
TENNIS SWING ANALYZER

October 16, 2018

ECE 445 Team 37

Yihong Liu (yliu287)
Guo-Cheng Lo (glo2)
Heting Gao (hgao17)

TA: AmrMartini



Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
High-Level Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Mechanical Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Sensor Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
ArmMicro-controller Subsystem . . . . . . . . . . . . . . . . . . . . 10
Racket Micro-controller Subsystem . . . . . . . . . . . . . . . . . . 13
WiFi Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Power System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Cost and Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Tolerance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Risk Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Ethic and Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1



Introduction

Objective

When playing tennis, tennis beginner often resorts to their wrist or forearm to perform
a strong forehand or stroke. Such nonstandard performed swing does not necessarily
result in a weak stroke and is hard for beginners to realize. However, if the players
keep performing bad swings, in the long run, these non-standard swings could result
in diseases such as wrist pain or wrist injury [8]. Therefore, it is important not only to
hit the ball properly but also to hit the ball with a well-performed swing.

Wewant to build a tennis racket swinging analyzer that can analyze and determine
if a swing is standard or not for tennis beginners. It measures the player’s armmotion
using two sets of inertia sensors. Their data are retrieved and calibrated by micro-
controllers and then transmitted to a personal computer via Wi-Fi modules. We plan
to take several standard swings and non-standard swings, collect their acceleration
data and label them standard or non-standard respectively. A classifier would be
trained on these data to determine whether the swing is a good swing or not and a
speaker will directly report the result to the user in real time.

Background

There have been several well-developed product on the market. Most of them focus
on the recording characteristics such as intensity, speed, and trajectory of each swing.
One example is Zepp Tennis Swing Analyzer, which is a small sensor integration
attached to the bottom of the racket and transmits the collected data to a mobile
device for ad-hoc analysis. Another set of products focus on analyzing the player’s
performance in a full match. Pivot, a product from TuringSense is a system consisting
of a total of 14 sensors that aims to analyze people’s 360-degree motion [1]. While this
product provides professional insight into the player’s performance, it is of high price
and is hardly affordable for amateur tennis beginners.

Wrist injury is a very common disease among tennis players. It may occur from
direct trauma, but most injuries occur due to chronic overuse [10]. Such overuse can
result from longtime practice, in case of professional players, but can also result from
nonstandard wrist movement in case of amateur players. Although there have been
wide debates on the best tennis swing form regarding armmovement, and theremight
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not exist a single best answer, tennis experts typically agree on a set of criteria on the
wrist that are necessary for good swings. Most of the modern tennis coaches would
agree that it is through spinning the wrist that the racket head achieves the highest
speed, yet such spinning must be strictly constrained; before hitting the tennis ball
the wrist should hold in a laid back position [8] and during the racket-ball contact the
wrist stays laid back and could spin only in the direction perpendicular to the arm
in order to roll over or whip over the ball. Such requirement not only stabilizes one’s
strokes but also greatly reduces unnecessary wrist motion, which, if being excessively
carried out, is the source of the wrist injury and other related diseases [9].

We, therefore, focus our design mainly on wrist part, using two sets of sensors to
measure the accelerations of the wrist and the forearm and providing insight into how
the player moves his or her wrist during the swing movement. We hope with such
an affordable design we could make the tennis beginners notice their improper wrist
usage so that wrist injuries can be reduced in the first place.

High-Level Requirements

1. The classifier correctly classifies a good swing and a bad swing and achieves an
accuracy of 85% in the training stage and a false positive rate of 10% in worst
case.

2. The sensors could all satisfy the precision requirement defined in Function
Overview part.

3. The armmicro-controller could receive the swing data via WiFi within 0.5s from
racket micro-controller.

4. The classifier can successfully perform feature extraction and classification on
the armmicro-controller within 1s so the player can get immediate feedback on
his or her swing.

5. The arm micro-controller could report the result by signaling the speaker to
produce a detectable sound.

Page 3 of 23



Design

Block Diagram
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Mechanical Design

We plan to have two set of systems on the racket and on on the player’s wrist. The
racket PCB would collect, pre-process and send data to arm PCB for classification task
in application phase.

Page 5 of 23



Schematic

Teensy Controller Schematic

Sensor System Schematic
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Functional Overview

Sensor Subsystem

Weplan to have two sensor sets, each set consists of an accelerometer, a gyroscope and
a barometer, with one set on the forearm and the other on the racket. Each subsystem
is powered separately. With the data collected by the accelerometer and the gyroscop
combined, we can compute the quaternion of rotation and from the quaternion we
can compute transform the acceleration to an absolute coordinate for each time frame,
using Madgwick’s sensor fusion [5].

