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Abstract 

Our senior design project is a remote fireworks launcher. The project consists of four physical 
components: a controller, receiver, and two sensor pods. The controller is a custom-made user interface 
to send launch commands to the receiver at a safe distance of 150 feet and display important system 
information. The receiver is connected to a set of 32 electrical fuses to ignite fireworks, and along with 
our two sensor pods, contains motion sensors to detect activity near the launch deck. Our project was 
successfully able to ignite fuses, detect motion near the launch deck, and had reliable wireless 
communication between all components. 
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1. Introduction 

1.1 Background 
There are many annual occasions where fireworks are a staple in celebrating. These occasions, most 
notably the Fourth of July, often have large shows where fireworks are launched by professionals. 
Unfortunately, there are also plenty of amateurs during these events that launch fireworks privately. In 
2016, it was estimated that 11,100 people were injured and 4 deaths were reported as firework related 
[1],[2]. These numbers have varied a bit over the past decade, with the lowest estimate being 7,000 in 
2008 and the highest estimate being 11,900 in 2015 [1]. Most minor injuries from fireworks are from 
sparklers, while most of the firework related deaths are due to users being in close proximity while 
lighting off mortar firework rounds.   

“On July 4, 2016, a 42-year-old male from Florida suffered fatal injuries when the fireworks device he 
was lighting malfunctioned. According to the county deputies, the victim was trying to set off large 
mortar-type fireworks in a PVC pipe that was anchored to the ground.” [1]  

There is not much to be done about the individuals’ safety while using sparklers, but more can be done 
to help prevent the more serious accidents. Our solution for the more serious types of injuries was to 
design and implement a wireless launcher that can ignite mortar rounds for amateur consumers. The 
user would be able to observe and control the launching of the fireworks a safe distance from the 
launch deck, approximately 150 ft away. Our design would be equipped with motion sensors to detect 
anyone within proximity of the fireworks launching platform. We want our project to emphasize safety 
above all else. While backyard fireworks are always dangerous, our goal is to help minimize injuries at an 
affordable cost. 

Right now, there are some products similar to the ones we just described. Cobra Firing Systems provides 
professional equipment for large shows. This equipment ranges from $500, at its cheapest, to $1350 [3], 
[4]. This is obviously not reasonable for the average consumer. Firefly Firing System offers a cheaper 
alternative for firework enthusiasts, at $200 [5]. While this is cheaper than the professional firing 
systems, there are no safety measures in place to indicate when someone may be in danger around the 
fireworks. 

Our completed solution is cheaper and, more importantly, safer than what is currently available on the 
market. Our project has reliable communication between the controller and the receiver from 150 ft 
away, can set off our igniters at a 95% success rate and reliably detect anyone within an 8 ft radius of 
the firework launch deck with our motion sensors. Additionally, our project is rather affordable and is 
less than our initial price goal of $120. 

1.2 Components 
Our design consists of four separate components: a controller, receiver, and two identical sensors pods. 
The individual block diagrams for these components can be found below in Figure 1.2.1, Figure 1.2.2 
and Figure 1.2.3. 
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Figure 1.2.1    Controller Block Diagram 

 
Figure 1.2.2    Receiver Block Diagram 

 
Figure 1.2.3    Sensor Pod Block Diagram 
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Even with separate components, a few of our blocks are shared among all three. Each component has its 
own power supply with 3.3V and 5V voltage regulators to power all the different IC components. The 
three components also have their own microcontroller and RF chip to communicate with each other. 
The controller uses one acknowledge button, a four digit seven-segment display, and a set of thirty-two 
buttons and LEDs as a medium between the user and our project. A serial multiplexer (MUX) is used to 
send button input to the controller’s microcontroller for processing. Both the receiver and the sensor 
pods use PIR motion sensors to detect motion around the launch deck. Additionally, the receiver uses a 
set of power MOSFETs controlled by the receiver’s microcontroller to set off the electronic igniters.  

Our group has made some small changes from what was originally laid out in our design document. The 
type of battery used for the sensor pods was changed to a single 9V battery because we already had the 
correct connectors and they fit more easily into the sensor pod’s 3D printed casing. The DEMUX 
originally planned to be used in the receiver was cut due the large number of excess digital pins that 
were available on the receiver’s microcontroller. Keeping the DEMUX added an unnecessary element of 
complexity and its exclusion would reduce costs. 
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2 Design 

2.1 Power Supply Design  
When considering power supply, we needed to consider the physical size, ideal output voltage, and in 
the case of the receiver, the max current the battery could supply.  Since we used IC chips, we knew that 
we needed at least 5V at the source to meet the power supply requirement for those chips and for our 
wireless communication chips.  With the minimum size of the controller limited by the length needs of 
our user interface, we were free to use a larger battery pack of 4 AA batteries in series.   

The size of the battery became a problem when dealing with the sensor pods.  Originally, we were 
planning on using a similar type of battery pack as the controller with AAA batteries instead.  We 
realized that even these smaller batteries still would have a hard time fitting into our cases.  After 
discussing the issue, we decided to use a single 9V battery, which can fit inside our pod casing without 
any problems.   

