

Autonomous Object Moving Vehicle

ECE 445 Design Document -- FALL 2018

Team 19: Kefan Tu, Kewei Sui

Team 32: Chenliang Li, Honglu He, Siping Meng

TA: Amr Martini

1 Introduction

1.1 Objective

Nowadays, we utilize many domestic robots to help our life become easier. Robot cleaner,
kitchen robot and even robot for entertaining cat gradually appear in our houses. However,
those robots are specified for certain problems and there is a lack of ability to deal with
problems in various situations. There are existing techniques [1] for specific indoor tasks, but
people believe that various combined algorithms can eventually be made reliable enough to
create a general-purpose domestic robot [2]. One generalized task for an indoor robot is
shifting objects from the start to the target destination offline without hitting any obstacles.
Here are two real scenarios: 1. Stan wants to feed his cat when he is at school but he forgets
to put the cat food can in the chat room. 2. Gwen wants to put her succulents on the balcony
for just one hour because they are vulnerable to direct sunlight. However, she is on her
business trip and she lives alone. In both of these situations, an agent is required to shift the
object from one position to somewhere else.

Thus, we decided to create a small automated robot which could grab and shift objects after
receiving the command given by the user. Our robot will have a robot arm to pick objects and
the lower part is a chassis vehicle for moving. A camera and a LiDAR sensor will be placed
in the front of the robot to help it detect objects and obstacles. Various algorithms will be
implemented in the microcontroller to give this robot capabilities to find the moving path
automatically and to place the object in the right place under an acceptable tolerance.
Besides, our robot is designed to accomplish the task offline and automatically so that user
don’t need to wait for the robot to finish its job.

What’s more, we will try to use a new interacting method, VR, to help users visualize and
produce the result they want the robot to accomplish first. We think this method could
enhance users’ understanding of what will the room look like finally because users can
directly “see” the final state in the virtual world. The VR user interface will be a stretch goal
for our project.

1.2 Background

For a long time, the idea of robots doing chores around the house has long captured people’s
imaginations [3]. However, a generalized servant robot is still a rare sight in the home today.
Besides, although the smart house is able to support remote control to turn the air conditioner
on or off through host’s mobile phone, there are still numerous detailed situations that are
hard to accomplish by simply using programmed command and smart appliances nowadays
in the market. We still need a robot to help us arrange the indoor objects and shift them for
various needs. Until recently, a smart domestic robot dog, SpotMini [4], created by Boston
Dynamics, shows up and demonstrates its powerful abilities to open the door and shift a cup
of water just like our project goal. The task’s complexity which SpotMini can do is nearly
reach the hardness level of human daily tasks.

 1

However, there is still a big deficiency for SpotMini. The size of SpotMini is too big to
recognize relative small obstacles underneath. It still has a high possibility to collide with
obstacles (like wall or furniture) when it turns around and even falls down in a real indoor
environment. Thus, we limit the size of our robot and try to increase the movement precision
as much as possible in order not to deal damage to the objects in the house because some of
them are pretty fragile.

1.3 High-level Requirements

● The robot can go to the location specified by the user (either directed given from PC
or VR)

● The robot can recognize the object user specified.
● The robot can grip, hold, and place the object.

1.4 Experiment Settings

The experiment area is a 4m×4m flat tile surface. We will divide it into 100 grids and thus the
unit length of the coordinates is 0.4m. Here is an example of the experimental setting.

 2

Figure 1. Experiment setting map (above)

 3

Figure 2. Experiment setting map (aside)

● “robot” represents the robot vehicle and it always starts at the initial position.
● “goal” represents the goal position for the target object which should be moved.
● “cat food can” and “potted plant” represent the target object (like cat food can in real

life) with high-saturated color wristbands around it. A color wristband is used to
provide a distinct feature for each object as well as enhance the efficiency and
accuracy of the object detection algorithm. If the number of the wristband colors is
smaller than the that of the objects, multiple color wristbands will be placed around
the object in different combination ways. The object can be placed on any known
place in the experiment area.

Figure 3. Example of experimental object with color wristbands

● “sofa”, “table” and “box” represent obstacles with unknown size and position (like
furniture or shoes on the ground in real life). The size of the obstacles has to be large
enough to be detected by the LiDAR sensor. A new obstacle can be placed anywhere
in the experiment area during the experiment and all obstacles are movable. It’s used

 4

for testing the path planning and obstacle detection function. We are going to use
artificial rectangular-shaped obstacles for the demo in order to mitigate the
complexity of the experimental environment.

1.5 Solution Description

In this system, we will first provide a 2-D map in the computer to visualize the current room
size with a starting point. The user will also see movable objects on the screen and a move
button. All of these data will be stored and transmitted to an autonomous robot through
Wi-Fi. Moreover, this robot can automatically find the object and search a path to move it to
the target position with the correct orientation. In this case, the user will never be worried
about the procedure of completing the task and they can even save this task into the database
for the next time.

This project can be separated into two big parts, the computer-based frontend, and the
autonomous robot. For the computer part, we need to create a simulated 2-D map that
correctly reflects current room size, a starting point, and movable objects. For the
autonomous robot part, we need to create our own robot based on a pre-built robot vehicle.
The robot should have the ability to move objects and find path automatically. We will use a
LiDAR, which is more accurate than an ultrasonic sensor, a gyroscope, and a camera(for
object recognition) to achieve this goal and we will use a microcontroller (Raspberry Pi) and
ROS system to control the vehicle. By using these sensors and localization, mapping and path
planning algorithms, this robot will be able to avoid obstacles.