Let a, g, q denote accelerometer vector, gyroscope vector, and quaternion respec-
tively. Let Rot ate denote the rotation operation parametrized by q [6]. We have [7]

q = M ad g wi ck(a,g)

aabsolute = Rot ate(a|q)

The barometer is used to measure the relative height between the racket and wrist
and serves as an additional feature of a swing.

We record the accelerometer reading for the starting part of a swing and find that
there exists a peak in acceleration when the player starts his swing.

The horizontal axis is the number of samplers and since sample rate is 10H z, one can
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easily convert it to seconds. The vertical axis is in unit of 1
1000 g = 9.8×10−3m/s2. At the

beginning of the swing, we can use the accelerometer to detect the start peak and
begin collecting data from sensors. Eachmicro-controller will also save the time when
they start collecting and these time stamps would be used to align the acceleration
series.
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Device Requirement Verification
Barometer The device will measure

the relative change in
height with an accuracy
of +/- 5 centimeters.
Able to send out data to
micro controller through
I2C interface.

1. Set accelerometer and
micro-controller on the
breadboard.
2. Fix the breadboard
on ground read the initial
data.
3. Place the breadboard
up 1 meter up from origin
position, make sure out-
put value is within 5 cen-
timeters.

Accelerometer The device will measure
the relative change in
height with an accuracy
of +/- 8mg
Able to send out data to
micro controller through
I2C interface.

1. Set accelerometer and
micro-controller on the
breadboard.
2. Set the breadboard on a
horizontal table or ground
3. Read acceleration data
from micro-controller di-
rectly and make sure one
axis has value 9.8+/-8mg,
and the other two axes
have 0+/-8mg.

Gyroscope The device will measure
the relative change in
height with an accuracy
of +/- 300 mdps
Able to send out data to
micro controller through
I2C interface.

1. Set gyroscope and
micro-controller on the
breadboard.
2. Stick the breadboard
with iPhone
3. Compare the value
from gyroscope to the
value on iPhone gyro-
scope and make sure the
difference is within 300
mdps.
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ArmMicro-controller Subsystem

The micro-controller will calibrate the sensor and set up the WiFi at the beginning.
After that, we will ensure the communication between the twomicro controller sub-
system is correctly setup and then synchronized the clock. Then it takes sampled data
from the three sensors at a frequency of 100Hz, updating and shifting data in a larger
output buffer than buffer in racket MC.Racket micro controller will send a data set
with time stamp to armMC after detecting swing. Armmicro controller will find the
beginning of swing according to time stamp.The large data buffer will allow it to wait
for input data from racket without losing any arm data. Then it performs sensor fusion
techniques to get a combined estimation of accelerations of the racket.

In the trainingphase, the datawill be pre-processed and then send toWiFimodules
to a computer using TCP/IP socket. In the application phase, after pre-processing the
data, it performs classification directly using trained classifier transported from the
computer and signal the speaker to report the result.

We plan to use Teensy 3.2micro-controller. It is amicro-controller with 32 bit ARM
cortex and it contains 64KB RAM and 34 digital pins as well as support for real-time
FFT computation. It has an input voltage of 3.3V and operating current of 250mA It
can be ordered from Sparkfun1.

We plan to take data from 3 sensors, with the accelerometer and the gyroscope pro-
viding three 32-bit floating point measurement on 3 different axes and the barometer
one 32-bit. Since our sampling rate is 100H z and wemeasure a period of 5s movement
from the starting point, we would have a total of 14KB of data collected from sensors.
After performing sensor fusion, we should get a set of calibrated triaxial acceleration
data and the data size is therefore reduced to 8KB. There will be another 8KB transmit-
ted from Racket controller, so the controller would have to store in a total of 16KB of
data. Then data will be transmitted to the computer during the training phase and

1https://www.sparkfun.com/products/13736

Page 10 of 23

https://www.sparkfun.com/products/13736


will be processed on itself during the application phase.

#sensor ×#axi s ×d at a_si ze × sample_r ate ×dur ati on

= (2×3+1×1)× 32bi t

axi s · sample
×100sample/s ×5s

= 112000bi t

≈ 112K bi t

= 14K B y te
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Requirement Verification
Support sending out data through Wifi
module using TCP socket.