When figuring out the battery needed for the receiver, we needed a more powerful supply than the 
previous two. The igniters we chose required at least 12V and 1A to be set off consistently. After doing 
research online, we chose an ABENIC 12V Li-ion battery since it was cheaper than other rechargeable 
batteries and met the power needs for our igniters.  A visual representation of what the power sub-
circuit looks like can be seen in Figure 2.1.1 below. 

 

Figure 2.1.1 Power Circuit for Igniters 

Along with the different batteries, each device also needed two voltage regulators to step down the 
voltage to 5V for the IC components and 3.3V for the wireless communication chips.  The receiver also 
required n-type MOSFETs to act as a barrier switch that can be triggered by an IC chip while still being 
able to handle the current and voltage needed for the fuses.   

2.2 Control Unit Design  
When choosing the parts for our microcontrollers we considered how many programable pins are 
available and how much supporting software and documentation the chips have online for programing 
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them.  We settled on using two different chips for our project: Atmega2560, Atmega328p.  The 
Atmega2560 offers eighty-six general programing pins while the Atmega328p offers 23. We specifically 
chose these two chips specifically because they are both chips that are used in a widely used breakout 
microcontroller company called Arduino.   

Our controllers’ functionality was managed by an Atmega2560 microcontroller paired with a serial MUX 
to process user input. An Atmega2560 was specifically chosen to ensure that our design had enough 
digital I/O pins for both our user interface and wireless communications. This microcontroller was 
programmed to follow the state system shown below in Figure 2.2.1. Following the states shown in the 
figure, the user can press one of the 32 launch buttons on the controller to enter the ‘Queue’ state. The 
user can change the currently queued igniter number by pressing a different launch button. After 
confirming the launch number by pressing the acknowledge button, the ‘Wait’ state is reached and the 
controller sends a wireless launch message to the receiver. If an acknowledge message from the 
receiver is read, we move to the ‘Complete’ state, signifying a successful launch. Afterwards, there will 
be a short 10 second cooldown in the ‘Cooldown’ state before the user can start the process over to set 
off another igniter. While in the ‘Wait’ state, if there is no response from the receiver after 3 seconds, 
the controller will transition to the ‘Fail’ state and must be acknowledged by the user. All of these states 
can be interrupted if the controller gets a motion error message from the receiver, moving the 
controller into the ‘Error’ state. This state will return to the ‘Start’ state with no buttons queued after 15 
seconds but, the timeout will restart if another motion error is received while still inside the ‘Error’ 
state. 

 
Figure 2.2.1    Controller State Flowchart 

The receivers’ control unit is somewhat simpler than that of the controller. The receiver also used an 
Atmega2560. With all the pins offered on the 2560, we were able to simplify our design and omit the 
DEMUX by tying the gates of our MOSFETs directly to digital pins on the microcontroller. The receivers’ 
control unit is responsible for forwarding wireless messages and processing launch commands from our 
controller as illustrated in Figure 2.2.2. When a launch command is received, the microcontroller will set 
the appropriate MOSFET gate to high, allowing current to flow through the MOSFET and igniter, setting 
it off. Afterwards, the microcontroller uses our communication module to send an acknowledge 
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message back to the controller and return the MOSFET gate to low. If instead, a motion error is received 
from one of our pod units, or generated from the receiver itself, a motion error message will be sent to 
the controller and the receiver will begin a 15 second timeout where no launch operations can be 
performed. This timeout will be restarted if another motion error occurs while still in the timeout. 

 

Figure 2.2.2    Receiver Software Flowchart 

The sensor pods’ control unit is a simpler version of that in the receiver. The sensor pods’ 
microcontroller constantly monitors the readings from their internal PIR sensors and sends a motion 
error signal to the receiver if a spike is detected (more on this in section 2.5). Because the sensor pods 
only need to do this one operation, we used the smaller surface mount Atmega328p microcontroller in 
each of the sensor pods. 

On each of our components PCB’s we added breakouts for the 5V, GND, RX, TX, MISO, MOSI, SCK, and 
RESET pins. These breakouts allowed us to upload the Arduino bootloader and Arduino sketches onto 
our microcontrollers without having to programing beforehand. This made code debugging in all of our 
components much easier. 

2.3 User Interface Design  
When first considering how we wanted the user interface to look and what it consisted of, we first 
needed to decide how many unique igniters the user would be able to set off before needing to reset 
the system. We set our starting number of unique launches to be twenty-five since any number less 
than that would require too much setup from the user without sufficient reward. After declaring this 
minimum, we turned our attention to different ways we could minimize the number of inputs to our 
microcontroller. We found a 32:1 serial mux that reduced out total number of microcontroller pins 
needed from thirty-two to three. After finding out the number of buttons we are going to use, we 
concentrated on how we would arrange the buttons on the face of the controller. We decided to go 
with a 2D matrix of eight columns and four rows as this was the most visually appealing arrangement to 
us. 
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After taking care of the input side of the user interface, we then discussed how we wanted to represent 
that the user has already set off one of the igniters. Wanting to keep the design simple to understand, 
we decided to use a similar dimensioned 2D matrix of LEDs as shown in Figure 2.3.1 below. A lit LED 
indicates that the igniter has not been set off yet; conversely, a darkened LED indicates to the user that 
they have already pushed that button and the receiver has set off that igniter. Looking at this set up, 
there is no way to potentially power all thirty-two LEDs at the same time. To make it appear that all the 
LEDs are on at the same time, we trick the human eye with a phenomenon called “Persistence of Vision” 
or POV for short. What this trick entails is to cycle through the different rows fast enough that the 
human eye cannot discern which row of LEDs are powered on and which are not. This tricks the human 
eye into believing that all the rows are always powered. 

