
 

 

 

Autonomous Object Moving Vehicle 

 

 

 

 

 

 

ECE 445 Design Document -- FALL 2018 

Team 19: Kefan Tu, Kewei Sui 

Team 32: Chenliang Li, Honglu He, Siping Meng 

TA: Amr Martini 

 



 

1 Introduction 

1.1 Objective 

Nowadays, we utilize many domestic robots to help our life become easier. Robot cleaner, 
kitchen robot and even robot for entertaining cat gradually appear in our houses. However, 
those robots are specified for certain problems and there is a lack of ability to deal with 
problems in various situations. There are existing techniques [1] for specific indoor tasks, but 
people believe that various combined algorithms can eventually be made reliable enough to 
create a general-purpose domestic robot [2]. One generalized task for an indoor robot is 
shifting objects from the start to the target destination offline without hitting any obstacles. 
Here are two real scenarios: 1. Stan wants to feed his cat when he is at school but he forgets 
to put the cat food can in the chat room. 2. Gwen wants to put her succulents on the balcony 
for just one hour because they are vulnerable to direct sunlight. However, she is on her 
business trip and she lives alone. In both of these situations, an agent is required to shift the 
object from one position to somewhere else. 

Thus, we decided to create a small automated robot which could grab and shift objects after 
receiving the command given by the user. Our robot will have a robot arm to pick objects and 
the lower part is a chassis vehicle for moving. A camera and a LiDAR sensor will be placed 
in the front of the robot to help it detect objects and obstacles. Various algorithms will be 
implemented in the microcontroller to give this robot capabilities to find the moving path 
automatically and to place the object in the right place under an acceptable tolerance. 
Besides, our robot is designed to accomplish the task offline and automatically so that user 
don’t need to wait for the robot to finish its job. 

What’s more, we will try to use a new interacting method, VR, to help users visualize and 
produce the result they want the robot to accomplish first. We think this method could 
enhance users’ understanding of what will the room look like finally because users can 
directly “see” the final state in the virtual world. The VR user interface will be a stretch goal 
for our project. 

1.2 Background 

For a long time, the idea of robots doing chores around the house has long captured people’s 
imaginations [3]. However, a generalized servant robot is still a rare sight in the home today. 
Besides, although the smart house is able to support remote control to turn the air conditioner 
on or off through host’s mobile phone, there are still numerous detailed situations that are 
hard to accomplish by simply using programmed command and smart appliances nowadays 
in the market. We still need a robot to help us arrange the indoor objects and shift them for 
various needs. Until recently, a smart domestic robot dog, SpotMini [4], created by Boston 
Dynamics, shows up and demonstrates its powerful abilities to open the door and shift a cup 
of water just like our project goal. The task’s complexity which SpotMini can do is nearly 
reach the hardness level of human daily tasks. 
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However, there is still a big deficiency for SpotMini. The size of SpotMini is too big to 
recognize relative small obstacles underneath. It still has a high possibility to collide with 
obstacles (like wall or furniture) when it turns around and even falls down in a real indoor 
environment. Thus, we limit the size of our robot and try to increase the movement precision 
as much as possible in order not to deal damage to the objects in the house because some of 
them are pretty fragile. 

1.3 High-level Requirements 

● The robot can go to the location specified by the user (either directed given from PC 
or VR) 

● The robot can recognize the object user specified. 
● The robot can grip, hold, and place the object. 

1.4  Experiment Settings 

The experiment area is a 4m×4m flat tile surface. We will divide it into 100 grids and thus the 
unit length of the coordinates is 0.4m. Here is an example of the experimental setting. 
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Figure 1. Experiment setting map (above) 
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Figure 2. Experiment setting map (aside) 

● “robot” represents the robot vehicle and it always starts at the initial position. 
● “goal” represents the goal position for the target object which should be moved. 
● “cat food can” and “potted plant” represent the target object (like cat food can in real 

life) with high-saturated color wristbands around it. A color wristband is used to 
provide a distinct feature for each object as well as enhance the efficiency and 
accuracy of the object detection algorithm. If the number of the wristband colors is 
smaller than the that of the objects, multiple color wristbands will be placed around 
the object in different combination ways. The object can be placed on any known 
place in the experiment area. 

 

Figure 3. Example of experimental object with color wristbands 

● “sofa”, “table” and “box” represent obstacles with unknown size and position (like 
furniture or shoes on the ground in real life). The size of the obstacles has to be large 
enough to be detected by the LiDAR sensor. A new obstacle can be placed anywhere 
in the experiment area during the experiment and all obstacles are movable. It’s used 
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for testing the path planning and obstacle detection function. We are going to use 
artificial rectangular-shaped obstacles for the demo in order to mitigate the 
complexity of the experimental environment. 

1.5 Solution Description 

In this system, we will first provide a 2-D map in the computer to visualize the current room 
size with a starting point. The user will also see movable objects on the screen and a move 
button. All of these data will be stored and transmitted to an autonomous robot through 
Wi-Fi. Moreover, this robot can automatically find the object and search a path to move it to 
the target position with the correct orientation. In this case, the user will never be worried 
about the procedure of completing the task and they can even save this task into the database 
for the next time.  