 5

2 Design

2.1 Block Diagram

Figure 4. Block Diagram

T Target object P Old position P* New position

O Obstacles E Data from encoder ω Data from
gyroscope

Mwheel Signal to control
wheel motor

Marm Signal to control
robot arm motor

Mgripper Signal to control
gripper screw motor

 6

The block diagram is consist of five main units: user and server, control unit, mechanical
unit, sensors, and power supply. They are balanced separated into two parts and each group
of our big team is in charge of one part. User and server unit is the block which allows the
user to give commands to the robot and obtain the new-generated 2D map from the
microcontroller and then show it to the user. Control unit is the brain of the robot which
contains one microcontroller (Raspberry Pi) and two control circuits (two PCBs for both
upper and lower parts). Then, a Mechanical unit is the physical structure unit for the entire
robot. The robot arm is placed on the upper part and the lower part is mainly a chassis
vehicle. What’s more, various sensors are used in this project in order to implement multiple
algorithms and accomplish the task. Finally, the power supply unit provides the power with
different voltages to the entire robot.

The group in charge of the upper part of the robot majorly contributes the user and server unit
and the blocks arranged on the upper part of the robot in control, mechanical and sensors unit.
Likewise, except dealing with the blocks placed at the bottom, the lower part group also
handles the power supply unit. Both groups will work on the microcontroller together
because it is the most crucial component of the entire system.

2.2 Physical Design

The physical design of this robot is chosen to allow flexible moving with a relatively small
size and to place all sensors in appropriate positions to work. Our robot basically consists of a
two-layer chassis vehicle with two wheels. The dimensions of the chassis vehicle are 250mm
x 205mm x 103mm. We choose only two wheels rather than four in attempts to reduce the
cost and to allow the robot to do pivot turns more easily. The encoders will be placed on the
motors in order to calculate distance traveled by detecting the speed of wheels.

A robotic arm placed on the top of the chassis (on the second layer) will be actuated by two
motors to grip items. One big DC motor is used to lift the arm and the other screw motor is
used to open and close the gripper. The physical design of the arm will be elaborated in the
robotic arm block. On the second layer, we will place a LiDAR in the front of the vehicle to
detect obstacles when the robot is moving. However, the arm and camera will be put on the
back, because we don’t want other physical components to be detected by LiDAR otherwise
the obstacle detection will be undermined. When the robot arrives its destination and is going
to pick up an item, it needs to turn around first so that its robotic arm and camera will face to
the item. We will put the remaining hardware components on the first layer of chassis,
including the microcontroller, PCBs and a gyroscope.

 7

Figure 5. Physical overview of chassis vehicle (unit: mm) [5]

Figure 6. Relative positions of arm, LiDAR, and camera (unit: mm) [5]

 8

2.3 Design Document 1 (Upper)

2.3.1 Robotic Arm

Figure 7. Robotic Arm Overview [6]

The physical design of the robotic arm is divided into two parts: the upper part has a gripper
at the end of the beam while the other end is connected by a rotatable joint with the lower
part, which is fixed to the chassis vehicle. The robotic arm needs to adjust the height of
gripper. This is achieved by using a timing belt pulley that is driven by a motor; the pulley
rotates with the upper beam so that we can adjust the height of the gripper.

2.3.1.1 Robot Gripper
We will put a gripper at the very front of our robotic arm to grip items. The gripper is
controlled by an N20 screw motor. When the screw spins, the gripper will be pushed to open
or pulled to close due to the mechanical design. The operating voltage range of the gripper is
5-12V DC.

Gripper (with motor)

Requirement Verifications

Able to provide enough torque to grasp a
can, whose diameter is usually 65mm and
height is usually about 125mm. If the can is
full of water, the weight is about 360mg.

A. Run arm control program
B. Ensure the distance between two ends

of the gripper is at least 65mm
C. We will keep increase the pressure exert

on the can until we can ensure the can is

 9

grasped and lifted without slippery and
then record the data every time during
the test in order to get the best result.

2.3.1.2 DC Motors

We will use a 37mm DC motor to control the timing belt pulley in order to adjust the height
of gripper and use an N20 screw motor to control the operation of the gripper. The operating
voltage range of both motors is 5-12V DC. They will interface with the motor controller
circuit to be able to run in opposite directions.

DC Motor

Requirement Verifications

Able to provide enough torque to lift the
robotic arm

A. Give 12V input to the motor
B. Ensure that timing belt pulley rotates

as motor rotates and that the angle
between the upper part and lower
part of the arm is adjustable

2.3.1.3 Arm Control Algorithm

This algorithm will be called after robot is adjusted to a proper location to pick up or place
the target item based on its calibration algorithm. The predetermined values, including height
hobject and hrobot , distance d0 and d1 , and open-width w0 , need to be determined based on
experiments before we run this program.

To grip the item the robot just confirms, the pseudocode is the following:
If robot is ready to pick up the target object:

Actuate arm DC motor to lower the height of gripper
Stop it if predetermined height hobject is reached
Actuate screw motor to open the gripper to its maximum width
Move the robot forward by predetermined distance d0 so that the item is in the gripper
Reverse the direction of screw motor and actuate it
Stop it if predetermined open-width w0 is reached
Reverse the direction of arm DC motor and actuate it
Stop it if predetermined height hrobot is reached

 10

Figure 8. Flowchart 1 of arm control algorithm

To place an item on the floor, the pseudocode is very similar to the pickup one:
If robot is ready to place the target object:

Actuate arm DC motor to lower the height of gripper
Stop it if predetermined height hobject is reached
Actuate screw motor to open the gripper to its maximum width
Move the robot backward by predetermined distance d1 so that the item is out of gripper
Reverse the direction of arm DC motor and actuate it
Stop it if predetermined height hrobot is reached

 11

Figure 9. Flowchart 2 of arm control algorithm

2.3.2 PCB design

2.3.2.1 Motor Controller

A motor driver will be implemented in our PCB as a control circuit to drive motors.
Basically, we use an H-bridge design to drive the motors, using two pairs of transistors to
control the direction of current and thus the direction of motor rotation. The controller will
receive signals from the microcontroller and control the current direction correspondingly.
We will use the chip TB6612FNG, which is a high-efficiency MOSFET driver with low heat
dissipation.

