devices
and printing those
designs

Tune sensitivity of
our sensor pod
code

Implement
communications
error checking

11/19 Continue printing
physical designs.
Assemble the
controller PCB and
user interface

Start programming
the sensor pods

Start programming
the controller and
receiver

Fall break

11/26 Finish soldering
parts for the
controller and
receiver

Complete sensor
pods and verify
communications
with receiver

Finish and debug
controller and
receiver code

Mock Demo (11/27)

12/3 Final touches and
debugging

Final touches and
debugging

Final touches and
debugging

Final Demo (12/4)
Mock Presentation
(12/6)

12/10 Prepare for
presentation and
write final report

Prepare for
presentation and
write final report

Prepare for
presentation and
write final report

Presentation
(12/11)
Final Report (12/12)

Table B Work Schedule

