

Heads Up Display for MIDI Keyboard

ECE 445 Fall 2018

Design Review

Andy Woodruff

Alexa Hirsch

Table of Contents

Introduction 3
Objective 3
Background 3
High-Level Requirements 4

Design 4
Block Diagram 4
Physical Design 6
Functional Overview 7

Control unit 7
Microcontroller 7
SD Card Reader 8
Power and Record Push Buttons 9

Projection Module 11
Pixel LCD 11
Fresnel Lens 12

Display Module 14
Reflective Glass 14
Light Valve 14
Brightness Select 14

Software Mapping 15

Tolerance Analysis 15
Image tolerance 15

Cost 16

Scheduling 17

Risk Analysis 18

Ethics and Safety 19

References 20

Appendix 21
Appendix A 21
Appendix B 22
Appendix C 23

Introduction

Objective

Learning the piano can be a difficult thing because in order to do it yourself you are required
to know something about how the notes you are playing sound. Without this knowledge, and
without someone there to correct finger placement, it can be hard to determine conveniently
if you are playing the right chord. The internet has many resources that make any individual
capable of teaching themselves the piano or looking up chord structures. Websites are
available that allow you to put in the different notes you are playing, or even click the keys
you are pressing on a piano keyboard graphic, and will return the chord that it makes [6, 7,
8]. However, this is inconvenient to work with as several steps are required in the process
and can provide a roadblock to a beginner who gets frustrated.

Our proposed solution is to bring these resources that are available on a separate
technology directly to the instrument. Heads Up Display technology is being used to bring
access to information away from separate technologies and into the way we interact with the
physical world. Using the information from the MIDI (Musical Instrument Digital Interface)
keyboard, we will be able to determine, as the user is playing the keyboard, each chord that
they play and then use the HUD technology to place the chord being played onto a music
stand so the user can see the data on their preferred place on their sheet music while they
are playing.

Background

There are many MIDI interface software products currently on the market. These include
simple recording programs, pitch bending, sustain pedals, and various sound effects.
Additionally, there are web services designed to translate key presses, guitar fret positions,
or note names, into chord names. These web services, along with many forum posts looking
for ways to determine chord names while playing them, are right at the top of any web
search for “how to tell what chord I’m playing.” Until now, these products have been largely
separate. That is, MIDI interface devices and largely limited to purely storing or manipulating
MIDI data, rather than analyzing it, and music analysis software, even when given a MIDI
interface, tends to assume the user is displaying the information on a computer [10]. Our
product is thus unique in offering a hardware tool to view the chords played on a MIDI
instrument in real time.

High-Level Requirements

● The projector must accurately display the chord name sprites with enough clarity that
the average user misreads fewer than one in fifty displayed chords.

● The total time the system takes to read MIDI input, determine the chord being played,
and pipe that information to the display should be less than the average visual
reaction time, which is approximately 250ms.

● The user must be able to record an arbitrary number and length of MIDI files in real
time, only limited to the file size and SD card space, simply by pressing a single
button to begin and end recording.

Design

Block Diagram

This MIDI interpretation and data display device can be separated into: a control unit, a
projection module, and a display module. The control unit will be responsible for interfacing
the the MIDI input from the keyboard via the USB cable with the data interpretation, user
input, and data storage with the SD card. The projection module will be the first step of data
display of the control unit’s chord name output. This consists of the pixel LCD which will
show the chord names as a mirrored image, and the fresnel lens which will be placed as to
bring this image to the desired dimensions. The display module, a combination of an
adjustable light valve and the reflective glass, is the Heads Up Display itself which will be
placed on the user’s music stand over sheet music. The reflective glass will be placed in
front of the light valve with respect to the light coming from the projection module, and the
light valve will be immediately behind it so as to adjust the brightness of the display without
causing an additional reflected image.

Physical Design

Functional Overview

Control unit

Microcontroller
We have chosen to use an ATMEGA32U4 microcontroller. This will receive the
communication via the USB from the keyboard, send data to the SD card, receive inputs
from the Record and Power buttons, send voltage input data to the battery status LED, and
send information to the pixel display in the Projection Module.

Requirements Verifications

The microcontroller must be able to:
1) Read MIDI over USB in real time
2) Determine chord names from note

values in under 200ms. (This time
requirement, combined with the
maximum display time of 50ms
referenced below, totals to a 250ms
delay between the user playing a
chord and the user seeing the chord
name. This is within a standard
deviation of the average human
visual reaction time as cited by
multiple sources, and thus should
appear as nearly instantaneous to
the user.)