 

Figure 2.3.1 LED Matrix Representation 

Since our project does more than mindlessly set of igniters, we have multiple states our system can be 
in. Each of these states requires different actions to be taken by the user. This meant that we needed to 
include some type of display to aid the user and inform them of what state the system is in and the 
actions they can take at that moment.  We chose to use a four digit seven-segment display to convey 
this information.  Our display will tell the user if motion has been detected by the launch platform, 
which button they have queued up, if the system is ready to take another button input, and whether the 
launch packet has been receiver by the receiver.  We found that the most logical position on our 
controller interface for our display is centered at the top, right next to the acknowledge button since 
one of the main functions of the display is to parrot the launch number back to user and wait for the 
signal from the acknowledge button to send the launch packet. 

2.4 Communication Module Design  
The communications module is one of the most important blocks of our design and enables the primary 
safety feature of this project. To facilitate this block as much as possible, we used multiple NRF24L01 
transceiver modules in our design. Research suggested that these modules were easy to use with 
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Arduino combatable microcontrollers and should meet our 150 ft minimal range requirement. 
Originally, we were considering using the ESP8266 Wi-Fi modules instead, but after researching how to 
use the modules we concluded that we would need to have two per component for reliable two-way 
communication. Communication over Wi-Fi also added other networking complexities to the design 
where simple RF communications would suffice. 

Our project communicates with its fellow components using 3-byte messages sent using the NRF24L01 
(with help from the RF24 Arduino library). An example data packet can be seen in Figure 2.4.1.  

 

 
Figure 2.4.1    Sample Data Packet 

Each message begins with a byte long opcode signifying the message type (a full list of message types 
can be found in Table 2.4.1). The second byte contains data relevant to the packet and the final byte is 
an appended CRC8 checksum for error checking. The 8-bit version of the CRC checksum was used due to 
our messages’ small size. The CRC8 checksum also helps in preventing random signals being potentially 
interpreted as firework launch commands. 
 

Type Opcodes Data 
Launch L Button/Fuse # 

Acknowledge A Button/Fuse # 
Motion Error E Sensor # 

Table 2.4.1    Wireless Message Types 

2.5 Sensor Module Design  
The objective of these sensors is to detect motion within an 8 ft radius around the launch area. The 
sensor module of our system is designed to utilize the IRA-S210ST01 passive infrared sensors, paired 
with the IML-0866 lens, and gather readable information for our microcontroller to interpret as 
described in Section 2.2. Our project uses three of these sensor modules in an equilateral triangular 
setup to maximize our field of view when attempting to detect motion around the launch area. The 
sensors and lens we used had a field of view of 6 meters across and 3 meters deep as seen in Figure 
2.5.1. The physical layout of our motion sensing area can be seen in Figure 2.5.2.  
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Figure 2.5.1 IRA-S210ST01 Field of View [6] 

 
Figure 2.5.2 Physical Layout of Detection Area 

The specific sensor circuit went through a few design iterations before our module could reliably detect 
motion within our detection area. These motion sensors are capable of outputting a minimum of 0.2V to 
a maximum of 1.5V via the source pin [6]. We started our design by using the test circuit for the sensors 
source voltage seen in Figure 2.5.3.  

 
Figure 2.5.3 Test Circuit for Source Voltage [6] 

After testing this circuit for source voltage, we moved to make the circuit more barebones to see if we 
could receive the same results as the test circuit. The change in output voltage is what we were 
concerned most with because measuring this change from the sensor was how we would detect motion 
within the launch deck. We found that even though the operational amplifier did amplify the source 
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voltage, it had no effect on the range of voltages given by the sensor. We found that when testing with 
an Arduino Uno, the 10nf capacitor and 33kΩ resistor were seemingly unnecessary for our 
measurements also. In hindsight, these two components created a low-pass filter to help reduce noise 
from our input voltage. When we moved to testing on our PCBs, it was apparent there was much more 
noise present than the test on the Arduino Uno. Our final sensor circuit iteration re-added the filtering 
capacitor to stabilize the output we were receiving on the source voltage pin as seen in Figure 2.5.4. 

 
Figure 2.5.4 Final Sensor Circuit Schematic 
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3. Design Verification 

3.1 Power Supply Verification 
Part of our requirements for our batteries was that they could fit, along with other electrical 
components, inside the physical devices we created.  This was easily tested and verified by simply wiring 
up all the components and seeing if they could all fit inside our devices.  All of our power supply units 
did end up fitting inside our devices along with the other components of each system.  

