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Introduction  

Objective  

Learning the piano can be a difficult thing because in order to do it yourself you are required 
to know something about how the notes you are playing sound. Without this knowledge, and 
without someone there to correct finger placement, it can be hard to determine conveniently 
if you are playing the right chord. The internet has many resources that make any individual 
capable of teaching themselves the piano or looking up chord structures. Websites are 
available that allow you to put in the different notes you are playing, or even click the keys 
you are pressing on a piano keyboard graphic, and will return the chord that it makes [6, 7, 
8]. However, this is inconvenient to work with as several steps are required in the process 
and can provide a roadblock to a beginner who gets frustrated.  

Our proposed solution is to bring these resources that are available on a separate 
technology directly to the instrument. Heads Up Display technology is being used to bring 
access to information away from separate technologies and into the way we interact with the 
physical world. Using the information from the MIDI (Musical Instrument Digital Interface) 
keyboard, we will be able to determine, as the user is playing the keyboard, each chord that 
they play and then use the HUD technology to place the chord being played onto a music 
stand so the user can see the data on their preferred place on their sheet music while they 
are playing.  

Background  

There are many MIDI interface software products currently on the market. These include 
simple recording programs, pitch bending, sustain pedals, and various sound effects. 
Additionally, there are web services designed to translate key presses, guitar fret positions, 
or note names, into chord names. These web services, along with many forum posts looking 
for ways to determine chord names while playing them, are right at the top of any web 
search for “how to tell what chord I’m playing.” Until now, these products have been largely 
separate. That is, MIDI interface devices and largely limited to purely storing or manipulating 
MIDI data, rather than analyzing it, and music analysis software, even when given a MIDI 
interface, tends to assume the user is displaying the information on a computer [10]. Our 
product is thus unique in offering a hardware tool to view the chords played on a MIDI 
instrument in real time. 

 



High-Level Requirements 

● The projector must accurately display the chord name sprites with enough clarity that 
the average user misreads fewer than one in fifty displayed chords. 

● The total time the system takes to read MIDI input, determine the chord being played, 
and pipe that information to the display should be less than the average visual 
reaction time, which is approximately 250ms. 

● The user must be able to record an arbitrary number and length of MIDI files in real 
time, only limited to the file size and SD card space, simply by pressing a single 
button to begin and end recording. 

Design 

Block Diagram  

This MIDI interpretation and data display device can be separated into: a control unit, a 
projection module, and a display module. The control unit will be responsible for interfacing 
the the MIDI input from the keyboard via the USB cable with the data interpretation, user 
input, and data storage with the SD card. The projection module will be the first step of data 
display of the control unit’s chord name output. This consists of the pixel LCD which will 
show the chord names as a mirrored image, and the fresnel lens which will be placed as to 
bring this image to the desired dimensions. The display module, a combination of an 
adjustable light valve and the reflective glass, is the Heads Up Display itself which will be 
placed on the user’s music stand over sheet music. The reflective glass will be placed in 
front of the light valve with respect to the light coming from the projection module, and the 
light valve will be immediately behind it so as to adjust the brightness of the display without 
causing an additional reflected image.  
 

 



 

 

 



Physical Design  

 

 

 

 

 

 



Functional Overview 

Control unit 

Microcontroller 
We have chosen to use an ATMEGA32U4 microcontroller. This will receive the 
communication via the USB from the keyboard, send data to the SD card, receive inputs 
from the Record and Power buttons, send voltage input data to the battery status LED, and 
send information to the pixel display in the Projection Module.  
 
 

 

 

 



 

Requirements Verifications 

The microcontroller must be able to: 
1) Read MIDI over USB in real time 
2) Determine chord names from note 

values in under 200ms. (This time 
requirement, combined with the 
maximum display time of 50ms 
referenced below, totals to a 250ms 
delay between the user playing a 
chord and the user seeing the chord 
name. This is within a standard 
deviation of the average human 
visual reaction time as cited by 
multiple sources, and thus should 
appear as nearly instantaneous to 
the user.) 

3) Send a display command to the 
LCD screen in under 50ms. 

4) Write MIDI packet data to the SD 
card at 3125 bytes per second or 
faster. (This is the speed at which 
MIDI data is sent, according to the 
standard implementation. If it wrote 
slower, our recording time would be 
limited by the microcontroller’s RAM, 
which we find unacceptable.) 

5) Write multiple, differently named 
MIDI files to the SD card 
sequentially. 

 
1. Attach a display to the 

microcontroller, have it display the 
raw MIDI data as soon as it’s 
received. Use a camera to record a 
notes being played and displayed 
for one minute. If the delay between 
the audio and the note display is 
within 10ms of the display lag, and 
is the same at the beginning and 
end of the test period, this qualifies 
as “real time.” 