3) Send a display command to the
LCD screen in under 50ms.

4) Write MIDI packet data to the SD
card at 3125 bytes per second or
faster. (This is the speed at which
MIDI data is sent, according to the
standard implementation. If it wrote
slower, our recording time would be
limited by the microcontroller’s RAM,
which we find unacceptable.)

5) Write multiple, differently named
MIDI files to the SD card
sequentially.

1. Attach a display to the

microcontroller, have it display the
raw MIDI data as soon as it’s
received. Use a camera to record a
notes being played and displayed
for one minute. If the delay between
the audio and the note display is
within 10ms of the display lag, and
is the same at the beginning and
end of the test period, this qualifies
as “real time.”

2. Within the software, get a global
time as soon as the MIDI packet is
received and compare it with the
global time as soon as the chord
determination is complete. Average
over 50 trials.

3. Within the software, get a global
time as soon as the chord
calculation is complete and compare
it with the global time as soon as the
LCD frame buffer write is complete.
Average over 50 trials.

4. While this is almost guaranteed by
hardware and protocol specs, we
can again compare a global time
retrieved at the time of MIDI packet
retrieval, to a global time retrieved
after writing said packet to the SD
card. Dividing the packet size by this
time gives us the data rate. Average
over 10 minutes.

5. Record one minute of play, stop the
recording, wait 30 seconds, and
repeat this process. Repeat 10
times, then wait 10 minutes, and
repeat. Success if all 20 files are
correct and distinct.

SD Card Reader
An SD card reader will be placed in the main body of the device for saving MIDI data while in
record mode. It will not be needed to write data to the device, only read. For our device we

will be using an SD micro card 8-pin push & push memory card connector with a PCB
mounting style.

We will be interfacing with the SD card in SPI mode. SPI is a simple synchronous protocol
which only has a chip select as bus protocol and no maximum bus rate. Communication
speeds achieved by interfacing “real-time” MIDI data with an SD card reader can be up to
10mbps. This is much higher than the speed required for the “real-time” data processing that
we have defined in the microcontroller requirements in the figure below.

Requirement Verification

The SD card must be capable of storing
MIDI data as fast as it is sent through the
USB connection from the keyboard. This
equates to writing 3125 bytes per second in
continuous operation.

1. Tests 4 and 5 from the
microcontroller should adequately
prove this.

Power and Record Push Buttons
These buttons will be placed on the main body of the device for enabling recording mode.
When this button is “on”, MIDI data from the keyboard will be stored in the SD device. In “off”
this function will be turned off.

Requirements Verifications

1) The Power button should have a

failure rate below 1%
2) The Record button should have a

failure rate below .5% (A record
failure wastes more of the users
time than a single failure to turn
off/on, and thus is a more negative
user experience.)

1. Power the device on, allow the

screen to begin displaying, and
power the device off. Repeat this
500 times. Success if < 5 failures to
turn on / off.

2. Program the record button to
increment a counter, rather than
begin recording. Press the button
1000 times. Success if count is 996
to 1000 inclusive. (This is a test of
the hardware sending a digital signal
correctly.)

Power Supply

Component Specifications

Microcontroller Operating voltage: 2.7-5.5V

Pixel LCD Screen Operating voltage: 3-5V

Light Valve Operating voltage: 0-5V

SD Card Operating voltage: 3.3V

Lithium Ion Polymer Rechargeable Battery Output voltage: 3.7V
2500 mAh

3.3V Voltage Regulator (LD1117V33) Maximum DC Input: 15V

Each of the components that will draw power from the supply can operate at either 3.3V or
5V, except for any interaction with the SD card as SD cards are strictly 3.3V devices.
However, the light valve requires a supply of 5V for its full range of opacity control, as it
adjusts its brightness linearly in proportion to a 0-5V range. For the purpose of this device it
is not necessary to attain complete opacity of the display and we wish to regulate the power
consumption created by the microcontroller, LCD and light valve, and require SD card
functionality. Prioritizing this, we have decided to output 3.3V from the power supply to the
rest of the device and regulate this output with a 3.3V voltage regulator to stabilize battery
output for the microcontroller. The voltage regulator will connect the battery (Vin) to the
microcontroller and light valve (Vout) as shown in Figure 8.

Requirements Verifications

1) The power supply must output
steady 3.3V to the circuit while
receiving the variable voltage from
the rechargeable battery.

2) The power supply must be capable
of running without recharging the
batteries for at least an hour with
consistent play and record mode on.