Motor Controller

Requirement Verifications

Able to change the direction of motor
running given input signal from
microcontroller

A. Give proper signals to H-bridge to
change the current direction

B. Ensure the direction of motor is
changed corresponding to signals
from microcontroller

 12

Figure 10. Schematics of H-bridge circuit [7]

Figure 11. Control Function Table [7]

 13

2.3.2.2 Circuit Schematic

Figure 12. Circuit Schematic

2.3.3 User

User (or Client) is the front-end for the entire system. By directly inputting the target object
(T) and the new position for that object (P*) into this front-end, the command will be
generated and transmitted to the server and finally reach the microcontroller on the robot. We
will create a visualized 2D map on the computer in order to visualize the positions of the
robot, objects and detected obstacles and error message sent by the robot. User is able to use
keyboard to input T and P*. What’s more, stop command will be implement in order to stop
the robot immediately to prevent it from hurting others.

User

Requirement Verifications

1. An efficient user interface should be
designed to show positions of the
robot, objects and detected obstacles
and error message as well as

1.
A. Print out the received data

from the Raspberry Pi and
make sure they are exactly the

 14

transmit data to the server and
microcontroller.

2. Stop command can successfully stop
the entire robot in less than 3
seconds.

same with the input from the
user

B. Print out the positions of the
robot, objects and detected
obstacles and any error
message and make sure they
are exactly the same with the
positions calculate from the
Raspberry Pi

2. After send stop signal, the robot
should shut down and stop moving
immediately.

2.3.4 Server: Connection between Microcontroller and User

Since we will connect the Raspberry Pi and our computer/VR device wirelessly, a server-user
architecture will satisfy our needs. This is because of the Raspberry Pi, holding a lot of
information including location data, LiDAR data and error messages, need to be shared with
a user so that the user could visualize these data on a 2-D map:

Figure 13. Server, Microcontroller and User relationship

Meanwhile, the user could also send a service request, such as feeding the cat and moving
plants, to the server and then from server to the microcontroller. We will use Python
<socket> package to implement this feature. More specifically, on the server, we will open a
socket and listen for incoming connections from user and microcontroller and build up a
database to log the data. On the user, we will connect to the socket on the server and record
the incoming information that arrives. On the microcontroller, we will keep writing data into
the socket and send it to the server every second.

Server-User architecture

Requirement Verification

Successfully connect microcontroller, server
and computer

Print out everything in the terminal and ensure
data has been transmitted successfully

 15

2.3.5 Sensors

2.3.5.1 Camera

The Camera we used is the Raspberry Pi 8-megapixel camera module V2 which will be
directly connected to the microcontroller as data receiver and power supplier. We will use
this camera to detect the object from the sampled pictures by utilizing an object detection
algorithm to find the mean point of the object on the image. Then our microcontroller will
calculate the relative position based on the location of the object shown in the image. By
correcting its direction toward the target object, the robot is able to move close enough to the
target object and pick it up finally. The horizontal Field of View (FoV) is 62.2 degrees and
the vertical FoV is 48.8 degrees which are sufficient for our project [8]. The best stream
mode is 1080p with 30fps [8] but we only need shoot five to ten 480p pictures per second
because high-resolution pictures are not necessary for just finding the relative position the
object and we need to cut down the memory usage of this task. We will discuss more the
object detection algorithm in 2.3.6.2.1.

Camera

Requirement Verification

Camera must shoot at least five 640x480
RGB pictures per second

Write a program to output the png file of the
captured pics and then manually check the
created time of those files to ensure at least
five pics are created in a second

2.3.5.2 LiDAR
The model we use is the SLAMTEC RPLIDAR A2m8. The frequency of the LiDAR is set to
10 Hz, and 400 data points for a 360-degree scan. We’ll use as many data points as possible,
depending on the dimension of the robot arm.

LiDAR

Requirement Verifications

 16

On the microprocessor will process the
LiDAR data and output the obstacle location
to the map. The map will show at least 90%
of the obstacle that the current robot can
detect

A. Put the robot at home position, and
turn the robot on but without
running. Wait for 5 seconds and then
check the map generated by the robot

B. Compare the obstacles location with
the real ones, and people stay at
home position and count if those
obstacles can be seen by human eye

2.3.6 Control Unit

2.3.6.1 Microcontroller (Introduce Raspberry Pi)

Raspberry Pi 3B+ will receive data from all sensors, include LiDAR (USB), Camera (Pi
module), Encoder (GPIO), Gyroscope (ADC to GPIO). It will send data to robot arm
(GPIO/PWM), motors (wheel) (GPIO). It will also send location data to the user’s laptop
through TCP/IP communication.

2.3.6.2 Algorithms

2.3.6.2.1 Object Detection

We will use OpenCV to help us implement this algorithm. Each object will have a color
wristband on it, and after the robot reaches the approximate location, the camera will play a
role as a feedback loop and keep running this algorithm to correctly making sure the robot is
directly facing toward the object.

