

Autonomous Object Moving Vehicle

By

Chenliang Li

Honglu He

Siping Meng

Final Report for ECE 445, Senior Design, Fall 2018

TA: Amr Martini

11 December 2018

Project No. 32

ii

Abstract

We designed a small automated robot which could grab and shift objects after receiving the

command given by the user. Our robot has a robot arm to pick objects, and the lower part is a

chassis vehicle for moving. We installed a camera and a LiDAR sensor in the front of the robot

to help it detect objects and obstacles. We also implemented various algorithms in the

microcontroller to give this robot capabilities to find the moving path automatically and to place

the object in the right place under an acceptable tolerance. Besides, our robot is designed to

accomplish the task offline and automatically so that user does not need to wait for the robot to

finish its job. Our team worked together with Team 19, and we were in charge of the lower part

of the vehicle.

iii

Contents

Abstract ... ii

1 Introduction ... 1

2 Design ... 1

2.1 Block Diagram .. 1

2.2 Physical Design ... 2

2.3 Modular Design .. 3

2.3.1 Motors, PCB and Motor Control ... 3

2.3.2 Localization ... 5

2.3.3 Map ... 5

2.3.4 Path Planning .. 5

2.3.5 Position Control .. 7

2.3.6 User Interface .. 8

3 Design Verification ... 9

3.1 Motor Control Test ... 9

3.2 Localization Test ... 9

3.3 Map Test ... 10

3.4 Path Planning Test .. 11

3.5 Position Control Test .. 12

4 Costs .. 13

4.1 Parts... 13

4.2 Labor ... 13

5 Conclusion .. 14

5.1 Accomplishments .. 14

5.2 Uncertainties ... 14

5.3 Ethical considerations ... 14

5.4 Future work ... 15

6 References ... 16

7 Appendix A Requirement and Verification Table .. 17

1

1 Introduction

For a long time, the idea of robots doing chores around the house has long captured people’s imaginations

[1]. However, a generalized servant robot is still a rare sight in the home today. Besides, although the

smart house can support remote control to turn the air conditioner on or off through host’s mobile phone,

there are still numerous detailed situations that are hard to accomplish by merely using programmed

command and smart appliances nowadays in the market. We still need a robot to help us arrange indoor

objects and shift them for various needs. Until recently, a smart domestic robot dog, SpotMini, created by

Boston Dynamics, shows up and demonstrates its powerful abilities to open the door and shift a cup of

water just like our project goal. The task’s complexity which SpotMini can do is nearly reach the hardness

level of daily human tasks. However, there is some deficiency for SpotMini. The size of SpotMini is too

big to recognize relatively small obstacles underneath. It still has a high possibility to collide with

obstacles (like wall or furniture) when it turns around and even fails in a real indoor environment.

Therefore, we are looking forward to a solution for those disadvantages. To be more specific, to redesign

a smaller robot which can provide similar functionality with more accurate position precision. Our team

worked with team 19 to accomplish this challenging concept. Our team focused on the wheel motor

control, localization and mapping, and path planning. This paper will explain how we achieved our goal

by calculation and experiment.

2 Design

2.1 Block Diagram

Figure 1 Block Diagram

Our overall design used Robot Operating System (ROS) as a tool to connect different nodes on same

machine or different machines. The user interface was a LabView program which can send the

destinations to the robot, including the original object position and the position we want our object to be

2

placed. We used 2 Raspberry Pis as our microprocessors, one for upper part and one for lower part. The

lower part Raspberry Pi is the ROS master which contains all nodes related to lower part. The upper part

Raspberry Pi communicates with lower part Raspberry Pi to check if the destination is reached or not, as

well as take over the control of both wheel motors.

Inside the ROS master, the LiDAR node is used to publish Laser Scan message (angle and distance of

each laser beam). Hector SLAM node is to subscribe to the Laser Scan message and output position of the

robot and map of the environment. Path Planning node utilizes both information from Hector SLAM to

produce an optimal path to the user-specified destination from LabView. Position Control Node takes

each waypoint in the path and controls the vehicle to go to the waypoint directly. Motor Control Node is

used to subscribe message from upper part Raspberry Pi so that the robot can adjust its position and angle.

2.2 Physical Design

The physical design of this robot is chosen to allow flexible moving with a relatively small size and to

place all sensors in appropriate positions to work. Our robot consists of a Three-layer chassis vehicle with

two drive wheels and one omnidirectional wheel. The dimensions of the chassis vehicle are 250mm x

205mm x 103mm. We choose only two wheels rather than four in attempts to reduce the cost and to allow

the robot to do pivot turns more easily.