This project can be separated into two big parts, the computer-based frontend, and the 
autonomous robot. For the computer part, we need to create a simulated 2-D map that 
correctly reflects current room size, a starting point, and movable objects. For the 
autonomous robot part, we need to create our own robot based on a pre-built robot vehicle. 
The robot should have the ability to move objects and find path automatically. We will use a 
LiDAR, which is more accurate than an ultrasonic sensor, a gyroscope, and a camera(for 
object recognition) to achieve this goal and we will use a microcontroller (Raspberry Pi) and 
ROS system to control the vehicle. By using these sensors and localization, mapping and path 
planning algorithms, this robot will be able to avoid obstacles.  
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2 Design 

2.1 Block Diagram 

 

Figure 4. Block Diagram 

 

T Target object P Old position P* New position 

O Obstacles E Data from encoder ω Data from 
gyroscope 

Mwheel Signal to control 
wheel motor 

Marm Signal to control 
robot arm motor 

Mgripper Signal to control 
gripper screw motor 
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The block diagram is consist of five main units: user and server, control unit, mechanical 
unit, sensors, and power supply. They are balanced separated into two parts and each group 
of our big team is in charge of one part. User and server unit is the block which allows the 
user to give commands to the robot and obtain the new-generated 2D map from the 
microcontroller and then show it to the user. Control unit is the brain of the robot which 
contains one microcontroller (Raspberry Pi) and two control circuits (two PCBs for both 
upper and lower parts). Then, a Mechanical unit is the physical structure unit for the entire 
robot. The robot arm is placed on the upper part and the lower part is mainly a chassis 
vehicle. What’s more, various sensors are used in this project in order to implement multiple 
algorithms and accomplish the task. Finally, the power supply unit provides the power with 
different voltages to the entire robot. 

The group in charge of the upper part of the robot majorly contributes the user and server unit 
and the blocks arranged on the upper part of the robot in control, mechanical and sensors unit. 
Likewise, except dealing with the blocks placed at the bottom, the lower part group also 
handles the power supply unit. Both groups will work on the microcontroller together 
because it is the most crucial component of the entire system. 

2.2 Physical Design 

The physical design of this robot is chosen to allow flexible moving with a relatively small                
size and to place all sensors in appropriate positions to work. Our robot basically consists of a                 
two-layer chassis vehicle with two wheels. The dimensions of the chassis vehicle are 250mm              
x 205mm x 103mm. We choose only two wheels rather than four in attempts to reduce the                 
cost and to allow the robot to do pivot turns more easily. The encoders will be placed on the                   
motors in order to calculate distance traveled by detecting the speed of wheels.  

A robotic arm placed on the top of the chassis (on the second layer) will be actuated by two                   
motors to grip items. One big DC motor is used to lift the arm and the other screw motor is                    
used to open and close the gripper. The physical design of the arm will be elaborated in the                  
robotic arm block. On the second layer, we will place a LiDAR in the front of the vehicle to                   
detect obstacles when the robot is moving. However, the arm and camera will be put on the                 
back, because we don’t want other physical components to be detected by LiDAR otherwise              
the obstacle detection will be undermined. When the robot arrives its destination and is going               
to pick up an item, it needs to turn around first so that its robotic arm and camera will face to                     
the item. We will put the remaining hardware components on the first layer of chassis,               
including the microcontroller, PCBs and a gyroscope.  
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Figure 5. Physical overview of chassis vehicle (unit: mm) [5] 

 

Figure 6. Relative positions of arm, LiDAR, and camera (unit: mm) [5] 
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2.3 Design Document 1 (Upper) 

2.3.1 Robotic Arm 

 

 
Figure 7. Robotic Arm Overview [6] 

The physical design of the robotic arm is divided into two parts: the upper part has a gripper 
at the end of the beam while the other end is connected by a rotatable joint with the lower 
part, which is fixed to the chassis vehicle. The robotic arm needs to adjust the height of 
gripper. This is achieved by using a timing belt pulley that is driven by a motor; the pulley 
rotates with the upper beam so that we can adjust the height of the gripper. 

2.3.1.1 Robot Gripper 
We will put a gripper at the very front of our robotic arm to grip items. The gripper is 
controlled by an N20 screw motor. When the screw spins, the gripper will be pushed to open 
or pulled to close due to the mechanical design. The operating voltage range of the gripper is 
5-12V DC. 
 

Gripper (with motor) 

Requirement Verifications 

Able to provide enough torque to grasp a 
can, whose diameter is usually 65mm and 
height is usually about 125mm. If the can is 
full of water, the weight is about 360mg. 
 

A. Run arm control program 
B. Ensure the distance between two ends 

of the gripper is at least 65mm 
C. We will keep increase the pressure exert 

on the can until we can ensure the can is 
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grasped and lifted without slippery and 
then record the data every time during 
the test in order to get the best result. 

 

2.3.1.2 DC Motors 

We will use a 37mm DC motor to control the timing belt pulley in order to adjust the height                   
of gripper and use an N20 screw motor to control the operation of the gripper. The operating                 
voltage range of both motors is 5-12V DC. They will interface with the motor controller               
circuit to be able to run in opposite directions. 
 