Each power system also included a 5V and 3.3V voltage regulator to step down the supply voltage for 
the IC chips and IR communication chip respectively.  The verification of these regulators was done by 
providing a source voltage of 6V to the input of the regulator and observing the output voltage using a 
multimeter. For both the 5V and 3.3V regulators we observed the ideal output voltage plus or minus the 
allowed tolerance of 5%. We continuously supplied the regulators with power for over an hour to make 
sure that they would not overheat with constant use and after over an hour of use we observed no great 
increase in temperature in the regulators.   

Along with the battery supply and voltage regulators, the receiver also required n-type MOSFETs to 
protect the IC chips from the power needs when setting off the fuses.  To test that our chosen MOSFETs 
worked, we applied a 12 V source to a resistor connected to the drain of our MOSFET. Refer to Figure 
2.1.1 for clarification. With the source pin connected to ground we set the gate pin to 5V, representing 
what the signal from the microcontroller would send, and measured the voltage different across the 
resistor before and after turning on the MOSFET.  Measuring the voltage drop across the resistor before 
applying 5V to the gate, we observed a voltage drop of 0V.  After setting the voltage to our gate to be 
5V, we observed that the voltage drop jumped up to being within our tolerance of acceptable voltages 
to set off our igniters.  

3.2 Control Unit Verification 
The separate control units for out controller, receiver, and sensor pods have their own set of 
requirements and verifications as seen in Table A, but many of these requirements are overlapping. To 
test the full functionality of the logic from the controller and receiver’s microcontroller shown in Figure 
2.2.1 and Figure 2.2.2 respectively, we developed the code by unit testing and debugged with help from 
the Arduinos’ serial monitor. For the controller specifically, we printed our current state on the serial 
monitor to ensure that the state transitions happened when expected and produced the intended 
behavior. We also used the serial monitor to test if the controller can identify if the user has pressed a 
button and the specific button pressed. This was done by printing the button value that the 
microcontroller thinks were pressed to the serial monitor and checking the value. For the receiver we 
connected our MOSFET drain to a LED in series with a resistor. We then wrote a simple program that 
would switch the MOSFETs’ gate voltage from 5V to 0V repeatedly.  If the MOSFET has been solder 
correctly, then the LED would blink on and off.  

We were able to show that our components had the intended software functionality and could send 
data over the communication module in our project’s demonstration. Our controller had unique 
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messages display for each state from Figure 2.2.1 and our receiver could set of a specified igniter when 
a launch signal was sent from the controller. 

3.3 User Interface Verification 
The verification for the user interface happened in two stages.  After getting all the parts we tested the 
functionality of each part individually.  For the buttons we made a simple pullup resistor circuit 
connected to one terminal with the other one tied to ground.  Measuring the voltage of the terminal 
with the pullup resistor, we pressed the button and observed if the voltage would go from 5V to 0V.  The 
LEDs were a bit simpler. For those we just touched the two ends of the LED to a CR2032 Maxell 3V 
battery and observed if the LED would light up. The seven-segment display screen was the most 
complicated unit test of the interface components.  For this we wired up each terminal to an Arduino 
UNO and, using an existing library, tested some basic output features that we would be using in our final 
implementation discussed in section 2.3.   

The second stage for verifying our user interface implementation was at the end of our project by 
connecting all the components together on the inside of the controller device and observing that 
everything worked as expected.  For the buttons we wired one terminal of each button together and 
connected that to a ground breakout pin.  The other ends were individually connected to pullup resistor 
breakouts. For wire management purposes, we designed our PCB board such that each vertical column 
of buttons’ wires could be broken out as a ribbon cable and attached to the board that way.  For the 
LEDs we attached each rows cathode (-) together and connected those rows to a ribbon cable to attach 
to the breakouts implemented. We then attached the anodes (+) of each column together to a breakout 
ribbon cable.  Unlike the original testing and verification, the seven-segment display was the easiest to 
install in the controller face. All we needed to do attach ribbon cables to all the pins such that they could 
be plugged into the breakout pins of the PCB.  After installing all the components, we then connected all 
the ribbon cable breakouts, turned on our device and observed the functionality of our controllers’ user 
interface.   

3.4 Communication Module Verification 
The key function of our communications module is to ensure that the control units of each component 
can properly communicate with each other. To test this, we used an Arduino Uno connected to one of 
our spare RF transceiver modules to test if each was able to send and read wireless messages. The 
Arduino’s were uploaded with test programs that we wrote beforehand with the help of Dejan 
Nedelkovski’s tutorial for the NRF24L01 transceiver modules on the How To Mechatronics website [7]. 
We used the serial monitor on both the Arduino and our components microcontrollers to check that the 
communication worked successfully and use that information to debug our system. 

Additionally, we tested that the transceiver modules used in our components could reliably 
communicate between each other from a minimum range of 150 ft as specified in our high-level 
requirements and the RF module section of Table A. This was tested using two Arduino Unos connected 
to RF transceivers. One Arduino will send a specific message to the other and the other Arduino 
responds by sending a unique message back. We took these two Arduinos to opposite ends to the hall 
outside of the ECE Senior Design lab (with distance of roughly 200 ft) and confirmed that the sender 
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could display the receiving Arduino’ s unique message back on its serial monitor. This confirmed that our 
wireless communications met our requirements. 