We placed a robotic arm on the top of the chassis (on the Third layer) actuated by two motors to grip

items. On the top layer, we will place a LiDAR in the front of the vehicle to detect obstacles when the

robot is moving. However, the arm and camera will be put on the back, because we do not want other

physical components to block the vision of LiDAR otherwise the obstacle detection will be undermined.

When the robot arrives its destination and is going to pick up an item, it needs to turn around first so that

its robotic arm and camera will face to the item. We will put the remaining hardware components on the

first and second layers of chassis, including the microcontroller, PCBs.

Figure 2 Physical overview of chassis vehicle (unit: mm)

3

Figure 3 Relative positions of arm, LiDAR, and camera (unit: mm)

2.3 Modular Design

2.3.1 Motors, PCB and Motor Control

We chose brushed motor rather than the brushless motor because it is inexpensive, steady, and easy to

control: we can use voltage to control the speed of the motor, and we can also change the voltage

direction to change the rotation direction of the motor. We designed a PCB for our controlling motor

system, centered on TB6612 motor controlling chip. Taking into consideration of heat dissipation and

current intensity, we meticulously designed the wires on the board. The TB6612 chip provides two H-

bridge circuits controlled by four logic voltage signals and two PWM controller for the output voltage

amplitude for the motor. We also designed protection circuit for sudden current change due to the motor

connected to the PCB.

4

Figure 4 PCB Schematic

Figure 5 PCB Board Layout

5

2.3.2 Localization

Starting from the home position (0,0), Hector SLAM publishes Pose message, which contains the world

coordinate (x,y,z) in meter and angle in quaternion form (x,y,z,w) [2]. Regarding world coordinate, z is

always 0 in our case. Moreover, the position from Hector SLAM is always the center of the LiDAR.

Since Euler Angle contains Roll, Pitch, and Yaw, but all we need is Yaw angle due to the flat surface.

According to the conversion equation from a quaternion to Yaw Angle, we used the following equation

[3]:

ψ = ATAN2(2(wz + xy), 1 − 2(y2 + z2))

Equation 1: Quaternion Transformation

where 𝜓 is Yaw Angle in rad, ATAN2 is 2-argument arctangent.

2.3.3 Map

After Hector SLAM algorithm successfully sends out occupancy array, the map module will start to

convert this one-dimension array to two-dimension array for future calculation and visualization. The

occupancy array contains three values: -1 means not sure, 0 means space and 100 means obstacle. Here

we used python numpy reshape for conversion, and then slice out the appropriate region for our project.

Doing slicing is because the entire map contains 2048*2048 points, which is a quite large map, but we

only need a smaller map that is in front of the robot’s initial location. So we decide to slice out a 200 *

100 map with robot’s initial location at (100,0). Then the map module will loop through all the points and

save obstacle coordinate in a set.

While the module adding detected object coordinate into a set, this module will automatically populate all

the obstacles according to a given robot size variable.

BUILDMAP(map, robotsize):

 map <- convert_to_2_D(map)[1024:1124,974:1074] #slicing out a 200 * 100 map

 for each point in the map:

 if point is wall:

 for all the n_point around point within robotsize:

 if n_point in bound: add n_point into set

Figure 6 Pseudocode for buildmap()

2.3.4 Path Planning

Path planning is the key in our project that can make the robot move around smoothly. The goal is to

ensure this robot could walk along the shortest path while staying collision-free. After map module builds

up a map, path planning module will accept a start and end point, using that map, and give back an

optimum path. We choose A* algorithm with Euclidian heuristic since our map is equal cost and it is easy

to realize. We have considered other methods such as probability roadmap, but for convenience, we stick

on A* in this project. In this module, because our map is grid-based, the path can only fit into the grids.

Using a grid-based map will cause zigzag movements, but our module fixes this inefficiency by compress

the path before returning it to the control module.

6

We can accomplish this with a mathematical approach. From the starting point, our module will go

through all the following points and check if it can be compressed by deleting all nodes between them.

Intuitively, our module draws a line between two points, and for each point that has a distance less or

equal to 1 to the line, the module will keep this point if there is any obstacle.