DC Motor 

Requirement Verifications 

Able to provide enough torque to lift the 
robotic arm  

A. Give 12V input to the motor 
B. Ensure that timing belt pulley rotates 

as motor rotates and that the angle 
between the upper part and lower 
part of the arm is adjustable 

 

2.3.1.3 Arm Control Algorithm 

This algorithm will be called after robot is adjusted to a proper location to pick up or place 
the target item based on its calibration algorithm. The predetermined values, including height 
hobject and hrobot , distance d0  and d1 , and open-width w0 , need to be determined based on 
experiments before we run this program.  
 
To grip the item the robot just confirms, the pseudocode is the following: 
If robot is ready to pick up the target object:  

Actuate arm DC motor to lower the height of gripper 
Stop it if predetermined height hobject is reached 
Actuate screw motor to open the gripper to its maximum width 
Move the robot forward by predetermined distance d0  so that the item is in the gripper 
Reverse the direction of screw motor and actuate it  
Stop it if predetermined open-width w0 is reached 
Reverse the direction of arm DC motor and actuate it 
Stop it if predetermined height hrobot is reached 

 10 



 

 
Figure 8. Flowchart 1 of arm control algorithm 

 
To place an item on the floor, the pseudocode is very similar to the pickup one:  
If robot is ready to place the target object:  

Actuate arm DC motor to lower the height of gripper  
Stop it if predetermined height hobject is reached 
Actuate screw motor to open the gripper to its maximum width 
Move the robot backward by predetermined distance d1  so that the item is out of gripper 
Reverse the direction of arm DC motor and actuate it 
Stop it if predetermined height hrobot is reached 
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Figure 9. Flowchart 2 of arm control algorithm 

2.3.2 PCB design 

2.3.2.1 Motor Controller 

A motor driver will be implemented in our PCB as a control circuit to drive motors.                
Basically, we use an H-bridge design to drive the motors, using two pairs of transistors to                
control the direction of current and thus the direction of motor rotation. The controller will               
receive signals from the microcontroller and control the current direction correspondingly.           
We will use the chip TB6612FNG, which is a high-efficiency MOSFET driver with low heat               
dissipation.  
 

Motor Controller 

Requirement Verifications 

Able to change the direction of motor 
running given input signal from 
microcontroller 

A. Give proper signals to H-bridge to 
change the current direction 

B. Ensure the direction of motor is 
changed corresponding to signals 
from microcontroller 
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Figure 10. Schematics of H-bridge circuit [7] 

 

Figure 11. Control Function Table [7] 
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2.3.2.2 Circuit Schematic 

Figure 12. Circuit Schematic 

2.3.3 User 

User (or Client) is the front-end for the entire system. By directly inputting the target object 
(T) and the new position for that object (P*) into this front-end, the command will be 
generated and transmitted to the server and finally reach the microcontroller on the robot. We 
will create a visualized 2D map on the computer in order to visualize the positions of the 
robot, objects and detected obstacles and error message sent by the robot. User is able to use 
keyboard to input T and P*. What’s more, stop command will be implement in order to stop 
the robot immediately to prevent it from hurting others. 

 

User 

Requirement Verifications 

1. An efficient user interface should be 
designed to show positions of the 
robot, objects and detected obstacles 
and error message as well as 

1. 
A. Print out the received data 

from the Raspberry Pi and 
make sure they are exactly the 
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transmit data to the server and 
microcontroller. 
 

2. Stop command can successfully stop 
the entire robot in less than 3 
seconds. 

same with the input from the 
user 

B. Print out the positions of the 
robot, objects and detected 
obstacles and any error 
message and make sure they 
are exactly the same with the 
positions calculate from the 
Raspberry Pi 

 
2.  After send stop signal, the robot 
should shut down and stop moving 
immediately. 

  
 

 

2.3.4 Server: Connection between Microcontroller and User 

Since we will connect the Raspberry Pi and our computer/VR device wirelessly, a server-user 
architecture will satisfy our needs. This is because of the Raspberry Pi, holding a lot of 
information including location data, LiDAR data and error messages, need to be shared with 
a user so that the user could visualize these data on a 2-D map: 

 

Figure 13. Server, Microcontroller and User relationship 

Meanwhile, the user could also send a service request, such as feeding the cat and moving 
plants, to the server and then from server to the microcontroller. We will use Python 
<socket> package to implement this feature. More specifically, on the server, we will open a 
socket and listen for incoming connections from user and microcontroller and build up a 
database to log the data. On the user, we will connect to the socket on the server and record 
the incoming information that arrives. On the microcontroller, we will keep writing data into 
the socket and send it to the server every second.  

 

Server-User architecture 

Requirement Verification 

Successfully connect microcontroller, server 
and computer 

Print out everything in the terminal and ensure 
data has been transmitted successfully 
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2.3.5 Sensors 

2.3.5.1 Camera 

The Camera we used is the Raspberry Pi 8-megapixel camera module V2 which will be 
directly connected to the microcontroller as data receiver and power supplier. We will use 
this camera to detect the object from the sampled pictures by utilizing an object detection 
algorithm to find the mean point of the object on the image. Then our microcontroller will 
calculate the relative position based on the location of the object shown in the image. By 
correcting its direction toward the target object, the robot is able to move close enough to the 
target object and pick it up finally. The horizontal Field of View (FoV) is 62.2 degrees and 
the vertical FoV is 48.8 degrees which are sufficient for our project [8]. The best stream 
mode is 1080p with 30fps [8] but we only need shoot five to ten 480p pictures per second 
because high-resolution pictures are not necessary for just finding the relative position the 
object and we need to cut down the memory usage of this task. We will discuss more the 
object detection algorithm in 2.3.6.2.1. 