1. Randomly generate data bits from
micro-controller.
2.Set up Wifi module, connecting laptop
hot spot.
3. Transmit data to a laptop through TCP
socket and print them

Support reading data from three differ-
ent sensors

1.Set up all sensors and using micro-
controller getting data
2.Test Wifi module before testing sen-
sors.
3. Ask micro-controller require a certain
amount of samples from sensors and
send them to the laptop using Wifi mod-
ule.

Micro-controller can require data from
sensors in a frequency of 300 samples
per second (3 sensors per controller, 100
samples per sensor).

1. Set up power andWiFi modules.
2. Let the micro-controller sample each
sensor at a frequency of 100Hz, record-
ing the start and ending time using an
internal real-time clock.
3. See if the number of samples from
each sensor reached 100 per second.

After getting trained classifier from the
computer, the main micro-controller
can come out result in 1 second after col-
lecting sensors data.

1. After training classifier on the com-
puter, transmit it to the micro-controller
using WiFi module.
2. Perform a swing and collect data from
sensor.
3.Use real-time clock inside micro-
controller to record starting and ending
time of running classifiers. Check if
the output time is within our limit by
subtraction.
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Racket Micro-controller Subsystem

The micro-controller subsystem on the racket is similar to the ArmMicro controller
because it also needs to calibrate and fuse the sensor data on the racket and set up
the WiFi connections as well as synchronize its clock with other micro-controller.
However, it does not need to perform classification task; it only transmits the data
via WiFi to ArmMicro-controller for further processing in both training phase and
application phase. There is a internal buffer inside racket micro controller to keep
updating and shifting data. In order to detect whether swing has initiated, the racket
micro-controller needs detected a peak value of at least 4g for 0.5 seconds. When
detected, the micro-controller will truncate a window out of buffer according to the
start of the high-G reading.It will send whole data set attached with a timestamp
labeling beginning of swing to Armmicro controller.

Since the micro-controller on the racket does not require any additional features
from Teensy 3.2. It will be easier to reuse the same micro-controller as the racket
micro-controller subsystem. The controller would collect 14KB data (calculated in the
previous subsection), fuse them to 8KB and transmit them to arm controller.
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Requirement Verification
Support sending out data through Wifi
module using TCP socket.

1. Randomly generate data bits from
micro-controller.
2. Set upWifimodule, connecting laptop
hot spot.
3. Transmit data to a laptop through TCP
socket and print them

Support reading data from three differ-
ent sensors

1. Set up all sensors and using micro-
controller getting data
2. Test Wifi module before testing sen-
sors.
3. Ask micro-controller require a certain
amount of samples from sensors and
send them to a laptop using Wifi mod-
ule.

Micro-controller can require data from
sensors in a frequency of 300 samples
per second (3 sensors per controller, 100
samples per sensor).

1. Set up power andWiFi modules.
2. Let the micro-controller sample each
sensor at a frequency of 100Hz, record-
ing the start and ending time using an
internal real-time clock.
3. See if the number of samples from
each sensor reached 100 per second.

WiFi Subsystems

There are two connections in the design. One is MC to MCWiFi communication and
the other is MC to PC communication. MC-MC communication transmits data from
Racket Micro-controller to ArmMicro-controller. MC-PC communication transmits
data to the personal computer in the training phase and does nothing in the appli-
cation phase. Since WiFi communication uses TCP/IP protocol and the data size is
small, the transmission should be very reliable. We consider placing our computer
5 meters away from the player, which is roughly half of the width of the tennis court
and will not affect the player’s swing.
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Requirement Verification
Micro-controller can transmit data to
a laptop in a 5-meter distance without
100% success.

1. Generate sequential data bits from the
micro-controllerwith a certainorder and
place laptop 5 meters far from sensors.
2. Set up WiFi module, connecting lap-
top hot spot.
3. Transmit data to the laptop through
TCP socket and print them.
4. Code a small program to verify the cor-
rectness of received bit sequence accord-
ing to a predefined order.

