Interactive Proximity Donor Wall Illumination

Team 18 Anita Jung (<u>anitaj2@illinois.edu</u>) Sungmin Jang (<u>sjang27@illinois.edu</u>) Zheng Liu (<u>zliu93@illinois.edu</u>) Supervisors Sponsor: Skot P. Wiedmann TA: Kexin Hui

Agenda

- Block Diagram
- Design and Validation
 - Physical Model
 - Microcontroller
 - Sensor
 - \circ Power
- Conclusion
- Future Work

Introduction

- Donor Wall
 - Located in the hall on 1st Floor of Electrical Engineering Building.
 - Often unnoticed by the audience
 - Minimum lighting

Donor Wall

Objective

ר ר

- Dynamic illumination system
 - Add lighting
 - Engage
 - Interact

Finished Product

Result

Result

Π

Agenda

- Introduction, Objective and Result
- Block Diagram
 - Design and Validation
 - Physical Model
 - Microcontroller
 - \circ Sensor
 - \circ Power
 - Conclusion
 - Future Work

Block Diagram

Agenda

- Introduction, Objective and Result
- Block Diagram
- Design and Validation
 - Physical Model
 - Microcontroller
 - \circ Sensor
 - \circ Power
 - Conclusion
 - Future Work

Agenda

- Introduction, Objective and Result
- Block Diagram
- Design and Validation
 - Physical Model
 - Microcontroller
 - \circ Sensor
 - \circ Power
- Conclusion
- Future Work

Physical Model

- Actual portion
- Painting
- Cardboard for LEDs
- Wires hidden

Front Side

Back Side

Agenda

- Introduction, Objective and Result
- Block Diagram
- Design and Validation
 - Physical Model
 - Microcontroller
 - LED Program
 - Sensor
 - \circ Power
- Conclusion
- Future Work

Microcontroller Circuit

- ATmega328P
- Redesigned based on the official document of Arduino Uno board
- Worked successfully as expected.

Microcontroller Circuit Diagram

- Software worked properly and showed satisfying effect.
- Challenge: Program space is not too large.
- Final successful Solution: Use shared functions between different modes as many as possible to reduce the program space.
- FastLED library. Treat each LED strip as a number array.
- Access to each LED by index in an array

Strip 3

Strip 2

Strip 1

- Separate to 6 parts.
- Begin and end at the same time for each part.

- In each part, LEDs are grouped separately.
- Turn on and off each group one by one.

t1	3_20	3_19	3_18		3_23	3_24		
t2	3_18	3_17	3_16	3_19	3_24	3_25		
t3	3_16	3_15	3_14	3_17	3_25	3_26		
t4	3_14	3_13	3_12	3_15	3_26	3_27		
t5	3_12	3_11	3_10	3_13	3_27	3_28		
t6	3_10	3_9	3_11		3_28	3_29		
t7	3_71	3_70	3_30	3_31			part 1 up	
t8	3_38	3_37		3_42	3_41	3_40		
t9	3_37	3_36	3_44	3_43	3_42	3_41		
t10	3_36	3_35	3_46	3_45	3_44	3_43		
t11	3_35	3_34	3_48	3_47	3_46	3_45		
t12	3_34	3_33		3_49	3_48	3_47		
t13	3_33	3_32	3_69	3_68				
t14	3_32	3_69					part 1 down	

Example of part of LED group table

Example

void tl() {

led_3[20] = CRGB::Blue; led_3[19] = CRGB::Blue; led_3[18] = CRGB::Blue;

```
led_3[23] = CRGB::Blue;
led_3[24] = CRGB::Blue;
```

void t2(){

led_3[18] = CRGB::Blue; led_3[17] = CRGB::Blue; led_3[16] = CRGB::Blue; led_3[19] = CRGB::Blue;

```
led_3[24] = CRGB::Blue;
led_3[25] = CRGB::Blue;
```

void t3(){

led_3[16] = CRGB::Blue; led_3[15] = CRGB::Blue; led_3[14] = CRGB::Blue; led_3[17] = CRGB::Blue;

led_3[25] = CRGB::Blue; led_3[26] = CRGB::Blue; void partl_left_right() {
 tl();
 t8();
 FastLED[2].showLeds(Brightness);
 delay(DELAY_LENGTH);
 clear_led3();

t2(); t9(); FastLED[2].showLeds(Brightness); delay(DELAY_LENGTH); clear led3();

```
t3();
t10();
FastLED[2].showLeds(Brightness);
delay(DELAY_LENGTH);
clear_led3();
```

```
t4();
t11();
FastLED[2].showLeds(Brightness);
delay(DELAY_LENGTH);
clear_led3();
```

```
t5();
t12();
FastLED[2].showLeds(Brightness);
delay(DELAY_LENGTH);
clear led3();
```


Shared part example: Default mode and Human Following Mode

- Advantage:
 - Many functions are reusable for different modes at shared parts.
 - Reduced space! 87% of total program space for all LED code.
 - Easy to combine different parts together.
 - Trackable and manageable.
- Disadvantage:
 - Time consuming to group up LEDs.