The light intensity might fluctuate widely in a room because of the artificial light. Thus we
need to apply gamma correction [9] to the image in order to get rid of the problem of
overexposure and underexposure.

We also need to change the color model of the picture from the RGB model to the HSV
model because we need it to apply the color mask in OpenCV [10]. Color masks we will use
are actually ranges of HSV color. Those ranges will be defined and saved in the code first.
This algorithm will check all pixels and if the color of one pixel is located in one range, then
this pixel will be labeled as the color which this range represented. By checking the vertical
order of colors in the image with the map which stores all orders as keys and the relative
object as values, the robot could understand what object it is.

 17

Figure 14. The flowchart of object detection algorithm

Object Detection

Requirement Verification

1. The detection range should be at least
0.5m.

2. The robot can adjust it self facing
object, with an angle of +/- 5°

1.
A. The robot will run this algorithm

and detect the object once it get
close to the target position. The
minimum required detection
range should be at least 0.5

 18

meters which is slightly bigger
than the unit length of the
coordinates.

B. We will test the performance of
the object detection in the
situation that the distance
between the object and the
camera is larger than 0.5m and
adjust algorithm for eliminating
small blobs.

2.
A. We put the robot 0.5 meters

away from object and turn on
camera detection, and then check
the final angle between the robot
and the object.

B. If the final angle is larger than
+/- 5°, we could smaller the
tolerance about the center of the
detected object and the center of
the whole image in order to
move the image of the object
closer to the center.

2.3.6.2.2 Localization Calibration

We’ll calibrate the robot position by letting it go home. Upon the completion of every task,
the robot will go home to calibrate itself. The robot will push itself into the space between
two walls. The distance between two walls is slightly longer than the width of the robot. At
this time, the rotation angle, θ, will be calibrated by resetting to 0°. We’ll use object detection
to adjust angle of the robot in order to let it move straightly into the space between walls.
We’ll also use the LiDAR data to get the distance to the left/right side wall in order to
calibrate the position.

Calibration

Requirements Verifications

1. User inputs a calibration signal, and
then the robot should go home
immediately or after finishing up
current task

1. At any position in the map, we give
the robot a calibration signal, the
the robot will start to go home in
one second.

 19

2. After it gets home, the calibrated
location and angle should be within
1% difference from the actual
location and angle compared to the
unit length and angle of the
coordinates.

2.
A. We will check the location after

calibration stored by robot and
compare it with the actual
location during the test.

B. We will use object detection
algorithm and the data from
LiDAR at the same time in order
to make sure the robot will
successful move into the space.
The object detection algorithm
will rotate the robot to face
straightly to the space and the
data from LiDAR will calculate
the position of the robot relative
to two walls and keep the robot
on the center line of the space.

2.3.6.2.3 Obstacle Avoidance

The LiDAR will pass in a raw value (distance in each data point) to the microprocessor, and
we’ll process them into world frame position and mark the grid near them an obstacle. Once
an obstacle position is determined, it can’t be cleared unless the robot re-start with a fresh
new map. A* algorithm will avoid any obstacle.

Obstacle Avoidance

Requirement Verification

While robot is moving, it avoids collision by
stopping moving toward obstacles or just
moving along them but does not collide with
an obstacle or get stuck

A. Starting at home position, input a
object location and let the robot run
itself

B. Ensure the robot will get not stuck
or collide with obstacles before
successfully going to target
location

 20

2.4 Design Document 2 (Lower)

2.4.1 Mechanical Unit

2.4.1.1 Chassis

We are using an acrylic waffle board robot car chassis with the length of 250mm, the width
of 200mm and the height 140mm. This car has two layers, two wheels with motors and an
Omni wheel.

2.4.1.2 Motor

The DC brushed motor we’ll use to drive our robot is CHR-GM25-370, DC 12V, 220 RPM.
It comes with a 6-PIN Magnetic Holzer Encoder.

We choose brushed motor rather than the brushless motor because it is inexpensive, steady,
and easy to control: we can simply use voltage to control the speed of the motor and we can
also change the voltage direction to change the rotation direction of the motor. The maximum
speed is 160-300rpm and the working voltage is 3-12V DC and the max torque is 1.8kg·cm.

Motor

Requirements Verifications

The motor can drive the robot with all the
components on it and the speed should be no
less than 4.7cm/s i.e. robot can move along
the diagonal line in 2mins.

We test the time of the robot with all the
components on crossing the diagonal line
and check if the time is less than 2mins.

2.4.2 Sensors

2.4.2.1 Encoder

The motor comes with 6 -PIN Holzer encoder, which counts to 224.2 pulses per revolution.
With rotation rate information, we can read it to the microprocessor and use the setting
diameter of our wheels to calculate the linear distance that the robot has traveled.

 21

Figure 15. Encoder & motor schematic

Figure 16. Motor control loop

We have two methods to implement the wheel speed, one is based on frequency and another
is based on a period cycle. Since our wheel speed is relatively low, we decide to use the
measuring method based on a period cycle.

In the formula above, n is the rad/s, f is the base frequency we produce by the controller, p is
the pulse number in one rotation that the encoder produces. And m is the number of the base
pulse in one rotation.

As long as we get the rotation rate we can calculate the distance we traveled and we can
determine our moving direction from the information we get from the gyroscope.

 22

Since we can control our wheels independently, we can change the moving direction by
giving different speed to different wheels.