 

Camera 

Requirement Verification 

Camera must shoot at least five 640x480 
RGB pictures per second 

Write a program to output the png file of the 
captured pics and then manually check the 
created time of those files to ensure at least 
five pics are created in a second 

 

2.3.5.2 LiDAR 
The model we use is the SLAMTEC RPLIDAR A2m8. The frequency of the LiDAR is set to 
10 Hz, and 400 data points for a 360-degree scan. We’ll use as many data points as possible, 
depending on the dimension of the robot arm. 
 

LiDAR 

Requirement Verifications 
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On the microprocessor will process the 
LiDAR data and output the obstacle location 
to the map. The map will show at least 90% 
of the obstacle that the current robot can 
detect 

A. Put the robot at home position, and 
turn the robot on but without 
running. Wait for 5 seconds and then 
check the map generated by the robot  

B. Compare the obstacles location with 
the real ones, and people stay at 
home position and count if those 
obstacles can be seen by human eye 

 

2.3.6 Control Unit 

2.3.6.1 Microcontroller (Introduce Raspberry Pi) 

Raspberry Pi 3B+ will receive data from all sensors, include LiDAR (USB), Camera (Pi 
module), Encoder (GPIO), Gyroscope (ADC to GPIO). It will send data to robot arm 
(GPIO/PWM), motors (wheel) (GPIO). It will also send location data to the user’s laptop 
through TCP/IP communication. 

2.3.6.2 Algorithms 

2.3.6.2.1 Object Detection 

We will use OpenCV to help us implement this algorithm. Each object will have a color 
wristband on it, and after the robot reaches the approximate location, the camera will play a 
role as a feedback loop and keep running this algorithm to correctly making sure the robot is 
directly facing toward the object. 

The light intensity might fluctuate widely in a room because of the artificial light. Thus we 
need to apply gamma correction [9] to the image in order to get rid of the problem of 
overexposure and underexposure. 

We also need to change the color model of the picture from the RGB model to the HSV 
model because we need it to apply the color mask in OpenCV [10]. Color masks we will use 
are actually ranges of HSV color. Those ranges will be defined and saved in the code first. 
This algorithm will check all pixels and if the color of one pixel is located in one range, then 
this pixel will be labeled as the color which this range represented. By checking the vertical 
order of colors in the image with the map which stores all orders as keys and the relative 
object as values, the robot could understand what object it is. 
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Figure 14. The flowchart of object detection algorithm 

 

Object Detection 

Requirement Verification 

1. The detection range should be at least 
0.5m. 

2. The robot can adjust it self facing 
object, with an angle of +/- 5° 

1.  
A. The robot will run this algorithm 

and detect the object once it get 
close to the target position. The 
minimum required detection 
range should be at least 0.5 
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meters which is slightly bigger 
than the unit length of the 
coordinates. 

B. We will test the performance of 
the object detection in the 
situation that the distance 
between the object and the 
camera is larger than 0.5m and 
adjust algorithm for eliminating 
small blobs. 

2.  
A. We put the robot 0.5 meters 

away from object and turn on 
camera detection, and then check 
the final angle between the robot 
and the object. 

B. If the final angle is larger than 
+/- 5°, we could smaller the 
tolerance about the center of the 
detected object and the center of 
the whole image in order to 
move the image of the object 
closer to the center. 

 

2.3.6.2.2 Localization Calibration 

We’ll calibrate the robot position by letting it go home. Upon the completion of every task, 
the robot will go home to calibrate itself. The robot will push itself into the space between 
two walls. The distance between two walls is slightly longer than the width of the robot. At 
this time, the rotation angle, θ, will be calibrated by resetting to 0°. We’ll use object detection 
to adjust angle of the robot in order to let it move straightly into the space between walls. 
We’ll also use the LiDAR data to get the distance to the left/right side wall in order to 
calibrate the position. 

 

Calibration 

Requirements Verifications 

1. User inputs a calibration signal, and 
then the robot should go home 
immediately or after finishing up 
current task 

1. At any position in the map, we give 
the robot a calibration signal, the 
the robot will start to go home in 
one second.  
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2. After it gets home, the calibrated 
location and angle should be within 
1% difference from the actual 
location and angle compared to the 
unit length and angle of the 
coordinates. 

2.  
A. We will check the location after 

calibration stored by robot and 
compare it with the actual 
location during the test. 

B. We will use object detection 
algorithm and the data from 
LiDAR at the same time in order 
to make sure the robot will 
successful move into the space. 
The object detection algorithm 
will rotate the robot to face 
straightly to the space and the 
data from LiDAR will calculate 
the position of the robot relative 
to two walls and keep the robot 
on the center line of the space. 

 

2.3.6.2.3 Obstacle Avoidance 

The LiDAR will pass in a raw value (distance in each data point) to the microprocessor, and 
we’ll process them into world frame position and mark the grid near them an obstacle. Once 
an obstacle position is determined, it can’t be cleared unless the robot re-start with a fresh 
new map. A* algorithm will avoid any obstacle. 