2. Within the software, get a global 
time as soon as the MIDI packet is 
received and compare it with the 
global time as soon as the chord 
determination is complete. Average 
over 50 trials. 

3. Within the software, get a global 
time as soon as the chord 
calculation is complete and compare 
it with the global time as soon as the 
LCD frame buffer write is complete. 
Average over 50 trials. 

4. While this is almost guaranteed by 
hardware and protocol specs, we 
can again compare a global time 
retrieved at the time of MIDI packet 
retrieval, to a global time retrieved 
after writing said packet to the SD 
card. Dividing the packet size by this 
time gives us the data rate. Average 
over 10 minutes. 

5. Record one minute of play, stop the 
recording, wait 30 seconds, and 
repeat this process. Repeat 10 
times, then wait 10 minutes, and 
repeat. Success if all 20 files are 
correct and distinct. 

 

SD Card Reader 
An SD card reader will be placed in the main body of the device for saving MIDI data while in 
record mode. It will not be needed to write data to the device, only read. For our device we 

 



will be using an SD micro card 8-pin push & push memory card connector with a PCB 
mounting style.  
 
We will be interfacing with the SD card in SPI mode. SPI is a simple synchronous protocol 
which only has a chip select as bus protocol and no maximum bus rate. Communication 
speeds achieved by interfacing “real-time” MIDI data with an SD card reader can be up to 
10mbps. This is much higher than the speed required for the “real-time” data processing that 
we have defined in the microcontroller requirements in the figure below. 
 

Requirement Verification 

The SD card must be capable of storing 
MIDI data as fast as it is sent through the 
USB connection from the keyboard. This 
equates to writing 3125 bytes per second in 
continuous operation. 

1. Tests 4 and 5 from the 
microcontroller should adequately 
prove this.  

 

Power and Record Push Buttons 
These buttons will be placed on the main body of the device for enabling recording mode. 
When this button is “on”, MIDI data from the keyboard will be stored in the SD device. In “off” 
this function will be turned off. 
  

Requirements Verifications 

 
1) The Power button should have a 

failure rate below 1% 
2) The Record button should have a 

failure rate below .5% (A record 
failure wastes more of the users 
time than a single failure to turn 
off/on, and thus is a more negative 
user experience.) 

 

 
1. Power the device on, allow the 

screen to begin displaying, and 
power the device off. Repeat this 
500 times. Success if < 5 failures to 
turn on / off. 

2. Program the record button to 
increment a counter, rather than 
begin recording. Press the button 
1000 times. Success if count is 996 
to 1000 inclusive. (This is a test of 
the hardware sending a digital signal 
correctly.) 

 
 

 

 



Power Supply 

Component Specifications 

Microcontroller Operating voltage: 2.7-5.5V 

Pixel LCD Screen Operating voltage: 3-5V 

Light Valve Operating voltage: 0-5V 

SD Card Operating voltage: 3.3V 

Lithium Ion Polymer Rechargeable Battery Output voltage: 3.7V 
2500 mAh 

3.3V Voltage Regulator (LD1117V33) Maximum DC Input: 15V  

 

Each of the components that will draw power from the supply can operate at either 3.3V or 
5V, except for any interaction with the SD card as SD cards are strictly 3.3V devices. 
However, the light valve requires a supply of 5V for its full range of opacity control, as it 
adjusts its brightness linearly in proportion to a 0-5V range. For the purpose of this device it 
is not necessary to attain complete opacity of the display and we wish to regulate the power 
consumption created by the microcontroller, LCD and light valve, and require SD card 
functionality. Prioritizing this, we have decided to output 3.3V from the power supply to the 
rest of the device and regulate this output with a 3.3V voltage regulator to stabilize battery 
output for the microcontroller. The voltage regulator will connect the battery (Vin) to the 
microcontroller and light valve (Vout) as shown in Figure 8.  

 

 

 



 

Requirements Verifications 

1) The power supply must output 
steady 3.3V to the circuit while 
receiving the variable voltage from 
the rechargeable battery.  

2) The power supply must be capable 
of running without recharging the 
batteries for at least an hour with 
consistent play and record mode on.  

1. Measure voltage output of battery 
and voltage regulator 
simultaneously. Observe the voltage 
values output from the voltage 
regulator as the input from the 
battery is 3.7, 3.6V, 3.5V, 3.4V. 
Verified if regulator output is 3.3V for 
all input values.  