1. Measure voltage output of battery
and voltage regulator
simultaneously. Observe the voltage
values output from the voltage
regulator as the input from the
battery is 3.7, 3.6V, 3.5V, 3.4V.
Verified if regulator output is 3.3V for
all input values.

2. Measure the current pull at the
output of voltage regulator while
record mode is on and notes are
being played (i.e. chord names are
being calculated) and compare
against the mAh of the battery to
establish a theoretical battery life for
the device. This is verified if the
theoretical life is 2 hours or more. If
not, we will physically test by playing
consistently with record on for 1
hour while observing power supply
voltage output.

Projection Module

Pixel LCD

We have chosen to use the Adafruit 1.54" 240x240 Wide Angle TFT LCD Display for the
pixel LCD display. This will receive output from the microcontroller and will display a mirrored
image of chord names that have been determined by the device’s MIDI interpreter. As
calculated in Fisher’s article, we end up with a 41 PPI display after our magnification step.
This will be visibly pixelated, but not difficult to read.

Requirement Verification

The LCD display must display mirrored
chord name sprites.

1. Simple visual comparison between

The chord name images on this display
must be readable at 41 pixels / inch, easily
distinguished from 3 feet away.

sprite stored on LCD’s SD card and
image displayed on screen.

2. Again, visual inspection, preferably
by multiple users. Must be able to
accurately read off 50 chords per
user with one or fewer misreads per
user.

Fresnel Lens
A fresnel lens from a magnifying glass will be used to project the small image of the pixel
screen into a larger display on the reflective glass a small distance away. This will be placed
between the pixel LCD and the reflective glass.

The focal length (f) of the fresnel lens used in this device is 10.1cm.

Resolution Calculations:

Screen to lens (s) Min: 2.32 cm
Max: 4.86 cm

Screen to display Min: 6.93 cm
Max: 10.27 cm

Lens to display Min: 4.61 cm
Max: 5.41 cm

Enclosure prototype construction:
We intend to develop the simple enclosure for our optics testing prototype with dimensions
that will accomodate distances closer to the maximum measurements made above:

● Screen to lens ~4.75 cm
● Screen to display ~10 cm
● Lens to display ~ 10 cm - 4.75 cm = 5.25 cm

This enclosure prototype will be made of cardboard and easily alterable in order to achieve a
screen reflection that meets our basic criteria for resolution and the size of image on display.
The primary importance of the enclosure is to cut off light reaching the display from the room
and sources other than the LCD screen so it only shows the image from the LCD screen.
This prototype enclosure will be clipped onto the side of the music stand.

The production enclosure will be designed based on the successes and failures of the
prototype. In general, it should have very similar dimensions, and will most likely be largely
3d printed. It should allow for easy access to the user interface buttons and dial, support the

display surface via a transparent arm, and clip onto the user’s music stand from left side. It
should not slip during operation, and should be as small as possible while housing the
microcontroller, battery, and projection unit. In addition, this housing should allow the user to
remove the battery for charging, and to easily access the SD card.

The focal length of a fresnel lens is related to the screen-lens distance and magnification
factor by:

f = s
(1−1/m)

Where f is the focal length, s1 is the object-lens distance, and m is the magnification
determined by the ratio:

 m = actual object size
desired object size

Based on component testing for desired image size and quality for the display, we
determined the values above. Using these values we can determine the exact magnification
factor that will be achieved for our initial prototype:

 .89m = 1
1−s /f

= 1
1−(4.75/10.1) = 1

Since we know that the height of our pixel LCD display is 3.1 cm, the measured height of the
chord names being displayed on the HUD will be:

 irtual object height actual object height)(m) 3.1)(1.89) .85cmv = (= (= 5

Requirement Verification

Fresnel Lens
Any distortion from the lens must be low
enough to be compensated for in chord
name sprite design. By rough estimate, this
means no pixels from the test pattern
should be displaced by more than 10 pixels
on the display image, and the mean pixel
displacement should be 3 or lower. This
would correspond to a maximum distortion
of 20% and a mean of 6% (assuming 50 x
50 pixel sprites).

Fresnel Lens
Display the reference image described in
Tolerance Analysis. Photograph the
resulting image on the display screen.
Overlay the two images and count pixel
displacements.

Display Module

Reflective Glass
The reflective glass that will act as the display for the user will be a dielectric beam splitter
mirror. This is used in teleprompters, and has a reflective side with tint-free mirror coating
and a backside with anti-reflective coating to prevent a double image. The image of the
live-updating chord name projected from the projection module will be shown here.