Obstacle Avoidance 

Requirement Verification 

While robot is moving, it avoids collision by 
stopping moving toward obstacles or just 
moving along them but does not collide with 
an obstacle or get stuck 

A. Starting at home position, input a 
object location and let the robot run 
itself 

B. Ensure the robot will get not stuck 
or collide with obstacles before 
successfully going to target 
location 
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2.4 Design Document 2 (Lower) 

2.4.1 Mechanical Unit 

2.4.1.1 Chassis 

We are using an acrylic waffle board robot car chassis with the length of 250mm, the width 
of 200mm and the height 140mm. This car has two layers, two wheels with motors and an 
Omni wheel. 

2.4.1.2 Motor 

The DC brushed motor we’ll use to drive our robot is CHR-GM25-370, DC 12V, 220 RPM. 
It comes with a 6-PIN Magnetic Holzer Encoder. 

We choose brushed motor rather than the brushless motor because it is inexpensive, steady, 
and easy to control: we can simply use voltage to control the speed of the motor and we can 
also change the voltage direction to change the rotation direction of the motor. The maximum 
speed is 160-300rpm and the working voltage is 3-12V DC and the max torque is 1.8kg·cm. 

 

Motor 

Requirements Verifications 

The motor can drive the robot with all the 
components on it and the speed should be no 
less than  4.7cm/s i.e. robot can move along 
the diagonal line in 2mins. 

We test the time of the robot with all the 
components on crossing the diagonal line 
and check if the time is less than 2mins. 

 

2.4.2 Sensors 

2.4.2.1 Encoder 

The motor comes with 6 -PIN Holzer encoder, which counts to 224.2 pulses per revolution. 
With rotation rate information, we can read it to the microprocessor and use the setting 
diameter of our wheels to calculate the linear distance that the robot has traveled. 
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Figure 15. Encoder & motor schematic 

 

Figure 16. Motor control loop 
 

We have two methods to implement the wheel speed, one is based on frequency and another 
is based on a period cycle. Since our wheel speed is relatively low, we decide to use the 
measuring method based on a period cycle. 
 

   
In the formula above, n is the rad/s, f is the base frequency we produce by the controller,  p is 
the pulse number in one rotation that the encoder produces. And m is the number of the base 
pulse in one rotation.  
 
As long as we get the rotation rate we can calculate the distance we traveled and we can 
determine our moving direction from the information we get from the gyroscope.  
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Since we can control our wheels independently,  we can change the moving direction by 
giving different speed to different wheels.  

 

Figure 17. Example of robot moving path 

We will have: 

             

Where v is total velocity, ω is angular velocity, θ is the angle we rotate, r is the rotation 
radius.  

From the formulas above we can calculate the current velocity, angular velocity and rotation 
radius by the feedback from our encoder and gyroscope, then we can regulate our wheel 
speed individually to control the motion of the robot. 

 

Encoder 

Requirements Verifications 

1. The pulses generated by the encoder 
to  the controller can be used to 
calculate the current angular velocity 
of the wheel encoder.  

2. The error of the velocity calculate 
from the encoder information should 
be within 0.05m/s  

1. Connect encoder to the 
microcontroller, it should display 
current average linear velocity of 
both wheels. 

2. We manually push the robot for 
1m, and integrate the velocity to 
check the actual difference. 
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2.4.2.2 Gyroscope 

The single Axis gyroscope （MPU-6050) will transmit data by I2C to raspberry pi, with a 
RMS noise of 0.05°/s. 

 

Figure 18. Gyro I2C communication connection[11] 

 

Gyroscope 

Requirements Verifications 

1. The microprocessor will be able to 
read in and convert the input voltage 
to angular velocity in rad/s. 

2. The angle report by integrating the 
angular velocity should be within +/- 
5%. 

1. Connect the gyro, raspberry pi, the 
raspberry pi will display the angular 
velocity in terminal. 

2. Start with angle 0, and gradually turn 
the robot 360°, and then check the 
current angle. 

 24 



 

2.4.3 PCB design (for motor, gyro,encoder) 

2.4.3.1 Motor Controller 
We are using 3-12V DC brushed motor to drive our robot. To control the DC brushed motor 
we need to control the voltage across the motor. So we need to build a voltage control circuit. 

 
 

    Figure 19. Circuit schematic[12] 
 

For brushed 130-motor, the speed control mostly depends on the voltage provided to the 
motor, and the direction of rotation depends on the current direction.  
 
We use two BTS7960B chips to build an H bridge to control since we need to control the 
current direction to make the motors run in two directions. We choose to use BTS7960B is 
because that chip can provide precise voltage control to the motor at the high current 
condition(43A).  

 

Sensor circuit 

Requirements Verification 

1. The motor controller can receive the 
signal from Raspberry Pi and control 
the voltage and current direction 
across the motors.  

2. All the parts on PCB can work 
together and the robot can make a 
turn by the degree we set. 

1. We can use the microcontroller to send 
the signal to the motor controller and 
control the motor rotation. 

2. We can compare the parameters we set 
and the result we get when measuring 
the robot’s movement. The difference 
between our expectation and the real 
movement should less than 5%. 
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2.4.3.2 Protection Circuit 

A protection circuit in the PCB to prevent our circuit from any misconnection of the power or 
overload.  

 
Figure 20. PMOS 

 
The PMOS we choose may change eventually depend on the circumstance. It will restrict the 
direction of the current.  
 