Figure 17. Example of robot moving path

We will have:

Where v is total velocity, ω is angular velocity, θ is the angle we rotate, r is the rotation
radius.

From the formulas above we can calculate the current velocity, angular velocity and rotation
radius by the feedback from our encoder and gyroscope, then we can regulate our wheel
speed individually to control the motion of the robot.

Encoder

Requirements Verifications

1. The pulses generated by the encoder
to the controller can be used to
calculate the current angular velocity
of the wheel encoder.

2. The error of the velocity calculate
from the encoder information should
be within 0.05m/s

1. Connect encoder to the
microcontroller, it should display
current average linear velocity of
both wheels.

2. We manually push the robot for
1m, and integrate the velocity to
check the actual difference.

 23

2.4.2.2 Gyroscope

The single Axis gyroscope （MPU-6050) will transmit data by I2C to raspberry pi, with a
RMS noise of 0.05°/s.

Figure 18. Gyro I2C communication connection[11]

Gyroscope

Requirements Verifications

1. The microprocessor will be able to
read in and convert the input voltage
to angular velocity in rad/s.

2. The angle report by integrating the
angular velocity should be within +/-
5%.

1. Connect the gyro, raspberry pi, the
raspberry pi will display the angular
velocity in terminal.

2. Start with angle 0, and gradually turn
the robot 360°, and then check the
current angle.

 24

2.4.3 PCB design (for motor, gyro,encoder)

2.4.3.1 Motor Controller
We are using 3-12V DC brushed motor to drive our robot. To control the DC brushed motor
we need to control the voltage across the motor. So we need to build a voltage control circuit.

 Figure 19. Circuit schematic[12]

For brushed 130-motor, the speed control mostly depends on the voltage provided to the
motor, and the direction of rotation depends on the current direction.

We use two BTS7960B chips to build an H bridge to control since we need to control the
current direction to make the motors run in two directions. We choose to use BTS7960B is
because that chip can provide precise voltage control to the motor at the high current
condition(43A).

Sensor circuit

Requirements Verification

1. The motor controller can receive the
signal from Raspberry Pi and control
the voltage and current direction
across the motors.

2. All the parts on PCB can work
together and the robot can make a
turn by the degree we set.

1. We can use the microcontroller to send
the signal to the motor controller and
control the motor rotation.

2. We can compare the parameters we set
and the result we get when measuring
the robot’s movement. The difference
between our expectation and the real
movement should less than 5%.

 25

2.4.3.2 Protection Circuit

A protection circuit in the PCB to prevent our circuit from any misconnection of the power or
overload.

Figure 20. PMOS

The PMOS we choose may change eventually depend on the circumstance. It will restrict the
direction of the current.

We will also use the resettable fuse in the circuit to constrain the current and make sure our
circuit will not burn due to excessive current.

 26

2.4.3.3 Circuit Schematic

Figure 21. Circuit Schematic

2.4.4 Algorithms

2.4.4.1 Localization

Since the microprocessor will process the raw information from the gyro and both encoders,
we can calculate the robot position relative to world frame as follow:

Figure 22. Localization formula

 27

Where (x,y) is the current location, (xprev, yprev) is the previous location at time t ago. θ and θprev
are the angles the robot faces for current and previous respectively. Time t is determined by
the output frequency of the gyro and the encoder, whichever is faster.

Localization

Requirement Verification

The robot location should be +/-0.05m from
actual location

We set a object location and let the robot
drive itself, check its final location and the
given object location

2.4.4.2 2D Mapping

Our map will be a 10*10 gridded map, corresponding to a 4m×4m environment. All obstacles
will be a 1*1 square box. With LiDAR passing length information in different angles, we can
calculate its relative position and transform into world position and then check which
obstacle it’s close to, and update that obstacle.

 28

Figure 23. Mapping flowchart

2D Mapping

Requirement Verification

The robot should mark any obstacle it can
see from its prospective

A. Putting the robot at home position
for 5 seconds, then check the
updated map, and compare it with
actual environment

B. Start the robot at home position and
give an object location, check if the
map is updated during the run

 29

2.4.4.3 Path Planning

Based on the up-to-date map and the predefined location of the object, the robot will just
generate a path using A*, with each step at the center of the gridded block on the map. While
moving, the LiDAR will also collect surrounding information, and if a new obstacle is
detected, the map will be updated and the path will be recalculated by A* based on the
up-to-date map. Moreover, if there is no available path for the robot and target, the robot will
go back to its starting position and standby.

Algorithm

Requirements Verifications

1. The robot will not hit obstacles
during the whole process, including
walls.

2. The robot will walk down the
optimal path.

1. By observation, the robot should not
hit any objects.

2. Robot will send back its current path
to show this on 2d map.

2.4.5 Power Supply

2.4.5.1 Battery
We will use a 4S Li-Po rechargeable battery(14.8V, 7000mA) as the power source for the
whole vehicle including the motors, controller, the signal receiver, and the sensor system. To
power the different systems we need to connect the battery to the PCB board which will
convert the voltage of the battery 14.8V for different components.

Figure 24. Battery overview

 30

We are going to use the 4S Li-Po battery whose voltage is about 14.8V. Since the
microcontroller works at 5V and the motors work at 3-12V, we will need converters to output
different voltage for the different components in our robot.

Due to the working voltage range of components is lower than the voltage output from the
battery, we will use the Buck DC/DC converter, which can step down the dc voltage. The
Buck converter will need the TPS62130A chip as the central component. The circuit layout
shows below is an example for 12V input to 3.3V output.