To ensure that our checksum also met our requirements, we created a short test program using the 
FastCRC library used in the code for our components. This test program took a sample set of (1,000, 
10,000 and 100,000) randomly generated 3-byte messages and tested if any passed our CRC8 checksum. 
We found that for each sample size we tried, 99.5% of the random values failed the checksum, meeting 
our checksum requirement. 

3.5 Sensor Module Verification 
The verifications for our sensor module required detection of motion within 8 ft of the sensor. To 
correctly identify motion within our detection area we first needed to understand the range of output 
voltages we were dealing with. The way we tested this was by using the Arduino IDE serial monitor and 
a digital multimeter. The sensors’ output was tied directly to an analog input pin on the Atmega328p 
microcontroller and converted to an integer value of 0-1024 with a reference to 1.1V. To start, we 
conducted a control test where everything within the detection area was motionless. We then had a 
person walk across the field of view 8 ft away from the sensor and recorded the voltage range the 
sensor outputted. The range we observed can be seen in Table 3.5.1.  

Range  Motionless Moving 8 ft Away 
Low (mV)(Integer) 502mV (467 integer) 502mV (467 integer) 
High (mV)(Integer) 506mV (471 integer) 517mV (481 integer) 

Table 3.5.1 Sensor Voltage Test Range 

Our main concern was determining what constitutes movement within this voltage range. As you can 
see from Table 3.5.1, the voltage from the sensor changes very little when standing still. From our 
testing, it seemed that the sensor would find a resting voltage when everything was stationary in its field 
of view and would jump considerably, relative to the range of voltages we were getting, whenever there 
was movement at 8 ft away, or closer. Due to this observation we designed our sensor code to poll the 
analog output every fifth of a second and do a simple reference check to the previous sensor value. If 
the difference between the current value and the previous value was greater than one, we marked that 
as a motion spike. The delay in polling allowed us to safely disregard any minimal voltage change a still 
detection area may give our sensor while allowing a great enough voltage change to occur if there was 
motion in our detection area. 
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4. Costs 

4.1 Parts 
This project was designed and built with an average consumer in mind. This is the reason we made this 
project as low cost as possible and set our upper limit to be $120. Many of the parts we used for the 
prototype were purchased at the single unit cost. These same parts also had the option for bulk 
purchases at a cheaper cost per unit. Ideally, if we took this project to market, we would order and 
assemble our system in mass quantities so the limit of $120 applies to our mass production costs. The 
breakdown of our parts cost for both our prototype and mass production units can be found below in 
Table 4.1.1.  

Along with the electrical parts, we required bodies for each of our components. We were lucky enough 
to have access to a 3D printer for the development of our prototype as this did not increase our 
prototype cost. This would not be possible for mass production. The alternative we investigated was 
injection molding and came to an estimate of $5 per unit [8]. This brings our total estimate for mass 
production cost per unit to $84.68 and keep us $35 under our cost limit.  

Part Manufacturer Quantity Retail 
Cost/Unit 

($) 

Prototype 
Cost ($) 

Bulk Purchase 
Cost ($) 

ATmega2560 Microchip 2 11.85 23.70 17.22 
ATmega328p Microchip 2 2.07 4.14 3.44 
IRA-S210ST01 Murata Technologies 3 3.12 9.36 3.72 

IML-0688 Murata Technologies 3 3.30 9.90 4.08 
LD1117S33TR STMicroelectronics 4 0.44 1.76 0.72 
LD1117S50TR STMicroelectronics 4 0.44 1.76 0.72 

NRF24L01 Nordic 
Semiconductor 

4 1.20 4.80 4.80 

ADG731BSUZ Analog Device 1 10.67 10.67 6.23 
SI1442DH-T1-

GE3CT-ND 
Vishay Siliconix 32 0.57 18.24 2.88 

TDCG1050M-ND Vishay 
Semiconductor 

1 2.91 2.91 1.02 

A4YBS Uxcell UXCELL 33 0.39 12.87 12.87 
A13122500ux0991 UXCELL 8 1.45 11.63 11.63 

LEDS Areyourshop 36 0.01 0.36 0.36 
Rechargeable 12V 

Li-ion Battery 
ABENIC 1 20.99 20.99 7.99 

PCB PCBway 4 0.50 2.00 2.00 
Body of 

Components 
N/A 1 N/A FREE 5.00 

Parts Total    135.09 84.68 
Table 4.1.1 Part Costs 
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4.2 Labor 

Our labor cost comes from the average salary of students who graduated with a BS in Computer 
Engineering in the ‘2014-15’ academic year. These students earned an average of $84,250 per year [9]. 
This salary divided by 2,080 because this is the amount of work hours in a year (40 hours per week * 52 
weeks per year). This division yields and hourly rate of $40.50 which we rounded down to $40 per hour. 