This is the distance from point B to line AC:

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑛𝑜𝑟𝑚(𝑐𝑟𝑜𝑠𝑠(𝐶 − 𝐴, 𝐴 − 𝐵))

𝑛𝑜𝑟𝑚(𝐶 − 𝐴)

Equation 2: Point to Line Distance

COMPRESS(path):

 if path length <= 3: return

 base, cur, next = path[0], path[1], path[2]

 for i from 2 to path length:

 for each distance(point, line(base,next)) <= 1:

 if wall exists: signal = 1

 if signal:

 base, cur, next = cur, next, nextpoint in path

 else:

 pop cur from path

 cur, next = next, nextpoint in path

 return path + end point

Figure 7 Pseudocode for path compression

7

2.3.5 Position Control

Figure 8 Position Control Diagram

Position control is used to receiving waypoints in the path planned by path planning node. This node will

keep polling until a new waypoint is received. The first step is to calibrate its yaw angle to face the

destination; after that, it will start going straight and regularly check its distance to the destination and its

angle as well. If the angle difference between a current angle and desired angle (facing the destination), it

will stop and calibrate the yaw angle again. If the distance to the destination is less than 10cm, it will stop

and publish a message to let the path planning node know that it has arrived at this waypoint.

8

2.3.6 User Interface

Figure 9 User Interface LabView Block Diagram

Figure 10 User Interface LabView Block Diagram

On the Windows laptop, a LabView program for the user is used to send destination information to the

robot. This program is also a ROS node, and publishes Pose message reading from the user, and the user

only need to input x and y information.

9

3 Design Verification

3.1 Motor Control Test

For the motor test: We connected the motor to the power supply in the lab, input different direction

voltages to test two side rotation. Then we tested the speed of the robot under different voltage with

different loads. The robot needs to move at 4.2cm/s with maximum 6.7 kg loads.

For the PCB test: We input mock logic voltage signal and mock PWM signal from the generator in the

lab. By check the output voltage of the PCB, we could verify if logic voltage can change the motor

voltage direction or if the PWM duty cycle can change the motor voltage by the multimeter.

A combinational control test with Raspberry Pi: By connecting GPIO pins on the Raspberry Pi and pins

of PCB and change the output of PWM’s duty cycle and logic voltage by a program in python, then

verified the output voltage amplitude and direction by the multimeter.

3.2 Localization Test

We put our LiDAR on a dolly and let the dolly go through a predefined loop on a rail, and then we

analyzed the map and trace that the LiDAR generated to see if the LiDAR’s accuracy. As the result shows,

our localization has very high accuracy with an error less than 0.04m, and the loop is closed.

Figure 11 Visualize Test result: LiDAR on a Dolly

10

3.3 Map Test

By visualizing the LiDAR- Hector SLAM output of the map, and comparing to the real-world condition,

we can verify the map generation method of our algorithm.

Figure 12 Point cloud of He's bathroom

Figure 13 Map of the demo room

11

Figure 14 Test of object population

3.4 Path Planning Test

By comparing the visualization tool, we can identify if this path is an ideal path and we can also check if

our path compression works correctly.

Figure 15 Sample path in a given map

12

Figure 16 Returned path after compression

3.5 Position Control Test

In order to test the accuracy of the position control, we manually input a destination at (1,1) to the

position control node. In the lab, the destination is marked on ground, and we measured the distance

between the center of the LiDAR and the marked position. By ten testing trials, we get the following

results:

Table 1 Position Test Result

Distance

(cm)

1.6 1.1 1.0 2.0 2.1 1.5 1.8 1.5 2.0 1.8

The average distance is 1.64cm, which is accurate enough for the upper part to perform the grabbing

process.

13

4 Costs

4.1 Parts

Table 2 Parts Costs

Part Manufacturer Number Retail Cost

($)

Bulk Purchase

Cost ($)

Actual Cost

($)

LiDAR SLAMTEC 1 319.95 319.95 319.95

Chassis &

Motors

Chihai 1 117 117 117

5v Battery ANKER 1 39 39 39

Raspberry Pi Raspberry Pi

Foundation

5 54.99 54.99 274.95

12v Battery Gissaral 1 69.95 69.95 69.95

Total

4.2 Labor

Table 3 Labor Information

LABOR

Name Salary ($/hour) Hours Total(*2.5)

($)

Honglu He 40.00 130 13000

Chengliang Li 40.00 130 13000

Siping Meng 40.00 130 13000

TOTAL COST 39000

14

5 Conclusion

5.1 Accomplishments

We have achieved our basic requirements for individual module, but there are still further improvements

needed to make this product adapted to different environment. Overall the project was successful and can

complete a task without human interference.

Figure 17 Robot Vehicle

5.2 Uncertainties

At the very beginning of the whole process when the LiDAR scans for the first version of the map, if

there are objects moving fast in a distance less than 10cm to the LiDAR, the original map that the robot

generated will be messed up. Further inspection and experiment are needed.