Figure 25. Circuit layout of TPS62130A [13]

Power Supply

Requirement Verification

The whole power set need to provide steady
and plentiful power. The power converter,
which is the DC-DC converter, need to

When we test the voltage out from the
DC-DC converter, we should get the voltage
with the difference between the expectation
less than 5%

 31

2.5 Tolerance Analysis

Our design contains two critical features for the successful completion of tasks: vehicle
movement control and robot arm mechanism.

Vehicle movement control basically involves direction control and speed control, and the
error caused by the gyroscope, wheel encoder, the control system will add up to total error.
The error caused by gyroscope is 0.05°/sec specified by datasheet. Taking the worst scenario
when there’s +0.05/sec noise for the whole run, and for the robot to cover all grid starting
from home position will take 200s, assuming the robot velocity at 0.3m/s.

Equation 1: Final angle error after reaching objective

The the integrated error is around 10°. The error caused by wheel encoder would be that
frequency is too low (1Hz), so the robot wouldn’t be able to precisely calculate current
position in between each 1s. Suppose our robot is set at 0.3m/s, then the max error the
location could get while running in a straight line is 0.15m. This happens when the robot
decelerates from 0.3m/s to 0m/s in 1 second.

Figure 26. Slow frequency error by encoder

 32

The control system like speed control may have a tolerant overshoot (0.02m away from
designated location), but will also add up to final error.

Figure 27. Worst scenario for the path of the robot

Let’s say there’s no obstacle in the environment, the robot is at home position (0,0), and the
target location is the furthest corner (-4,9). Then as long as the robot final location is within 1
unit (0.4m) around the location, and within 31° facing the object location (half of the
camera’s range), the object detection algorithm will play the role for grabbing the object. And
according to the previous error estimate, the max error after reaching the goal position is
0.18m and 10°, so the object detection algorithm will still be triggered to adjust robot position
for object grabbing. The error of encoder could be reduced by slowing down, and the
likelihood for the integrated angle to get up to 0.05°/sec error is diminutive. Therefore overall
our vehicle movement control is feasible.

The critical requirement of the robotic arm mechanism is that the robot successfully
recognizes the object user specified and picks it up. It basically relies on the high accuracy of
relative position and orientation between the robot and the object and a reasonably high
resolution of image data. Thus the critical components involved in the requirement are the
camera and robot pose calibration algorithm.

 33

When the robot arrives its destination given the 2D map with a location of the object, it needs
to turn around and look for the object using the camera. If robot motion and localization is
accurate enough, the object will show up in pictures taken by the camera. However, the
object may not be at the exact position where it can be picked up by the arm, so we still need
to adjust the relative position between robot and object based on image data from the camera.

Suppose we know the distance between the object and the robot if we count the number of
pixels of the wristband image because a greater number of pixels should indicate a greater
distance. Our assumption will be that if the centroid of an image of a wristband, which is
around the object, is at the centerline of the picture (condition 1) and the number of pixels is
in some predetermined range (condition 2), the robotic arm is able to pick up the item. Then
we only need to adjust the position and orientation of the robot completely until these
conditions are satisfied. Checking satisfaction of these conditions depends on the resolution
of camera images because the accuracy of image position coordinates relies on the resolution.

Since we can only control the robot by small steps, say turning right by 1°, chances are the
robot repeats turning left and right endlessly while adjusting the orientation, because the
centroid is always at left or right of but never exactly at the centerline of the picture. Thus we
must set up a tolerance in our position and orientation calibration algorithm. Suppose we
allow condition 1 to be satisfied if the (xcentroid - xcenter) <= ntolerance, where xcentroid represents the
x coordinate of the centroid of a wristband, xcenter represents the x coordinate of center of the
picture, and ncentroid is the tolerance value we set. Then this value should be chosen based on a
large number of experiments. It needs to be as large as possible but still allows the robotic
arm to pick up items.

3 Cost and Schedule

3.1 Cost Analysis

PARTS

Inde
x

Part Name Qt. Price Per Item Total Price

1 RPLIDAR A2 1 319.95 319.95

2 CAMERA 1 25 25.00

3 ROBOT ARM 1 89.99 89.99

4 VEHICLE 1 40.00 40.00

5 RASPBERRY PI 5 39.95 199.75

 34

6 GYRO 1 15.61 15.61

7 MICROSD 5 9.8 49.00

TOTAL COST 739.3

LABOR

Name Salary ($/hour) Hours Total(*2.5)

Kewei Sui 40.00 130 13000

Kefan Tu 40.00 130 13000

Honglu He 40.00 130 13000

Chengliang Li 40.00 130 13000

Siping Meng 40.00 130 13000

TOTAL COST 65000

3.2 Schedule

3.2.1 Schedule (upper part group)

 Kefan Tu Kewei Sui

9/24/18 Physical design of the robot vehicle
and the robotic arm

Arrange work schedule and host
weekly meeting

10/1/18 Assemble the robotic arm;
Research on motor driver circuit

Connect camera module to Raspberry
Pi and sample pics from the video
stream; Experiment OpenCV in
Raspberry Pi

10/8/18 Implement a motor control circuit on
breadboard;
Successfully and separately control
direction of two motors

Implement object detection algorithm
in OpenCV and successfully
recognize object with color wristband

10/15/18 Implement PCB design of motor
controller;
Test and analyze the torque the motor
of arm can provide

Finish implementing object detection
algorithm in order to calculate the
direction toward the object and send
this result to other algorithms

 35

10/22/18 Implement arm control algorithm;
Give correct and proper inputs to
motor controller via microcontroller

Conduct simple test on object
detection algorithms without vehicle
and work on error reduction

10/29/18 Optimize the control algorithm of
robot arm and conduct simple tests
without vehicle and fix any problem
shown during the test

Start to Implement localization
calibration algorithm on camera
without vehicle

11/5/18 Revise PCB design; Conduct more
tests about robot arm with vehicle and
fix any problem shown during the test

Continue Implement localization
calibration algorithm and test object
detection algorithm with vehicle

11/12/18 Test new PCB and optimize physical
design of the entire robot.