Name Rate ($/h) Hours (h) Total*2.5 ($) 
Daniel 40.00 225 22,500.00 
Michael 40.00 225 22,500.00 
Trent 40.00 225 22,500.00 
Total Labor   67,500.00 

Table 4.2.1 Labor Costs 

4.3 Total Prototype Cost 

Total Parts ($) Total Labor ($) Grand Total Prototype Cost ($) 
135.09 67,500.00 67,635.09 

Table 4.3.1 Total Costs 

 

 

 

  



16 
 

5. Conclusion 

5.1 Accomplishments 
Our project was to design a remote fireworks launcher with an emphasis on safety. We accomplished 
this by developing three different devices: a controller that will be the main medium between the user 
and our product, sensor pods that will be placed around the launch area to help detect motion, and a 
receiver that will set of the igniters and act as a communications hub between the controller and the 
sensor pods. Our project worked just as purposed. The user can select between thirty-two buttons, each 
corresponding to a unique igniter.  Once the user selects a button, the seven-segment display will show 
the requested number back to the user. If no motion errors have been detected by the receiver or the 
sensor pods, then the user can hit the acknowledge button which sends a launch code packet to the 
receiver where it will be interoperated and the corresponding MOSFET will be activated. This allows 
current to flow from the Lithium-ion battery, past the igniter, and through the MOSFET to ground which 
then sets off our igniters, lighting the fireworks fuse.   

5.2 Uncertainties 
One of the aspects of our project that we believe was unsatisfactory was the detection ability of our 
sensor modules. While these modules worked great at detecting motion, they were unable to detect 
stationary people, or foreign objects, within the launch area. Even in our array of sensors, once you give 
all the sensors time to stabilize to a stationary environment, nothing will be detected unless you move. 
Since much of our testing for our sensor modules was done with a single sensor, we had initially 
believed that having all sensors present would help detect stationary targets within the detection area 
but that was not the case with our current implementation. As mentioned in Section 3.5, the sensors 
seemed to have resting voltage. There may have been potential to calibrate the sensor array to know 
exactly what the resting voltage of each sensor should be when set up in the proper configuration, see 
Figure 2.5.2. Once these resting voltages have been identified, we then might have been able to 
compare that value with the most recently pulled value instead of using our existing method. This would 
allow us to detect any anomaly within the launch area and potentially reveal any stationary person in 
danger. Unfortunately, we were unable to test this theory. 

Aesthetically the most important part of our project is the user interface. Even though functionality wise 
the interface works perfectly, one thing we would have wanted to improve is the refresh rate of the 
LEDs and display.  Currently both parts appear to flicker slightly and can become a distraction to the 
user.  We would have liked to decrease this effect so that the LEDs and display appear to be more solid 
instead.   

5.3 Ethical Considerations 
Due to the nature of our project there are some ethical, and legal concerns to consider. The primary use 
of this project is to safely ignite pyrotechnic products, specifically mortar fireworks. When using these 
products, federal and local laws/policies should be strictly followed. The use of fireworks is regulated 
federally and are illegal in the state of Illinois, including the city of Urbana, without a proper permit. 
However, smaller pyrotechnic devices such as sparklers, smoke devices, or trick noise makers can be 
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legally used in Illinois without any kind of permit. More details about these laws can be found in Illinois’ 
Pyrotechnic Use Act [10] and the city of Urbana’s firework policies [11]. 

Legal concerns aside, our project does encourage the use of fireworks, which may be in violation of the 
1st and 9th clause of the IEEE code of ethics [12]. Fireworks can prove to be very dangerous, but the 
purpose of our project is to make using fireworks safer for everyone by being able to set off these 
devices remotely with significantly less risk of harm. If this project wasn’t used as intended, it can still 
cause violations with the IEEE code of ethics. Unfortunately, there is no way for us to govern how our 
project is used, but we believe that the increase of public safety due to the project’s safety features 
being used as intended will outweigh the possible harm of its misuse. 

5.4 Future Work 
Although our project was able to meet all our requirements successfully, there is still room for 
improvement. To start, our controller could use a standard 5:32 MUX instead of the 1:32 serial MUX that 
we used in our design. We would be able to switch inputs on a 5:32 MUX much faster than with the 
serial MUX, which would have lowered the amount of processing needed for checking the buttons on 
the controller. The lowered processing requirements of polling a 5:32 MUX and further optimizations to 
our controller code would also increase the refresh rate of the controller’s LEDs and hex display. This 
would reduce the amount of noticeable flickering in the controller’s user interface. Another solution 
that has been suggested to us, is to replace the physical controller entirely and replace it with a mobile 
application. A mobile app replacement would significantly reduce our production costs, but more 
software security measures would need to be added to our communication module. 

One point of improvement for the receiver would be to replace the 12V li-ion battery with a less volatile 
type of battery. These batteries can pose a fire hazard with improper usage due to high energy densities 
coupled with the flammable organic electrolyte [13]. Having a li-ion battery approximately tree meters 
away from active fireworks is a safety concern, even if it is protected by casing, and it’s something that 
should be addressed.  