Requirement Verification

The reflective glass must be large enough
that an easily readable size of lettering can
be displayed from the projector module.

Have the glass cut to 6 cm by 3.5 cm

Light Valve
We have chosen to use a controllable shutter glass liquid crystal light valve to control the
transparency of the display. This will be attached to the beam splitter mirror so that the mirror
is in between it and the projection from the fresnel lens. The brightness of the valve will be
connected to the “Brightness Select” user input potentiometer and has an input range of 0-5v
(in which 5v input will cause complete opacity and 0v will cause complete transparency).

Requirement Verification

The light valve cannot receive an input
above 5 volts.

Covered by brightness select test.

Brightness Select
The Brightness Select is a potentiometer that will be adjusted by the user in order to control
the transparency of the heads up display and change the display quality. This will be
connected directly to the light valve and will not go through the microcontroller.

Requirement Verification

The Brightness Select must be limited to
controlling an input to the light valve
between 0 and 3.3v.

Measure the voltage across the light valve
while sweeping the full range of the
single-turn potentiometer. At fixed furthest
left rotation the voltage should measure 0v
and at the fixed furthest right rotation the
voltage should measure 3.3v.

Software Mapping
MIDI:

First the microcontroller receives the MIDI packets from the keyboard. It then reads them
and keeps track of which notes are being played. It also treats notes that were only released
100 ms ago as being still active, to avoid erroneous calculations on chord release. Then it
compares the currently playing notes with a chord reference table. The notes being played
are treated as one chord, with a closeness score for each chord in the table. It scores points
for each note that matches with a candidate chord based on how fundamental to the
candidate chord the notes are. Conversely, mismatched notes lose points according to how
strongly they contradict the candidate chord. The candidate chord with the highest closeness
score wins, with ties going to the least complex candidate chord. Complexity will be
determined when the reference table is built, based on music theory.

Storage:

Upon boot, the system prepares a new file name for the next MIDI file it will store. Once the
record button is pressed, it initializes a file with that name, and writes the MIDI file header.
Once a packet that contains at least one note is sent, the system writes that and each
subsequent packet to the file as they are received. Once the record button is pressed a
second time, the system sends a flush command which ensures all of the data has moved
from any buffers into proper file storage. It then closes the file and prepares a new file name
for the next MIDI file it will store.

Tolerance Analysis

Image tolerance

For most video projection systems, the two main calibrations are focus and convergence.
Focus is self evident, and convergence is the overlap of the RGB components of the image.
We will define a “good” convergence to mean that the RGB components overlap perfectly,
and a “poor” convergence to mean that there exist visibly distinct overlapping segments.

For our setup, focus is fixed at time of assembly, and rather than having separate RGB
channels to converge, we have pre-integrated RGB pixels that might diverge due to the
Fresnel lens. Additionally, said lens may introduce distortion. To test and correct for these,
we will project a test pattern onto our display, and compare it with a reference image (Figure
10). This test pattern will identify color divergence by having square regions of solid red,
green, blue, cyan, magenta, yellow, and white, on a black background. While we will be

generating our own test pattern to specifically suit the needs and resolution of our display, it
should look something like Figure 11 below.

If two colors are refracted at different relative angles, their respective joint color will see
“fringing”, as will the white segment. If the aberration is within 6% (measured by apparent
pixel displacement), no action is required. If it is greater than 6% but only between two
colors, we can simply avoid pairing those colors. If it is greater than 6% and between each
color, we can run in strict RGB, and the user won’t have any issues.

Distortion will be measured by our test pattern being a grid. We can then compare the
projected grid to the source grid and directly measure the displacement of each square from
its intended location. If this distortion is variable, it means we need to make the lens more
rigid, which can be solved with the use of a rigid transparent backing. If it is not variable, and
is instead due to lens defects, we can programatically account for it (provided it’s within
listed thresholds) by projecting an anti-distorted image. When distorted, this image will come
out in our originally intended shape.

As for focus, the same test pattern again can be used due to its sharp corners and clear
contrast between colored blocks. Here we simply look for blurring at edges, and adjust the
relative positions of the LCD screen, lens, and display surface until it disappears. All in all,
the user should be able to clearly read lettering of 50 pixels tall at a distance of 3 feet.