Computer

Thecomputerwould receivedata fromWiFi. In the trainingphase, the computerwould
be collecting a set of standard and non-standard swing acceleration and barometer
data. The acceleration data is calculated on the micro-controller by applying sensor
fusion on the gyroscope and accelerometer data. The resulting accelerations will be in
an absolute 3-axis-coordinate. We labels the data manually. We will then implement
a set of classifiers starting from hand-crafted decision tree [12] to a more advanced
model. One advanced approach would be extracting statistical features like mean,
variance time peaks and bin distribution and use SVM for classification, following the
steps in [10,11]. Or we may divide the time series to frames and use Fourier transform
for frequency domain features. Another approach may use the frames directly and
use RNN [13] or HMM [14] to model time series. Among the two approaches, we will
pick the one with higher accuracy.

We would expect the baseline accuracy to be at least 80%, because papers con-
ducting activity recognition experiments on PAMAP2 [15] usually report an accuracy is
about 75% to distinguish two similar activities such as upstairs and downstairs move-
ments. The commonly reported accuracy is roughly 95% to distinguish two dissimilar
activities such as walking and lying.

In the application phase, the sensor fusion task will be distributed on each micro-
controllers and the trained classifier will be stored on ArmMicro-controller to build
an embedded system.
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Requirement Verification
The accuracy should be at least 80% and
a false positive rate should be less than
20%

split the data into training and testing
data. Should get 80% overall accuracy or
above on testing data

Power System

A Lithium button battery will be used to power the micro-controller subsystem and
the sensor subsystem. There will be 2 sets of identical power subsystem to power the
subsystem on the racket. 3.7 Volts is chosen due to the voltage limit on the micro-
controller and sensors. Also, a voltage regulator is used to maintain input voltage at a
certain level in order for sensors to work properly

Requirement Verification
Provide stable 3.7V voltage for micro-
controller subsystems and sensor sub-
systems.
Provide a maximum current of at least
300m A for micro-controller subsystems
and sensor subsystems

Full charge the battery
Measure if the output for battery’s out-
put voltage and currentmeet our require-
ments, recording the working time.

Cost and Schedule

Cost

Assuming the hourly rate for each person is $45 and 15 hours per week. Also assuming
16 weeks for designing this project. The total labor cost for this project would be

3×$45/hr ×15hr /week ∗16week = $32,400
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Description Parts Quantity Manufacturer Cost
Microcontroller Teensy 3.2 2 Sparkfun $39.6
Barometer MS561101BA0350 2 DIgiKey $24.96
Gyroscope L3GD20HTR 2 Mouser $6.64
Accelerometer 511-LSM303AHTR 2 Mouser $5.84
WifiModule ESP8266 2 Sparkfun $13.9
Speaker 433-1104-ND 1 Digikey $1.64
3.3 Voltage Regulator LD1117D33CTR 2 Mouser $1.06
Polymer Li-ion
Rechargeable Battery
3.7V/850mAh

DTP603443 2 Sparkfun $19.9

total cost $113.54

Schedule

Week Samuel Heting Yihong
10/8 Purchase micro-

controller, battery,
voltage regulator

Purchase barometer,
gyroscope, speaker

Purchase
accelerometer,
WiFi module

10/15 Assemble different
components

Analyze data from
sensors

Collect samples

10/22 Order first PCB Code and test classifier Debugging wifi module
10/29 PCB soldering Reorder parts that are

needed
Refine circuit design
and test circuits

11/5 Make final
PCBmodifications

Integrate everything to-
gether

Unit test sensor
subsystem

11/12 Second round PCB
soldering

Unit test classifier Unit test micro-
controller subsystem

11/19 Work on classifier code Work on classifier code Work on classifier code
11/26 Integration testing on

PCB
Integration testing on
PCB

Integration testing on
PCB

12/3 Testing on final product Make final
modifications

Fine tune classifier

12/10 Work on Final paper Work on Final paper Work on Final paper
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Tolerance Analysis

Wewill be using Madgwick’s sensor fusion to get an estimate of absolute-coordinate
accelerations, which does not require highly accurate sensor but can get a relatively
accurate estimate. At a sampling rate of 10Hz, the RMS (root mean square error) of the
estimated angular rate will be lower than 2°. Since we use a sample rate of 100Hz, the
error will be further reduced to less than 1°= π

180 r ad as reported in Madgwick’s report
[5].