We will also use the resettable fuse in the circuit to constrain the current and make sure our 
circuit will not burn due to excessive current. 
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2.4.3.3 Circuit Schematic 

 
Figure 21. Circuit Schematic 

2.4.4 Algorithms 

2.4.4.1 Localization 

Since the microprocessor will process the raw information from the gyro and both encoders, 
we can calculate the robot position relative to world frame as follow: 

 

Figure 22. Localization formula 

 27 



 

Where (x,y) is the current location, (xprev, yprev) is the previous location at time t ago. θ and θprev 
are the angles the robot faces for current and previous respectively.  Time t is determined by 
the output frequency of the gyro and the encoder, whichever is faster.  

 

Localization 

Requirement Verification 

The robot location should be +/-0.05m from 
actual location 

We set a object location and let the robot 
drive itself, check its final location and the 
given object location 

 

2.4.4.2 2D Mapping 

Our map will be a 10*10 gridded map, corresponding to a 4m×4m environment. All obstacles 
will be a 1*1 square box. With LiDAR passing length information in different angles, we can 
calculate its relative position and transform into world position and then check which 
obstacle it’s close to, and update that obstacle.  
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Figure 23. Mapping flowchart 

 

2D Mapping 

Requirement Verification 

The robot should mark any obstacle it can 
see from its prospective 

A. Putting the robot at home position 
for 5 seconds, then check the 
updated map, and compare it with 
actual environment  

B. Start the robot at home position and 
give an object location, check if the 
map is updated during the run 
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2.4.4.3 Path Planning 

Based on the up-to-date map and the predefined location of the object, the robot will just 
generate a path using A*, with each step at the center of the gridded block on the map. While 
moving, the LiDAR will also collect surrounding information, and if a new obstacle is 
detected, the map will be updated and the path will be recalculated by A* based on the 
up-to-date map. Moreover, if there is no available path for the robot and target, the robot will 
go back to its starting position and standby. 

 

Algorithm 

Requirements Verifications 

1. The robot will not hit obstacles 
during the whole process, including 
walls. 
 

2. The robot will walk down the 
optimal path. 

 

1. By observation, the robot should not 
hit any objects. 
 
 

2. Robot will send back its current path 
to show this on 2d map. 

 

2.4.5 Power Supply 

2.4.5.1 Battery 
We will use a 4S Li-Po rechargeable battery(14.8V, 7000mA) as the power source for the 
whole vehicle including the motors, controller, the signal receiver, and the sensor system. To 
power the different systems we need to connect the battery to the PCB board which will 
convert the voltage of the battery 14.8V for different components. 
 

 
Figure 24. Battery overview 
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We are going to use the 4S Li-Po battery whose voltage is about 14.8V. Since the 
microcontroller works at 5V and the motors work at 3-12V, we will need converters to output 
different voltage for the different components in our robot.  
 
Due to the working voltage range of components is lower than the voltage output from the 
battery, we will use the Buck DC/DC converter, which can step down the dc voltage. The 
Buck converter will need the TPS62130A chip as the central component. The circuit layout 
shows below is an example for 12V input to 3.3V output.  
 
 

Figure 25. Circuit layout of TPS62130A [13] 

 

Power Supply 

Requirement Verification 

The whole power set need to provide steady 
and plentiful power. The power converter, 
which is the DC-DC converter, need to  
 

When we test  the voltage out from the 
DC-DC converter, we should get the voltage 
with the difference between the expectation 
less than 5% 
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2.5 Tolerance Analysis 

Our design contains two critical features for the successful completion of tasks: vehicle 
movement control and robot arm mechanism.  

Vehicle movement control basically involves direction control and speed control, and the 
error caused by the gyroscope, wheel encoder, the control system will add up to total error. 
The error caused by gyroscope is 0.05°/sec specified by datasheet. Taking the worst scenario 
when there’s +0.05/sec noise for the whole run, and for the robot to cover all grid starting 
from home position will take 200s, assuming the robot velocity at 0.3m/s.  

 

Equation 1: Final angle error after reaching objective 

The the integrated error is around 10°. The error caused by wheel encoder would be that 
frequency is too low (1Hz), so the robot wouldn’t be able to precisely calculate current 
position in between each 1s. Suppose our robot is set at 0.3m/s, then the max error the 
location could get while running in a straight line is 0.15m. This happens when the robot 
decelerates from 0.3m/s to 0m/s in 1 second.  

 

Figure 26. Slow frequency error by encoder 
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The control system like speed control may have a tolerant overshoot (0.02m away from 
designated location), but will also add up to final error.  

 

Figure 27. Worst scenario for the path of the robot 

Let’s say there’s no obstacle in the environment, the robot is at home position (0,0), and the 
target location is the furthest corner (-4,9). Then as long as the robot final location is within 1 
unit (0.4m) around the location, and within 31° facing the object location (half of the 
camera’s range), the object detection algorithm will play the role for grabbing the object. And 
according to the previous error estimate, the max error after reaching the goal position is 
0.18m and 10°, so the object detection algorithm will still be triggered to adjust robot position 
for object grabbing. The error of encoder could be reduced by slowing down, and the 
likelihood for the integrated angle to get up to 0.05°/sec error is diminutive. Therefore overall 
our vehicle movement control is feasible.  