Cost

Light Valve(s) $15.00

Reflective Backing $15.99

LCD Display $19.95

Fresnel Lens(es) $5.99

Memory card connector $2.52

If we assume those component costs will triple by the end of the project, that gives us a total
of $180 worth of materials. Based on projected work loads, this will take around 20 hours per
partner per week, and we have already put in approximately 50 combined hours. At an
estimated $25 per hour, this comes out to $9,250 in labor. Adding the suggested 2.5x fudge
factor, this all ends up at a total of $23,600. This somewhat explains the massive reported
R&D budgets from most major firms.

Scheduling

Oct 7 Alexa: SD card storage software
Andy: MIDI-in complete (can read individual
MIDI note information and process)

Oct 14 Andy + Alexa: Complete rough draft
enclosure + arduino prototype
Andy + Alexa: Finalize all components for
PCB
Alexa: Enclosure design, completing SD
card storage
Andy: Chord-identifying algorithm

Oct 21 PCB Round 1
Alexa: Finish PCB layout for round 1
Andy: Enclosure CAD (Initial LCD reference
image display development)

Oct 28 Alexa + Andy: PCB Testing (beginning
integration of memory storage and MIDI
processing software and hardware
components)

Nov 4 PCB Round 2
Andy: Enclosure printing + optics assembly
testing (reference image displaying on
Heads Up Display screen)
Alexa: PCB alterations/improvements

design

Nov 11 Alexa + Andy: PCB 2 testing,
software/hardware assembly off of
prototype

Nov 18 Fall break: Slack week for additional issues

Nov 25 Mock demos (major subsystems
constructed)
Andy + Alexa: Testing/debugging

Risk Analysis

Over-arching the many modular components of this device are two main sections: the
electronic components and the optical components. While each of these function very
independently, the device as a whole depends on the fact they will be linked together
successfully. Therefore the risk of this project lies in one of these sides failing.

Firstly is the greatest risk in terms of probability: that the projection system fails in the key
points that we have established in our individual component requirements. Though the optics
consist of several components, a “successful” image (an image that meets our requirements
in magnification and resolution) is only produced by each of these components having
individual material quality and functioning successfully together.

The electronic side of this device is controlled almost completely via the microcontroller. If
the main processing module is not able to display correct chord values with the expected
speed then this project will not be successful in any capacity. We expect that this has a
much lower probability of risk than the optical aspect of the project, but the degree of failure
is much more severe here. A poor display can still function as a display, but the data on the
display is either correct or incorrect.

We have only a few other examples of people using a setup similar to our own. This isn’t
necessarily bad, but if we run into difficulties we won’t have many resources for
troubleshooting this exact configuration.

Ethics and Safety
As for point one on the IEEE code of ethics regarding public welfare, MIDI is a freely
available data protocol, and we were unable to find any other examples of our product on the
market. It is technically possible for someone to plug the device into someone else’s
instrument and use it to record their performances without their knowledge or permission,
but given the size and shape, that seems unfeasible.

On point nine, public safety, the biggest risk to the end user comes from the fact that we plan
on using teleprompter glass and two LCD components (the screen and the light valve) for
part of the display which could break and produce sharp edges. If testing shows this to be
too great of a risk, we do have plans for an alternative display using a plastic reflective
surface instead.

Under point six, our own safety risks are no greater than any other computing electronics
projects; we aren’t working with any high voltage equipment, so the most dangerous thing
we might encounter is a soldering iron.

On point two, neither of us have any conflicts of interest as we’re not currently employed by
nor invested in anyone in the music production equipment marketplace.

We have done our best on point three, finding making honest estimates based on good and
reliable data, and will do our best on point seven, accepting honest technical criticism. The
other points seem to be either not applicable or require no special effort to maintain.

References

[1] Atmel, “8-bit AVR Microcontroller with 16/32K Bytes of ISP Flash and USB Controller,”
ATmega32U4 datasheet, 2010. Available: https://www.pjrc.com/teensy/atmega32u4.pdf
[Accessed Oct 2, 2018]

[2] A Davis, F Kuhnlenz, “Optical Design Using Fresnel Lenses”, Optik & Photonik, 2007.
Available:
https://www.orafol.com/tl_files/EnergyUSA/papers/Optical-Design-Using-Fresnel-Lenses.pdf.
[Accessed Oct. 1, 2018]

[3] STMicroelectronics, “Low Drop Fixed and Adjustable Positive Voltage Regulators,”
LD1117V33 datasheet, Dec 2005. Available:
https://www.sparkfun.com/datasheets/Components/LD1117V33.pdf [Accessed Oct 4, 2018]

[4] Tim Fisher, “How Many Pixels in an Inch?”, Lifewire, August 23, 2018
Available:
https://www.lifewire.com/how-many-pixels-in-an-inch-4125185 [Accessed Oct 4, 2018]

