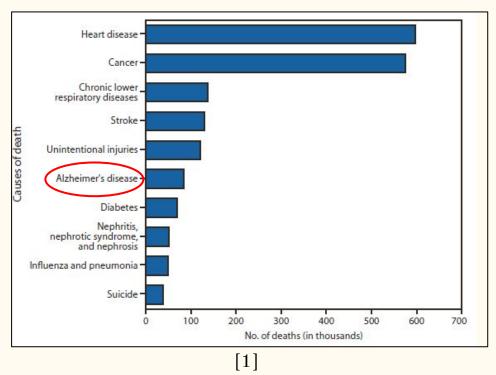
Therapalz Collar

Tanvi Modi, Bernardo Vargas, Benjamin Trang Group 33

Overview of Presentation


- Background & Introduction
- Overall features of project

 Physical Design
- Overview of System
 - Power System
 - Microcontroller
 - Sensors
 - Speaker
 - \circ Communication System
- Conclusions
- Future for Project

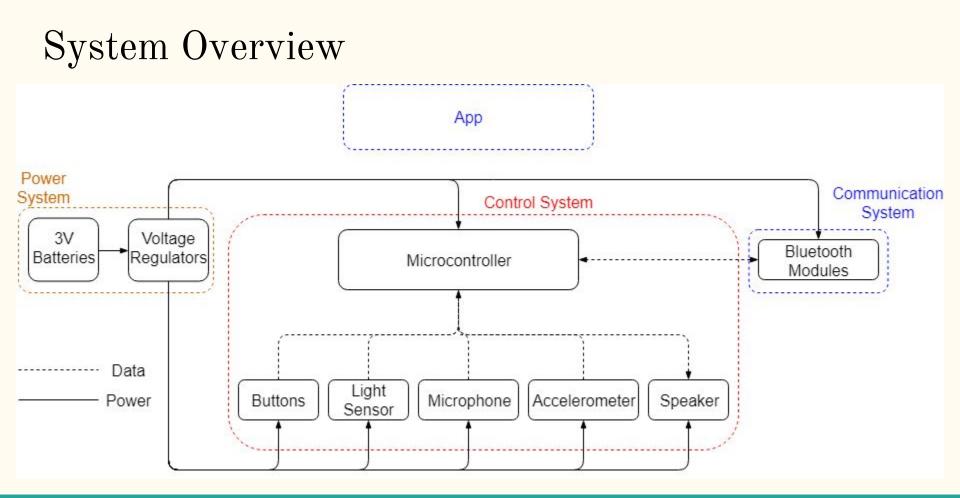
Background on Alzheimer's Disease

- Alzheimer's affects over
 <u>5.7 million</u> people in America yearly
- <u>Sixth</u> leading cause of death in the US
- Alzheimer's is an incurable disease

Where does our project come in?

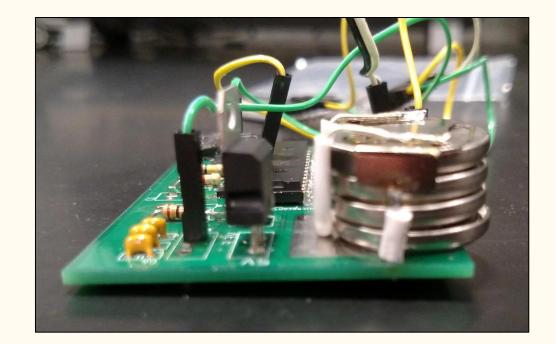
- Pets are a great companion for patients
- Difficult to look after
- Therapalz is a **smart companion stuffed-animal**
- Proposed in class by Ms Fiona Kalensky
- We proposed to make a <u>smart collar</u> for the animal

Features of Collar


- Physical design
- Light sensor
- Motion sensor
- Microphone
- Speaker & Bluetooth for location tracking

Physical Design

- Concealability
- Security



Power System

- 6V from batteries
- Two voltage regulators
 - \circ 5V Microcontroller and Bluetooth
 - \circ ~3.3V Sensors

Power System Successes & Failures

- Successfully power microcontroller and Bluetooth modules
- Redesign changed power requirements
- 3.3V voltage regulator burned out

Microcontroller

- Read sensor data
- Send data through Bluetooth

```
if (BTserial.available())
    c = BTserial.read();
    Serial.write(c);
  if(c=='s')
        tone (speaker, 440,1000);
     else if( c=='o')
     noTone (speaker);
```

Microcontroller Successes & Failures

- Ran code for sensors and communication successfully
- PCB design made uploading difficult

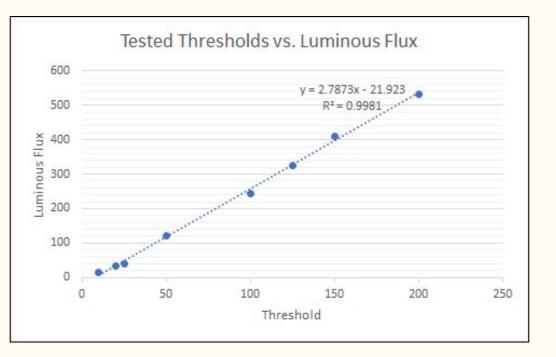
Sensors

• Light

- \circ Measure lux value of room
- Determine between normal lighting and darkness