Overall, Successful method. Enough space and satisfying visual effect.

Agenda

- Introduction, Objective and Result
- Block Diagram
- Design and Validation
 - Physical Model
 - Microcontroller
 - Sensor
 - \circ Power
- Conclusion
- Future Work

Sensor - Goal

Objectives:

- 1. Filter noise
- 2. Max. working distance & sensitivity
- 3. Working distances: 100cm, 30cm

Result:

All objectives met with IR Sensor!

Sensor - Hardware Physical View

Sensor Close-up Views

Main PCB

Sensor - Closer Look

IR LED (QED223-ND):

peak emission wavelength of 890nm, wide emission angle of 30°

Phototransistor (QSD124-ND):

peak sensitivity wavelength of 880nm, narrow reception angle of 24°

Sensor - Output Voltage Range Depending on Pull-Down Resistor Plot of Voltage vs. Distance for Varying Resistance Value

Conclusions:

- \uparrow R, more exponential curve

- AREF of 1.1V

Analogue Reference	Analog Resolution		
5V	$\frac{5V}{1024}=0.00488V/Digital~Units$		
3.3V	$\frac{3.3V}{1024} = 0.00322V/Digital Units$		
1.1V	$\frac{1.1V}{1024} = 0.00107V/Digital \ Units$		

TABLE I: Analog Resolution with Different AREF

Sensor - Initial Low-Pass Filter Design

Sensor - Final Low-Pass Filter Design

Result

Stable digital readings with rare ± 1 digital fluctuations

Teledyne LeCroy's HDO 4054-MS Oscilloscope

Sensor - Pull Down Resistor

Sensor - Voltage Dependence on Distance Between IR LED and Phototransistor Plot of Voltage vs. Distance for Varying $d_{IR-Photo}$ with $R = 22k\Omega$

Sensor - Voltage Dependence on Pull-Down Resistor Plot of Voltage vs. Distance for Varying $R_{Pull-Down}$ at $d_{IR-Photo} = 4.3cm$ 3500 - 10k Ω 22k Ω 3000 33k Ω 2500 *Output Voltage (mV)* 1200 1200 1200 ↑ Pull-Down Resistor: ↑ Slope change V_{out} 1000 $R_{Pull-Down}[k\Omega]$ $\Delta V_{d=100cm-d=\infty}[mV]$ ~ 30 10500 22 $\sim 60 \ or \ 70$ 33 $\sim 100 \ or \ 110$ 47 ~ 138 20 30 40 50 60 70 80 90 100 ∞ $d_{Person-Sensor}$ (cm)

Table 4: Measured $\Delta V_{d=100cm-d=\infty}$ For Various $R_{Pull-Down}$

Agenda

- Introduction, Objective and Result
- Block Diagram
- Design and Validation
 - Physical Model
 - Microcontroller
 - Sensor

- \circ Power
- Conclusion
- Future Work

Power Module - Original Design

Original Power Module Design

Power Module - Modified Design

- Advantage
 - Simplified
 - Higher current
- Problem
 - Varying voltage

Varying Voltage of LED Voltage

Power Module - Final Design

Wall Adaptor **Inline Switch** Wall Outlet (120V AC to 5V DC) 534mA 15mA Cin 5V + Micro-controller DC Sensor Circuit Circuit Source Wall Adaptor Fuse Inline Switch (120V AC to 5V DC) varying current 5V +DC LED Strips Source Final Power Module Design

- Advantage
 - Tailored to Modules
- Disadvantage
 - Two power sources

Power Module - Decoupling Capacitor

No Decoupling Capacitor

With Decoupling Capacitor, 0.47uF

ECE ILLINOIS

Satisfies requirement in R & V table with single 100uF electrolytic capacitor

Agenda

- Introduction, Objective and Result
- Block Diagram
- Design and Validation
 - Physical Model
 - Microcontroller
 - Sensor
 - \circ Power

- Conclusion
- Future Work

Conclusion - Wrap up

Conclusion - Future Work

Thank You!

Any Questions?

IR Sensor - Current-Limiting Resistor

Table 1: IR LED Performance's Dependence on Ambient Temperature

40Ω minimum power rating: 327.54mW

T_A , Ambient	I_e , Normalized	I_f , Forward	V_f , Forward
Temperature [°C]	Radiant Intensity [1]	Current [mA]	Voltage [V]
15 (Min. Weather)	1.3	103	1.82
22.5 (Avg. Weather)	1.1	101	1.78
30 (Max. Weather)	0.99	95	1.75
60 (Max. Heat Temp.)	0.9	90	1.62

 Table 2: IR LED's Current-Limiting Resistor Calculation

T_A , Ambient	R , Resistance $[\Omega]$,	P, Power [mW],	
Temperature [°C]	$R=rac{V_R}{I_R}$	$P_R = V_R I_R$	
15 (Min. Weather)	30.8738	327.54	
22.5 (Avg. Weather)	31.88	325.22	
30 (Max. Weather)	34.2105	308.75	
60 (Max. Heat Temp.)	37.6	304.2	

40.2 OHM 0.6W 1% Used

