Guitar Buddy *Team 15: Austin Born and Christopher Horn ECE 445, Fall 2018*

Presentation Overview

- 3 Project Origins
- 4 Project Objective
- 5 Guitar Buddy System
- 7 System Overview
- 8 Block Diagram
- 9 Control Module

- 11 Software Module
- 13 LED Output Module
- 14 Power Module
- 16 Sensing Module
- 18 Successes and Challenges
- 19 Future Work

Project Origins

- Music lessons \$30-50/hr.
- Guitar provides little feedback for self-learners
- Desire for visual cues for notes

Project Objectives

- Display notes/chords in near-real time
- Bluetooth wireless communication
- No (little) interference during normal use

Guitar Buddy System

Fretboard

Guitar Buddy System (cont.)

	Strings						
Frets		E2	A2	D3	G3	B3	E4
	1	F2	B ^b 2	E ^b 3	A ^b 3	C4	F4
	2	G ^b 2	B2	E3	A3	D ^b 4	G ^b 4
	3	G2	C3	F3	B ^b 3	D4	G4
	4	A ^b 2	D ^b 3	G ^b 3	B3	E ^b 4	A ^b 4
	5	A2	D3	G3	C4	E4	A4
	6	B ^b 2	E ^b 3	A ^b 3	D ^b 4	F4	B ^b 4
	7	B2	E3	A3	D4	G ^b 4	B4
	8	C3	F3	B ^b 3	E ^b 4	G4	C5
	9	Dp3	G⁵3	B3	E4	A ^b 4	D ^b 5
	10	D3	G3	C4	F4	A4	D5

System Overview

- Control module
 - Generate control signals and manage data
- Software module
 - Extract notes from MIDI files
- LED module
 - Serial interface to drive LEDs
- Power module
 - Provide safe, portable power
- Sensing module
 - Track user's playing and identify errors

Block Diagram

Control Module

- Control LEDs
- Manage reading string data bus
- Bluetooth communication
- Save song and user data
- Interface with user

Control Software Flowchart

Software module (Parsing MIDI data)

- Track and time info in header
- Musical notes in track events
 - Timestamp
 - Status byte
 - 0x8X: note off
 - 0x9X: note on

- Velocity

Software module (Recording LED data)

- Takes in MIDI file, outputs CSV and binary files
- Binary file then sent wirelessly to controller

Binary File Size (bytes) = t x r x f t = song duration (s) r = refresh rate (Hz) f = # of fret PCBs

ECE ILLINOIS

LED output module

- Constant current shift registers
- SMD LEDs
- Several kHz refresh rate

ECE ILLINOIS

Power Module

- Wired or battery powered
- Removable 18650 battery
 - Provides > 1500mAh capacity
 - Compact and safe
- Overheating protection
 - Protect user in event of malfunction

Verifying Thermal Cutoff

ECE ILLINOIS

Sensing Module

- Guitar strings pulled to GND
- String data bus pulled to 3.3V
- Tristate buffers connect bus to pads
 - Enabled by output of LED driver
- ESP32's ADC measures bus voltage

Contacts

Sensing Module (cont.)

JRIBUFFER1

Π

Successes and Challenges

Successes

- LED array control
- Wireless communications
- Note mapping from MIDI data
- Fitting device onto guitar
- Sensing of strings on individual boards

Challenges

- Saving song data in contiguous memory
- Tristate buffer enable from LED drivers

Future Work

- Representation for 0th fret
- Different teaching modes (practice mode, arcade mode, chord progressions, etc.)
- On-board speaker
- Less invasive fret PCBs and wiring

Questions?