Additionally, a revision needs to be made to both our receiver and sensor pods’ PCB designs. In the PCBs 
we used in our current build we didn’t add a capacitor to work as a stabilizing low-pass filter to support 
our PIR motion sensors. Luckily, we were able to add these capacitors using our programming 
breakouts, but these should be included normally in the PCB design. We would also want to experiment 
with other detection methods besides the PIR motion sensors we used. Our PIR motion sensors can 
successfully detect motion but they are not able to detect if someone is standing still in the launch deck 
area. If we move forward with this project this is another safety concern that we would address. 
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Appendix A     Requirements and Verifications Table 
 

Block Requirements Verification Verification 
status 

(Y or N) 

Voltage 
Regulators 

1. Reduce any voltage > 
5V to 5V +/-5% 

2. Reduce any voltage > 
3.3V to 3.3V +/-5% 

 
 
 
 
 
 
 

3. Voltage regulators 
operate continuously 
for over 1 hour under 
125 degrees Celsius 

1. Verification for Requirement 1 & 2 
a. With a power supply, apply 6V to 

the input pin of the regulator and 
connect GND to GND 

b. Probe the output pin and GND pin 
with a digital multimeter and read 
output 

c. Confirm that output on 
multimeter is within 5(3.3)V +/-
5%. 

 
2. Verification for Requirement 3 

a. Apply 6V to each regulator. 
b. Run circuit for 1 hour 
c. Measure temperature of each 

regulator and confirm it is less 
than 125 degrees Celsius 

Y 
 
 
 
 
 
 
 
 
 
 
 
 

Y 

Power 
MOSFETS 

1. The MOSFETs can 
handle the required 
12V +/- 1.2V & 1A +/- 
0.1A needed to set off 
the igniters  

1. Verification for Requirement 1 
a. Tie the drain of the MOSFET’s to a 

12V source 
b. Attach a resistor from the 

MOSFET’s source pin to GND 
c. Toggle the voltage at the gate of 

the MOSFET between VCC (5V) 
and GND and probe the voltage 
drop across the resistor 

d. Confirm the voltage drop and 
current 

Y 

MUX 1. Take in all 32 
different button 
signals and output the 
signal of the 
numbered button 
corresponding to the 
binary representation 
sent from the 
microcontroller.   

1. Verification for Requirement 1 
a. Tie all inputs to VCC (5V) 
b. Connect the selection data lines 

and output to the microcontroller 
c. Switch one input line to GND 
d. Observe if the corresponding 

binary number is represented 
with the LEDs 

e. Check for all 32 possible inputs 

Y 

Microcontroller 
(Controller) 

1. The microcontroller 
recognizes input from 
the MUX 

 

1. Verification for Requirement 1 
a. Tie output and selection lines of 

the MUX module to GPIO pins on 
the microcontroller 

Y 
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2. Microcontroller can 
be programed to 
follow the logic in 
Figure 2.2.1 

 
 

3. Microcontroller can 
send data to and from 
the communication 
module 

b. Program microcontroller to cycle 
through all 32 possible input lines 

c. Tie one input line from the MUX 
to GND 

d. Program microcontroller to 
output the binary number of the 
data line that was tied to GND to 
a bank of LEDs 

 
2. Verification for Requirement 2 

a. Write code following the logic in 
Figure 2.2.1 

b. Test software behavior given hard 
coded inputs 

 
3. Verification for Requirement 3 

a. Setup 2 communication modules 
with one using this 
microcontroller 

b. Attach a button to one of the 
microcontroller’s GPIO pins for 
both microcontrollers and have it 
send a signal through the 
communication module when 
pressed 

c. Have the receiving 
communication module’s 
microcontroller light an LED if it 
receives a message 

 
 
 
 
 
 
 
 
 
 
 

Y 
 
 
 
 
 

Y 
 

Microcontroller 
(Receiver) 

1. Microcontroller can 
be programed to 
follow the logic in 
Figure 2.2.2 

 
 

2. Microcontroller can 
read inputs detect 
spikes in motion 
sensor data (check if 
current reading has a 
difference greater 
than a specified 
threshold from the 
previous reading) 

 
 

3. Microcontroller can 
send data to and from 
the communication 
module 

1. Verification for Requirement 1 
a. Write code following the logic in 

Figure 2.2.2 
b. Test software behavior with hard 

coded inputs 
 

2. Verification for Requirement 2 
a. Power motion sensor and connect 

its output pin to a GPIO pin for 
our microcontroller 

b. Program microcontroller to detect 
a significant change between 
readings and power a small LED 
circuit when one is detected 

 
3. Verification for Requirement 3 

a. Setup 2 communication modules 
with one using this 
microcontroller 

b. Attach a button to one of each 
microcontroller’s GPIO pins and 
have it send a signal through the 

Y 
 
 
 
 
 
 
 

Y 
 
 
 
 
 
 
 
 
 
 
 

Y 
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communication module when 
pressed 

c. Have the receiving 
communication module’s 
microcontroller light an LED if it 
receives a message from the 
sending RF IC 

 

 
 
 
 
 
 
 
 
 
 

Microcontroller 
(Pods) 

1. Microcontroller can 
read inputs detect 
spikes in motion 
sensor data (check if 
current reading has a 
difference greater 
than a specified 
threshold from the 
previous reading) 
 
 
 

2. Microcontroller can 
properly send data to 
the Communication 
Module 

1. Verification for Requirement 1 
a. Power motion sensor and connect 

its output pin to a GPIO pin for 
our microcontroller 

b. Program microcontroller to detect 
a significant change between 
readings and power a small LED 
circuit when one is detected 

 
 