The critical requirement of the robotic arm mechanism is that the robot successfully 
recognizes the object user specified and picks it up. It basically relies on the high accuracy of 
relative position and orientation between the robot and the object and a reasonably high 
resolution of image data. Thus the critical components involved in the requirement are the 
camera and robot pose calibration algorithm.  

 33 



 

When the robot arrives its destination given the 2D map with a location of the object, it needs 
to turn around and look for the object using the camera. If robot motion and localization is 
accurate enough, the object will show up in pictures taken by the camera. However, the 
object may not be at the exact position where it can be picked up by the arm, so we still need 
to adjust the relative position between robot and object based on image data from the camera.  

Suppose we know the distance between the object and the robot if we count the number of 
pixels of the wristband image because a greater number of pixels should indicate a greater 
distance. Our assumption will be that if the centroid of an image of a wristband, which is 
around the object, is at the centerline of the picture (condition 1) and the number of pixels is 
in some predetermined range (condition 2), the robotic arm is able to pick up the item. Then 
we only need to adjust the position and orientation of the robot completely until these 
conditions are satisfied. Checking satisfaction of these conditions depends on the resolution 
of camera images because the accuracy of image position coordinates relies on the resolution.  

Since we can only control the robot by small steps, say turning right by 1°, chances are the 
robot repeats turning left and right endlessly while adjusting the orientation, because the 
centroid is always at left or right of but never exactly at the centerline of the picture. Thus we 
must set up a tolerance in our position and orientation calibration algorithm. Suppose we 
allow condition 1 to be satisfied if the (xcentroid - xcenter) <= ntolerance, where xcentroid represents the 
x coordinate of the centroid of a wristband, xcenter represents the x coordinate of center of the 
picture, and ncentroid is the tolerance value we set. Then this value should be chosen based on a 
large number of experiments. It needs to be as large as possible but still allows the robotic 
arm to pick up items.  

3 Cost and Schedule 

3.1 Cost Analysis 

PARTS 

Inde
x 

Part Name Qt. Price Per Item Total Price 

1 RPLIDAR A2 1 319.95 319.95 

2 CAMERA 1 25 25.00 

3 ROBOT ARM 1 89.99 89.99 

4 VEHICLE 1 40.00 40.00 

5 RASPBERRY PI 5 39.95 199.75 
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6 GYRO 1 15.61 15.61 

7 MICROSD 5 9.8 49.00 

TOTAL COST 739.3 

 

LABOR 

Name  Salary ($/hour)   Hours Total(*2.5) 

Kewei Sui 40.00 130 13000 

Kefan Tu 40.00 130 13000 

Honglu He 40.00 130 13000 

Chengliang Li 40.00 130 13000 

Siping Meng 40.00 130 13000 

TOTAL COST 65000 

 

3.2 Schedule 

3.2.1 Schedule (upper part group) 

 Kefan Tu Kewei Sui 

9/24/18 Physical design of the robot vehicle 
and the robotic arm 

Arrange work schedule and host 
weekly meeting 

10/1/18 Assemble the robotic arm;  
Research on motor driver circuit 

Connect camera module to Raspberry 
Pi and sample pics from the video 
stream; Experiment OpenCV in 
Raspberry Pi 

10/8/18 Implement a motor control circuit on 
breadboard;  
Successfully and separately control 
direction of two motors 

Implement object detection algorithm 
in OpenCV and successfully 
recognize object with color wristband 

10/15/18 Implement PCB design of motor 
controller; 
Test and analyze the torque the motor 
of arm can provide 

Finish implementing object detection 
algorithm in order to calculate the 
direction toward the object and send 
this result to other algorithms 
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10/22/18 Implement arm control algorithm; 
Give correct and proper inputs to 
motor controller via microcontroller 

Conduct simple test on object 
detection algorithms without vehicle 
and work on error reduction 

10/29/18 Optimize the control algorithm of 
robot arm and conduct simple tests 
without vehicle and fix any problem 
shown during the test 

Start to Implement localization 
calibration algorithm on camera 
without vehicle 

11/5/18 Revise PCB design; Conduct more 
tests about robot arm with vehicle and 
fix any problem shown during the test 

Continue Implement localization 
calibration algorithm and test object 
detection algorithm with vehicle 

11/12/18 Test new PCB and optimize physical 
design of the entire robot. 

Conduct tests on localization 
calibration algorithm with vehicle and 
fix any problem shown during the test 

11/19/18 Conduct basic tasks and make sure the 
robot fulfill the high-level requirement 
about robot arm. 

Work on stretch goal (VR) and make 
sure the robot fulfill the high-level 
requirement about the object 
detection 

11/26/18 Conduct more real scenarios testing and fix any problem shown during the test 
Start to work on final paper and present mock demo 

12/3/18 Finish final paper  
Present mock presentation and demonstration 

12/10/18 Presentation 

12/12/18 Final paper due 

 

3.2.2 Schedule (lower part group) 

 Chenliang Li Honglu He Siping Meng 

9/24/18 Research on chassis car 
and suitable motors and 
power unit 

Overall Design and 
research on various 
sensors (LiDAR, camera, 
encoder and gyroscope) 

Research on 
microcontroller and 
algorithms about path 
planning 

10/1/18 Purchase required 
hardware equipments 

Localization and 
calibration design 

Research on server 
setup and 
communication 
between Raspberry Pi 
and computer 
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10/8/18 PCB board design LiDAR and Pi Serial 
Communication 