Conduct tests on localization
calibration algorithm with vehicle and
fix any problem shown during the test

11/19/18 Conduct basic tasks and make sure the
robot fulfill the high-level requirement
about robot arm.

Work on stretch goal (VR) and make
sure the robot fulfill the high-level
requirement about the object
detection

11/26/18 Conduct more real scenarios testing and fix any problem shown during the test
Start to work on final paper and present mock demo

12/3/18 Finish final paper
Present mock presentation and demonstration

12/10/18 Presentation

12/12/18 Final paper due

3.2.2 Schedule (lower part group)

 Chenliang Li Honglu He Siping Meng

9/24/18 Research on chassis car
and suitable motors and
power unit

Overall Design and
research on various
sensors (LiDAR, camera,
encoder and gyroscope)

Research on
microcontroller and
algorithms about path
planning

10/1/18 Purchase required
hardware equipments

Localization and
calibration design

Research on server
setup and
communication
between Raspberry Pi
and computer

 36

10/8/18 PCB board design LiDAR and Pi Serial
Communication

Connection between
Raspberry Pi and
computer

10/15/18 Wheel function test Map and coding project
skeleton setup

Work on path planning
algorithm and start to
work on main function
that controls all
functions

10/22/18 PCB board made 2D Mapping of 4m×4m
environment

Continue work on main
function

10/29/18 Test all sensors in lower
part and start to work on
power supply unit

TCP/IP communication
to send obstacle location
to PC

Combining built
algorithm code to main
function and debug the
error

11/5/18 refine PCB design and
combine the entire robot
together

Specify target location
for the robot and drive
itself without any path
planning; Implement
location calibration
algorithm

Continue combine built
algorithm code to main
function and work on
basic user interface.

11/12/18 Test new PCB and Start
to prepare the objects
and obstacles for
experimental
environment

Optimize path planning
algorithm and test on
location calibration
algorithm

Optimize all algorithms
in the microcontroller
in order cut down the
memory usage and
speed them up

11/19/18 Conduct basic tests and
make sure the robot
fulfill all high-level
requirements based on
current experiment
settings

Continue optimize path
planning algorithm with
LiDAR updated map on
robot; conduct basic tests
and make sure the robot
fulfill the high-level
requirement about the
movement

Work on stretch goal
(VR) and this new
client is able to
communicate with
server

11/26/18 Conduct more real scenarios testing and fix any problem shown during the test
Start to work on final paper and present mock demo

12/3/18 Finish final paper
Present mock presentation and demonstration

12/10/18 Presentation

12/12/18 Final paper due

 37

4 Stretch goals

4.1 Virtual Reality User Interface

More and more domestic robots appear in our houses. But they almost all use traditional UI
to interact with the user which means that user can only send pre-programmed commands to
these robots and the nonvisualized result is actually unclear to the user. For instance, when
we click the “clean” button on the vacuuming robot, we, in fact, don’t know which part of the
room will be cleaned and how clean it will be. We want to try some new interaction ways that
can enlighten the smart appliance industry. With the VR experience, we designed a unique
interaction way with a future smart appliance that we can manually produce the result we
want in the virtual world and then a programmed robot could accomplish this task
automatically in the real world and offline. High level of immersion in a virtual environment
could improve the engagement of the user and facilitate he or she has a better understanding
of the complex indoor environment space [14].

We will first ensure that by directly inputting P* and T into the microcontroller of the robot,
it could work functionally. VR part is a kind of a stretch goal for our project. We decide to
use Oculus Go with the controller as our front-end in this project, because of the portability
of the helmet and good maneuverability of the controller. In VR, a user could emerge in a
virtual environment that is exactly the same as the real experimental environment (the design
of the map is shown in the introduction section). The user is able to see the target objects and
the obstacles stored. Because we only save the 2D position for every objects and obstacle,
models for them will be placed in the same x,y coordinates in VR but the height for those
models may differ from that in the real world. By using the controller, we can grab the object
freely and move it to somewhere else. Then, the new position P* of the target object T will be
transmitted to the server and then sent to the robot in order to finish the task in the real world.

5 Ethics and Safety

We have several safety concerns about our project. The Li-po battery requires the highest
attention to deal with due to the explosibility, and we will make sure the temperature of the
battery stay in the safe range of the industrial standard for all time. Our charger is an industry
made IC device and will shut charge controller off if charging input is beyond required
voltage range. In this way, it can reduce the likelihood of hazards while charging. We will
also design a protect circuit for sensor and motor components. To protect the circuit and
PCB, we will use flyback diode and Transient Voltage Suppressor since the motor will also
be connected to the PCB. What’s more, in order to prevent a short circuit which may lead to
electric shock, we will follow the electricity using manual during the experiment, and will
also check our power and circuit before connecting to the battery.