[5] Wurth Electronics, “Micro SD Card Connector- Push & Push- With Card Detection 8 pins,”
Available: https://www.mouser.com/datasheet/2/445/693071010811-336082.pdf [Accessed
Oct 3, 2018]

[6] ScalesChords, “Chord Identifier (Reverse Chord Finder),” [Online]. Available:
https://www.scales-chords.com/chordid.php [Accessed Sept 19, 2018]

[7] 8notes.com, “Piano Chord Finder,” [Online]. Available:
https://www.8notes.com/piano_chord_chart/chord_finder.asp [Accessed Sept 19, 2018]

[8] gootar.com, “Piano,” [Online]. Available: http://www.gootar.com/piano/index.php
[Accessed Sept 19, 2018]

[9] IEEE Code of Ethics. Available:
https://www.ieee.org/about/corporate/governance/p7-8.html

[10] KVR Audio, “Midi Chord Analyzer,” [Online]. Available:
https://www.kvraudio.com/product/midichordanalyzer-by-insert-piz-here [Accessed Sept 19,
2018]

[11] “Midi and Music”, Available: https://www-user.tu-chemnitz.de/~heha/petzold/ch22d.htm
[Accessed Oct 3, 2018]https://www-user.tu-chemnitz.de/~heha/petzold/ch22d.htmmidi file
"3125" bytes

https://www.pjrc.com/teensy/atmega32u4.pdf
https://www.orafol.com/tl_files/EnergyUSA/papers/Optical-Design-Using-Fresnel-Lenses.pdf
https://www.sparkfun.com/datasheets/Components/LD1117V33.pdf
https://www.lifewire.com/how-many-pixels-in-an-inch-4125185
https://www.mouser.com/datasheet/2/445/693071010811-336082.pdf
https://www.scales-chords.com/chordid.php
https://www.8notes.com/piano_chord_chart/chord_finder.asp
http://www.gootar.com/piano/index.php
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.kvraudio.com/product/midichordanalyzer-by-insert-piz-here
https://www-user.tu-chemnitz.de/~heha/petzold/ch22d.htm

Appendix

Appendix A
ATmega32U4 pin allocations

Pin Function Connection

2 UVcc
USB internal regulator input
supply voltage

Power supply

3 D-
Negative data rail (external
22 ohm resistor in serial)

USB port

4 D+
Positive data rail (external
22 ohm resistor in serial)

USB port

5 UGnd
USB ground

Power supply (ground)

6 UCap
USB internal regulator
output supply voltage
(external 1μF capacitor in
serial)

Power supply (ground)

7 VBus
USB data connection
(external 10μF in serial)

USB port

8 PB0
TFT Reset

LCD display

9 PB1- SCLK
Clock

SD card connector, LCD
display

10 PB2- MOSI
Master slave input

LCD display

11 PB3- MISO
Master slave output

LCD display

14, 24, 34, 44 VCC/AVCC Power supply

15, 23, 35, 43 GND Power supply

18 PD0
DAT0 (connector data line)

SD card connector

19 PD1
DAT1 (connector data line)

SD card connector

20 PD2
DAT2 (connector data line)

SD card connector

21 PD3
CD/DAT3 (card detection)

SD card connector

22 PD5 Power button

25 PD4
CMD (command/answer)

SD card connector

26 PD6 Record button

27 PD7 Battery status LED

28 PB4
TFT SPI Chip Select

LCD display

29 PB5
TFT SPI Data / Command

LCD display

30 PB6
LCD SD Chip Select

LCD display

Appendix B

SD card connector pin descriptions

Pin Function Description

1 DAT2 Connector data line 2

2 CD/DAT3 Card detection

3 CMD Command/Answer

4 Vdd Voltage

5 CLK Clock

6 Vss Ground

7 DAT0 Connector data line 0

8 DAT1 Connector data line 1

Appendix C

LCD pixel screen pin descriptions

Pin Name Function

BL Backlight control. Active High, PWM
capable

MISO SPI Master In Slave Out pin (SD card only;
TFT display is write-only)

SCLK

SPI clock input

SI SPI Master Out Slave In pin (sends data
from the microcontroller to the SD card
and/or TFT)

TF CS

TFT SPI chip select

SD CS SD card chip select

DC

TFT SPI data or command selector

RT TFT reset pin. Active Low

Vin 3 - 5 Volts in (goes through regulator)

3Vo 3.3 V (can function as input or output)

GND Ground