Connection between 
Raspberry Pi and 
computer 

10/15/18 Wheel function test Map and coding project 
skeleton setup  

Work on path planning 
algorithm and start to 
work on main function 
that controls all 
functions 

10/22/18 PCB board made 2D Mapping of 4m×4m 
environment 

Continue work on main 
function 

10/29/18 Test all sensors in lower 
part and start to work on 
power supply unit 

TCP/IP communication 
to send obstacle location 
to PC 

Combining built 
algorithm code to main 
function and debug the 
error 

11/5/18 refine PCB design and 
combine the entire robot 
together 

Specify target location 
for the robot and drive 
itself without any path 
planning; Implement 
location calibration 
algorithm 

Continue combine built 
algorithm code to main 
function and work on 
basic user interface. 

11/12/18 Test new PCB and Start 
to prepare the objects 
and obstacles for 
experimental 
environment 

Optimize path planning 
algorithm and test on 
location calibration 
algorithm 

Optimize all algorithms 
in the microcontroller 
in order cut down the 
memory usage and 
speed them up 

11/19/18 Conduct basic tests and 
make sure the robot 
fulfill all high-level 
requirements based on 
current experiment 
settings 

Continue optimize path 
planning algorithm with 
LiDAR updated map on 
robot; conduct basic tests 
and make sure the robot 
fulfill the high-level 
requirement about the 
movement 

Work on stretch goal 
(VR) and this new 
client is able to 
communicate with 
server 

11/26/18 Conduct more real scenarios testing and fix any problem shown during the test 
Start to work on final paper and present mock demo 

12/3/18 Finish final paper  
Present mock presentation and demonstration 

12/10/18 Presentation 

12/12/18 Final paper due 
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4 Stretch goals 

4.1 Virtual Reality User Interface 

More and more domestic robots appear in our houses. But they almost all use traditional UI 
to interact with the user which means that user can only send pre-programmed commands to 
these robots and the nonvisualized result is actually unclear to the user. For instance, when 
we click the “clean” button on the vacuuming robot, we, in fact, don’t know which part of the 
room will be cleaned and how clean it will be. We want to try some new interaction ways that 
can enlighten the smart appliance industry. With the VR experience, we designed a unique 
interaction way with a future smart appliance that we can manually produce the result we 
want in the virtual world and then a programmed robot could accomplish this task 
automatically in the real world and offline. High level of immersion in a virtual environment 
could improve the engagement of the user and facilitate he or she has a better understanding 
of the complex indoor environment space [14]. 

We will first ensure that by directly inputting P* and T into the microcontroller of the robot, 
it could work functionally. VR part is a kind of a stretch goal for our project. We decide to 
use Oculus Go with the controller as our front-end in this project, because of the portability 
of the helmet and good maneuverability of the controller. In VR, a user could emerge in a 
virtual environment that is exactly the same as the real experimental environment (the design 
of the map is shown in the introduction section). The user is able to see the target objects and 
the obstacles stored. Because we only save the 2D position for every objects and obstacle, 
models for them will be placed in the same x,y coordinates in VR but the height for those 
models may differ from that in the real world. By using the controller, we can grab the object 
freely and move it to somewhere else. Then, the new position P* of the target object T will be 
transmitted to the server and then sent to the robot in order to finish the task in the real world. 
 

5 Ethics and Safety  

We have several safety concerns about our project. The Li-po battery requires the highest 
attention to deal with due to the explosibility, and we will make sure the temperature of the 
battery stay in the safe range of the industrial standard for all time. Our charger is an industry 
made IC device and will shut charge controller off if charging input is beyond required 
voltage range. In this way, it can reduce the likelihood of hazards while charging.  We will 
also design a protect circuit for sensor and motor components. To protect the circuit and 
PCB, we will use flyback diode and Transient Voltage Suppressor since the motor will also 
be connected to the PCB. What’s more, in order to prevent a short circuit which may lead to 
electric shock, we will follow the electricity using manual during the experiment, and will 
also check our power and circuit before connecting to the battery. 
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Another safety concern is about the vehicle. Since we will use four motors (2 for wheels and 
2 for robot arm), we have to put malfunction of these parts into serious thoughts. If any 
software or circuit drive these motors mistakenly, the whole robot will be out of control and 
may hurt people standing nearby. This is definitely what we wish to avoid during the whole 
designing and demo period. In order to prevent such a condition, we will first accomplish a 
circuit test for each part separately. Then we will test the searching algorithm and robot 
control code in a safe laboratory as many times as possible. To increase safety, we will also 
make sure to build an emergency stop command on the computer so that we could make sure 
to stop the robot immediately and remotely. 

For the VR headset (if applicable), we will operate it following the product safety manual and 
make sure while testing VR device, other teammates will be around to check if the user is 
experiencing discomfort. [15] 

For the ethical issues, we will follow IEEE and ACM code of ethics. We may encounter 
many problems in the project. But when problems occur, we will not try to disguise the 
problems and move on recklessly. Based on #5 of the IEEE Code of Ethics, “to seek, accept, 
and offer honest criticism of technical work, to acknowledge and correct errors” [16]. 
Therefore, when problems show up, we will try our best to find a way with teammates to 
solve them. If we can’t solve the problem by ourselves, we will turn to our TA for help. 
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