 38

Another safety concern is about the vehicle. Since we will use four motors (2 for wheels and
2 for robot arm), we have to put malfunction of these parts into serious thoughts. If any
software or circuit drive these motors mistakenly, the whole robot will be out of control and
may hurt people standing nearby. This is definitely what we wish to avoid during the whole
designing and demo period. In order to prevent such a condition, we will first accomplish a
circuit test for each part separately. Then we will test the searching algorithm and robot
control code in a safe laboratory as many times as possible. To increase safety, we will also
make sure to build an emergency stop command on the computer so that we could make sure
to stop the robot immediately and remotely.

For the VR headset (if applicable), we will operate it following the product safety manual and
make sure while testing VR device, other teammates will be around to check if the user is
experiencing discomfort. [15]

For the ethical issues, we will follow IEEE and ACM code of ethics. We may encounter
many problems in the project. But when problems occur, we will not try to disguise the
problems and move on recklessly. Based on #5 of the IEEE Code of Ethics, “to seek, accept,
and offer honest criticism of technical work, to acknowledge and correct errors” [16].
Therefore, when problems show up, we will try our best to find a way with teammates to
solve them. If we can’t solve the problem by ourselves, we will turn to our TA for help.

6 Citation

[1] C., Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid,and J.
Leonard (2016). Past, Present, and Future of Simultaneous Localization and Mapping:
Toward the Robust-Perception Age. IEEE Transactions on Robotics, 32(6), pp.1309-1332.

[2] I. Sutskever, G. Brockman, S. altman & E. Musk, “OpenAI Technical Goals”, June,
2016. [Online]. Available: https://blog.openai.com/openai-technical-goals/. [Accessed Oct. 4,
2018].

[3]E. Guizzo, “So, Where Are My Robot Servants?”, May, 2012. [Online]. Available:
https://spectrum.ieee.org/robotics/home-robots/so-where-are-my-robot-servants. [Accessed
Oct. 3, 2018].

[4] Boston Dynamics, “About Spot Mini”, bostondynamics.com, 2018. [Online]. Available:
https://www.bostondynamics.com/spot-mini. [Accessed Oct. 3, 2018].

[5] “Introduction of Pibot,” Dec, 2017. [Online]. Available:
https://blog.csdn.net/baimei4833953/article/details/78853797. [Accessed Oct. 1, 2018].

[6] “Robotic Arm Add-on Pack for Starter Robot Kit,” github.com, July 23, 2014. [Online].
Available:

 39

https://blog.openai.com/openai-technical-goals/
https://spectrum.ieee.org/robotics/home-robots/so-where-are-my-robot-servants
https://www.bostondynamics.com/spot-mini
https://blog.csdn.net/baimei4833953/article/details/78853797

https://github.com/Makeblock-official/Robotic-Arm-Add-On-Pack-For-Starter-Robot-Kit/blo
b/master/Assembly%20Instructions.pdf. [Accessed Sep. 20, 2018].

[7] Toshiba, “Driver IC for Dual DC motor,” TB6612FNG datasheet, June, 2007.

[8] J. Hughes, “Camera Module Readme.md”, Apr. 24, 2018. [Online]. Available:
https://github.com/raspberrypi/documentation/blob/master/hardware/camera/README.md.
[Accessed Oct. 4, 2018].

[9] A. Rosebrock, “OpenCV Gamma Correction”, Oct. 5, 2015. [Online]. Available:
https://www.pyimagesearch.com/2015/10/05/opencv-gamma-correction/. [Accessed Oct. 3,
2018].

[10] A. Rosebrock, “Ball Tracking with OpenCV”, Sep. 14, 2015. [Online]. Available:
https://www.pyimagesearch.com/2015/09/14/ball-tracking-with-opencv/. [Accessed Oct. 4,
2018].

[11] Instructables. (2018). ADC MCP3008 (Raspberry Pi). [online] Available at:
https://www.instructables.com/id/ADC-MCP3008-Raspberry-Pi/ [Accessed 5 Oct. 2018].

[12] “BTS 7960B High Current PN Half Bridge NovalithIC,” BTS 7960B. [Online].
Available:
https://www.infineon.com/dgdl/bts7960b-pb-final.pdf?folderId=db3a3043156fd5730116144c
5d101c30&fileId=db3a30431ed1d7b2011efe782ebd6b60. [Accessed: 01-Oct-2018].

[13] C. Glaser, “Five steps to a great PCB layout for a step-down converter,” Analog
Applications Journal. [Online]. Available: http://www.ti.com/lit/an/slyt614/slyt614.pdf.
[Accessed: 28-Sep-2018].

[14] H.L. Miller, N.Bugnariu “Level of immersion impacts the effectiveness of virtual
environments used to assess or teach social skills in Autism Spectrum Disorder,”
Cyberpsychology, Behavior, and Social Networking, vol. 19, no. 8, p.246, Apr, 2016. [Online
serial]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827274/. [Accessed Oct.
2, 2018].

[15] Oculus VR stuff, Oculus Best Practice, Oculus VR, 2017.

[16] Ieee.org. (2018). IEEE IEEE Code of Ethics. [online] Available at:
https://www.ieee.org/about/corporate/governance/p7-8.html [Accessed 19 Sep. 2018].

 40

https://github.com/Makeblock-official/Robotic-Arm-Add-On-Pack-For-Starter-Robot-Kit/blob/master/Assembly%20Instructions.pdf
https://github.com/Makeblock-official/Robotic-Arm-Add-On-Pack-For-Starter-Robot-Kit/blob/master/Assembly%20Instructions.pdf
https://github.com/raspberrypi/documentation/blob/master/hardware/camera/README.md
https://www.pyimagesearch.com/2015/10/05/opencv-gamma-correction/
https://www.pyimagesearch.com/2015/09/14/ball-tracking-with-opencv/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827274/