We will then use the quaternion to rotate acceleration data. Let R ∈R3×3 denote the
rotation matrix and a denote the acceleration data. The rotated acceleration ar =Ra.
Since rotation is a convex operation and the accuracy of acceleroeter is 8mg for each
axis, the RMS will still be around ∆ar = π

180∆a ≤ π
180 3× 8mg = 24π

180 mg . If we assume
the error is distributed as a zero mean Gaussian, ea ∼ N (µ = 0,σ = 24π

180 mg ). For a
acceleration series of length T , the integrated distance is d and the error of integrated
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distance is ed

d =
∫ T

0

∫ t

0
a(τ)dτd t

=
T∑
0

( t∑
0

a(τ)∆τ
)
∆t

= (∆t )2
T∑

t=0

t∑
τ=0

a(τ)

= (∆t )2
T∑

t=0

t∑
τ=0

(a(τ)+e(τ))

ed = (∆t )2
T∑

t=0

t∑
τ=0

(e(τ))

∼ N
(
µ= 0,σ= 24π

180
mg

( (T +1)T

2

)
∆t 2

)
We plan to take ∆t = 0.01s T = 2s

∆t = 200. RMS or σ.

σ = 24π

180
mg

( (T +1)T

2

)
∆t 2

)
= 2π

180
×10−3 ×9.8× 1

2
×200(200+1)×

( 1

100

)2

= 8.1mm

Therefore, with our acceleromter and gyroscope accuracy, we would expect a standard
deviation of 8.1mm in the integrated distance, which should be enough for classifica-
tion.

Risk Analysis

Since our project is mainly depended on the three sensors, accelerometer, barometer,
and gyroscope, the data received by these sensors need to be precise in order to allow
classifier to classify correctly. In other words, the measurement from these data needs
to have as less bias as possible. Also, another main requirement for this project would
be the classifier to be able to classify in high accuracy. If the classifier fails to classify
correctly due to incorrect estimation of the position or biased measurements, then
the project will not succeed.

On the topic of inaccurate classification, the classifier may produce false positive
and false negative that potentially can worsen a person’s swinging posture. If the
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classifier classifies a correct swinging posture as incorrect (false negative), then the
person’s swinging posturemay deviate from the standard correct posture. On the other
hand, if the classifier classifies an incorrect swinging posture as correct (false positive),
then the person will not be able to improve his/her swinging because the classifier
reports incorrect results. These two are potentially cases where the user may suffer
from unable to converge to correct swinging posture. Since the aim of this product
is to remind the tennis beginner of their nonstandard swings, the false positive case
should receive more attention when optimizing our classifier.

Also, consistent result from classification is also important. If the result is inconsis-
tent, users may feel frustrated or confused toward the feedback. Therefore, having an
inconsistent result may worsen a person’s swinging posture or even make the person’s
swinging posture converge to a bad swinging posture. Therefore, the classification
must be consistent and accurate in order to reduce the potential risks associated with
this project.

Safety and Ethics

There are several possible safety hazards in our design. Lithium battery can explode if
it is overcharged or heated. We will monitor its temperature and make it open circuit
whenever it reach dangerous temperature.

As an electrical device used in tennis courts, moisture and temperature should
be taken into consideration of protection consideration. Water can lead short circuit
and direct sunlight may heat up the PCB to a dangerous temperature. We want to
cover our design with material that can isolate board from water but not accumulate
heat inside, making our design work in appropriate temperature and moisture. More
specifically, the cover material around design will need to protect micro-controller
and sensors from external factors like water and heat in order to ensure safety. The
cover design would be similar to a box which will be attached to racket and to arm.

Our design will analyze player’s swing and compare the captured data with stan-
dard swingmodels stored in system, then classifying those swings to be good or not by
machine learning algorithm. This implies IEEE Code of Ethics, # 3:"To be honest and
realistic in stating claims or estimates based on available data. "[3] The swing analyzer
will only calculate reflect on recorded player’s swing data and won’t fabricate output.

We believe our design can help tennis beginners maintain a proper swing posture
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and prevent them from harming their health. It shows an implementation of IEEE
Codeof Ethics, # 5 and #7 : "To improve theunderstandingby individuals and society of
the capabilities and societal implications of conventional and emerging technologies,
including intelligent systems.""To seek, accept, and offer honest criticism of technical
work, to acknowledge and correct errors, and to credit properly the contributions of
others." [3]

Unfortunately, the analyzer will classify players’ swings as "good" or "bad". The
result of classification can be used to appropriately to attack tennis beginners, which
may violate IEEECode of Ethics,# 9 "to avoid injuring others, their property, reputation,
or employment by false or malicious action".[3] Apparently, we do not have good
solutions to that and can only advice player’s to view the analyzing result as relevant
reference instead of unquestionable answer.
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