5.3 Ethical considerations

We have several safety concerns about our project. The Li-po battery requires the highest

attention to deal with due to the possibility of explosion, and we have made sure the temperature

of the battery stay in the safe range of the industrial standard for all time. Our charger is an

industry made IC device and shut charge controller off if charging input is beyond required

voltage range. In this way, it can reduce the likelihood of hazards while charging. We will also

design a protect circuit for sensor and motor components. To protect the circuit and PCB, we

used fly-back diode and Transient Voltage Suppressor since the motor will also be connected to

the PCB. What’s more, in order to prevent a short circuit which may lead to electric shock, we

15

followed the electricity using manual during the experiment, and also checked our power and

circuit before connecting to the battery every time before operation. .

Another safety concern is about the vehicle. Since we used four motors (2 for wheels and 2 for

robot arm), we have to put malfunction of these parts into serious thoughts. If any software or

circuit drive these motors mistakenly, the whole robot will be out of control and may hurt people

standing nearby. This is what we need to avoid during the whole designing and demo period. In

order to prevent such a condition, we first accomplished a circuit test for each part separately.

Then we tested the searching algorithm and robot control code in a safe laboratory as many times

as possible.

For the ethical issues, we followed IEEE and ACM code of ethics. We encountered many

problems in the project. But when problems occurred, we revised and improved our design to fix

the problem instead of disguising the problems and moving on recklessly. Based on #5 of the

IEEE Code of Ethics, “to seek, accept, and offer honest criticism of technical work, to

acknowledge and correct errors” [4]. Therefore, when problems showed up, we tried our best to

find a way with teammates to solve them. If we could not solve the problem by ourselves, we

turned to our TA for help.

5.4 Future work

Concise wiring and exposed components

Since the robot is used for the regular living room, and all the components and wires are exposed, we

need to design an outer shell for protection.

Better control for motors

May need to implement DP control for the motor speed and veering.

More precision in localization

There is still 0.04m error for our SLAM algorithm, we can revise our algorithm for better accuracy.

Emergency stop

We can also design a stop function for sudden appear moving obstacles, to protect our robot and for better

performance for more conditions.

16

6 References

[1] E. Guizzo, “So, Where Are My Robot Servants?”, May, 2012. [Online]. Available:

https://spectrum.ieee.org/robotics/home-robots/so-where-are-my-robot-servants. [Accessed Dec.

2018].

[2] S. Kohlbrecher, O. Von Stryk, J. Meyer, and U. Klingauf, "A flexible and scalable SLAM system

with full 3D motion estimation," in Safety, Security, and Rescue Robotics (SSRR), 2011 IEEE

International Symposium on, Kyoto, Japan, 2011, pp. 155-160.

[3] En.wikipedia.org. (2018). Conversion between quaternions and Euler angles. [online] Available at:

https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles [Accessed 1 Dec.

2018].

[4] Ieee.org. (2018). IEEE IEEE Code of Ethics. [online] Available at:

https://www.ieee.org/about/corporate/governance/p7-8.html [Accessed Dec. 2018].

17

7 Appendix A Requirement and Verification Table

Table 4 System Requirements and Verifications

Requirement Verification Verification status

(Y or N)

1. The motor controller can receive the

signal from Raspberry Pi and control the

voltage and current direction across the

motors.

2. All the parts on PCB can work

1. We can use the microcontroller

to send the signal to the motor

controller and control the motor

rotation.

2. We can compare the parameters

we set and the result we get

when measuring

Y

1. The motor can drive the robot with all

the components on it and the speed

should be no less than 4.7cm/s i.e. robot

can move along the diagonal line in

2mins.

1. We test the time of the robot

with all the components on

crossing the diagonal line and

check if the time is less than

2mins

Y

1. The robot will not hit obstacles during

the whole process, including walls.

2. The robot will walk down the optimal

path.

1. By observation, the robot

should not hit any objects.

2. Robot will send back its current

path to show this on 2d map.

Y

1. The whole power set need to provide

steady and plentiful power. The power

converter, which is the DC-DC

converter, need to

1. When we test the voltage out

from the DC-DC converter, we

should get the voltage with the

difference between the

expectation less than 5%

Y

1. The robot should mark any obstacle it

can see from its prospective

A. Putting the robot at home

position for 5 seconds, then

check the updated map, and

compare it with actual

environment

B. Start the robot at home position

and give an object location,

check if the map is updated

during the run

Y

1. The robot location should be +/-0.05m

from actual location

1. We set a object location and let

the robot drive itself, check its

final location and the given

object location

Y