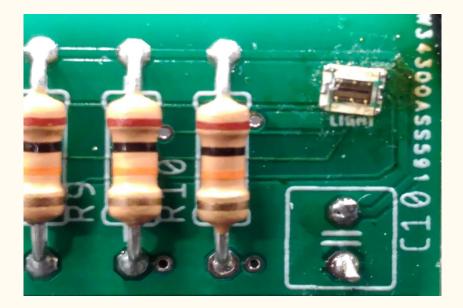
• Accelerometer

- Measure acceleration of collar
- Determine if toy is actively moving


• Microphone

- Measure nearby sound pressure level
- Determine between normal or loud voice

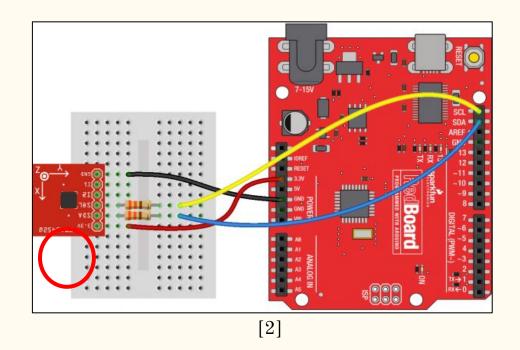
Light Sensor


• Tested values used in code vs. received values

int lux = apds.readCH0Level();
if (lux <= 5 || lux>= 125)
{
 Serial.println("Interrupt");
}

Light Sensor Successes & Failures

- Successfully determined between dark and lit rooms
- PCB design failed

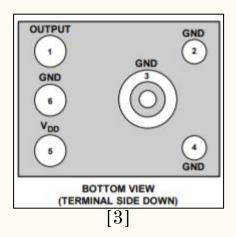

Accelerometer

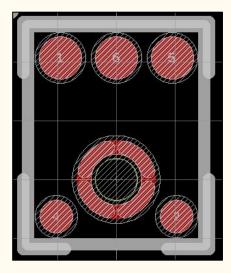
- Goes to sleep after ten seconds of inactivity
- Wakes up when movement is 0.0625g's or greater

10001000		
10001000		
Wake		
Luminous	flux:	45
Luminous	flux:	45
Luminous	flux:	50
Luminous	flux:	45
Luminous	flux:	50
Luminous	flux:	45
Luminous	flux:	50
10000000		
10000000		
Sleep		
Luminous	flux:	40

Accelerometer Successes & Failures

- Successfully enabled auto sleep and wake up
- PCB design failed


Microphone


- Gather data from Microphone
- Use code to determine loudness

```
if (fill \leq 6)
   Serial.println("Normal Voice");
   char str1[6] = {'N', 'o', 'r', 'm', 'a', 'l'};
   BTserial.write(str1);
else
   Serial.println("Loud Voice");
   char str2[4] = {'L', 'o', 'u', 'd'};
   BTserial.write(str2);
```

Microphone Successes & Failures

- Successfully determined between loud and normal sound levels
- PCB design failed

Pin	Pad	
G\$1.GND@2	2	
G\$1.GND@4	4	
G\$1.GND@6	6	
G\$1.OUT	1	
G\$1.VDD	5	

Communication System

- Two Bluetooth modules
- One gathers sensor data and sends it to an app
- The other is an iBeacon

Communication System Successes & Failures

- Bluetooth modules worked as intended
- Their power needs made problems for other systems

Speaker

- Used to locate the animal
- Makes noise on command through Bluetooth

Speaker Successes & Failures

- Made noise when commanded
- Noise was not loud enough for locating

Ethical Considerations

- Battery flammability
- Loudness of speaker may affect hearing of patients
- Issue of Privacy as location and movement of patient is tracked

Conclusion

- All the parts worked individually
- Did not work together as well as hoped

Future for Project

- We will iterate on our design and give it to Ms. Kalensky for further development
- We hope that the collar can be used and have a positive impact on the Alzheimer's community

Thank You!

Resources and References

[1] Murphy SL, Xu JQ, Kochanek KD, "QuickStats: Number of Deaths from 10 Leading Causes" *CDC*, 2010. [Online] Available:

https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6208a8.htm. [Accessed December 11,2018]

 [2] Jimblom, "52Q Accelerometer Breakout Hookup Guide" Sparkfun, [Online] Available: https://learn.sparkfun.com/tutorials/mma8452q-accelerometer-breakout-hookup-guide.
 [Accessed December 10,2018]

[3] "ADMP401 Datasheet" [Online]. Available: https://www.sparkfun.com/datasheets/Components/General/ADMP401.pdf