2. Verification for Requirement 2 
a. Setup 2 communication modules 

with one using this 
microcontroller 

b. Attach a button to one of the 
microcontroller’s GPIO pins and 
have it send a signal through the 
communication module when 
pressed 

c. Have the receiving 
communication module’s 
microcontroller light an LED if it 
receives a message from the 
sending RF IC 

Y 
 
 
 
 
 
 
 
 
 
 
 
 

Y 
 
 
 
 
 
 

7-Segment 
Display 

1. The 7-segment 
display must be able 
to display the value 
given to it by the 
microcontroller, using 
the same frequency 
as the LEDs 

1. Verification for Requirement 1 
a. Program a microcontroller to send 

a test message to the hex screen 
using 15 GPIOs. Use 4 of those 
GPIO pins to cycle through the 
common anode pins and the 
others to specify which segments 
to light 

b. Verify that the intended message 
is displayed on the hex display 

Y 

Buttons 1. Must be easily 
pressable 

1. Verification for Requirement 1 
a. Press button and ensure that it 

can be done without strain 

Y 



22 
 

LEDs 1. The microcontroller 
must remember what 
buttons have received 
success signals and 
have the 
corresponding LED 
light up. 

 
 
 
 
2. The microcontroller 

must make 100 cycles 
every second, since 
there are four rows 
for every cycle, we 
need the switching 
rate to be at least 400 
per second. 

1. Verification for Requirement 1 
a. Program microcontroller to 

decode binary representation of 
the button number [0-4] 

b. Wire output pins to LEDs in series 
with resistors tied to GND 

c. Send binary signals through 
microcontroller and check that it 
lights the corresponding LED 

 
2. Verification for Requirement 2 

a. Connect microcontroller to LED 
circuit in Figure XXXX 

b. Program the microcontroller to 
have at least one LED on per row 

c. Observe LED array for any sign of 
flickering and that each LED can 
be lit up independently 

Y 
 
 
 
 
 
 
 
 
 
 
 
 

Y 

RF Module 1. Communicate reliably 
(95% success rate) at 
a range of at least 150 
ft with another 
communications 
module. 

 
 

2. Use control unit 
microcontroller to 
perform error 
checking on received 
data packets. 

1. Verification for Requirement 1 
a. Set up 2 communication modules 

150 ft away from each other 
b. Send sample data from one 

module to the other 20 times 
c. Verify sample data isn’t changed 

95% of the time 
 

2. Verification for Requirement 2 
a. Setup communication with 

another RF IC 
b. Use CRC checksum library 
c. Send random n-bit signals to the 

other RF IC and check that they 
are flagged as errors 95% of the 
time 

Y 
 
 
 
 
 
 
 
 
 

Y 

Motion Sensors 1. IR motion sensors 
must be able to 
detect movement 
from 8 ft +/- 1 ft 
away. 

1. Verification for Requirement 1 
a. Power sensor with 5V Vcc 
b. Use an oscilloscope to check the 

analog signal and see if there are 
fluctuations when we create 
motion 8 ft in front of the sensor 

Y 

Table A    Requirements and Verifications 
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Appendix B    Work Schedule 
 

Week Of Michael Trent Daniel Checkpoints 
10/8 Solidify power 

solution for lighting 
fuses 

Research how to 
program 
microcontrollers 

Start wireless 
communication 
tests 

Order first round of 
parts 

10/15 Start Eagle PCB 
design for controller 
and receiver 

Test PIR motion 
sensors for 
responsiveness 

Continue wireless 
communication 
tests. Start Eagle 
PCB design for 
sensor pods 

 

10/22 Finish first iteration 
of controller PCB 
design 

Determine the 
sensitivity of the 
sensors and design 
method for 
determining motion 

Finish first iteration 
of sensor pod PCB 
design 

First round of PCB 
orders (10/25) 

10/29 Finish first iteration 
of receiver PCB 
design 

Start programming 
microcontrollers 
(load 
bootloaders/test 
programs) 

Test serial MUX  

11/5 Convert Controller 
and receiver PCBs 
to breakout version  

Write code for 
sensor pods and 7-
segment display 

Make final PCB 
adjustments. 
Solidify 
microcontroller 
programming 
procedure 

Final round of PCB 
orders due (11/8) 

11/12 Begin final designs 
of physical devices 
and printing those 
designs 

Tune sensitivity of 
our sensor pod 
code 

Implement 
communications 
error checking 

 

11/19 Continue printing 
physical designs. 
Assemble the 
controller PCB and 
user interface 

Start programming 
the sensor pods 

Start programming 
the controller and 
receiver 

Fall break 

11/26 Finish soldering 
parts for the 
controller and 
receiver 

Complete sensor 
pods and verify 
communications 
with receiver 

Finish and debug 
controller and 
receiver code 

Mock Demo (11/27) 

12/3 Final touches and 
debugging  

Final touches and 
debugging  

Final touches and 
debugging 

Final Demo (12/4) 
Mock Presentation 
(12/6) 

12/10 Prepare for 
presentation and 
write final report 

Prepare for 
presentation and 
write final report 

Prepare for 
presentation and 
write final report 

Presentation 
(12/11) 
Final Report (12/12) 

Table B    Work Schedule 