2. Measure the current pull at the 
output of voltage regulator while 
record mode is on and notes are 
being played (i.e. chord names are 
being calculated) and compare 
against the mAh of the battery to 
establish a theoretical battery life for 
the device. This is verified if the 
theoretical life is 2 hours or more. If 
not, we will physically test by playing 
consistently with record on for 1 
hour while observing power supply 
voltage output.  

 

Projection Module 

Pixel LCD 

We have chosen to use the Adafruit 1.54" 240x240 Wide Angle TFT LCD Display for the 
pixel LCD display. This will receive output from the microcontroller and will display a mirrored 
image of chord names that have been determined by the device’s MIDI interpreter. As 
calculated in Fisher’s article, we end up with a 41 PPI display after our magnification step. 
This will be visibly pixelated, but not difficult to read. 
 

Requirement  Verification 

The LCD display must display mirrored 
chord name sprites. 

 
1. Simple visual comparison between 

 



 
The chord name images on this display 
must be readable at 41 pixels / inch, easily 
distinguished from 3 feet away. 

sprite stored on LCD’s SD card and 
image displayed on screen. 

2. Again, visual inspection, preferably 
by multiple users. Must be able to 
accurately read off 50 chords per 
user with one or fewer misreads per 
user. 

 

Fresnel Lens 
A fresnel lens from a magnifying glass will be used to project the small image of the pixel 
screen into a larger display on the reflective glass a small distance away. This will be placed 
between the pixel LCD and the reflective glass.  
 
The focal length (f) of the fresnel lens used in this device is 10.1cm.  
 
Resolution Calculations: 
 

Screen to lens (s) Min: 2.32 cm 
Max: 4.86 cm 

Screen to display Min: 6.93 cm 
Max: 10.27 cm 

Lens to display Min: 4.61 cm 
Max: 5.41 cm 

 

Enclosure prototype construction: 
We intend to develop the simple enclosure for our optics testing prototype with dimensions 
that will accomodate distances closer to the maximum measurements made above: 

● Screen to lens ~4.75 cm 
● Screen to display ~10 cm 
● Lens to display ~ 10 cm - 4.75 cm = 5.25 cm 

This enclosure prototype will be made of cardboard and easily alterable in order to achieve a 
screen reflection that meets our basic criteria for resolution and the size of image on display. 
The primary importance of the enclosure is to cut off light reaching the display from the room 
and sources other than the LCD screen so it only shows the image from the LCD screen. 
This prototype enclosure will be clipped onto the side of the music stand.  
 
The production enclosure will be designed based on the successes and failures of the 
prototype. In general, it should have very similar dimensions, and will most likely be largely 
3d printed. It should allow for easy access to the user interface buttons and dial, support the 

 



display surface via a transparent arm, and clip onto the user’s music stand from left side. It 
should not slip during operation, and should be as small as possible while housing the 
microcontroller, battery, and projection unit. In addition, this housing should allow the user to 
remove the battery for charging, and to easily access the SD card. 
 
The focal length of a fresnel lens is related to the screen-lens distance and magnification 
factor by:  
 

f = s 
(1−1/m)  

 
Where f is the focal length, s1 is the object-lens distance, and m is the magnification 
determined by the ratio:  
 

 m = actual object size
desired object size  

 
Based on component testing for desired image size and quality for the display, we 
determined the values above. Using these values we can determine the exact magnification 
factor that will be achieved for our initial prototype: 
 

 .89m =  1
1−s /f 

= 1
1−(4.75/10.1) = 1  

 
Since we know that the height of our pixel LCD display is 3.1 cm, the measured height of the 
chord names being displayed on the HUD will be: 
 

 irtual object height actual object height)(m) 3.1)(1.89) .85cmv = ( = ( = 5  
 
 

Requirement Verification 

Fresnel Lens 
Any distortion from the lens must be low 
enough to be compensated for in chord 
name sprite design. By rough estimate, this 
means no pixels from the test pattern 
should be displaced by more than 10 pixels 
on the display image, and the mean pixel 
displacement should be 3 or lower. This 
would correspond to a maximum distortion 
of 20% and a mean of 6% (assuming 50 x 
50 pixel sprites). 

Fresnel Lens 
Display the reference image described in 
Tolerance Analysis. Photograph the 
resulting image on the display screen. 
Overlay the two images and count pixel 
displacements. 

 

 



Display Module  

Reflective Glass 
The reflective glass that will act as the display for the user will be a dielectric beam splitter 
mirror. This is used in teleprompters, and has a reflective side with tint-free mirror coating 
and a backside with anti-reflective coating to prevent a double image. The image of the 
live-updating chord name projected from the projection module will be shown here.  
 
  
Requirement Verification 

The reflective glass must be large enough 
that an easily readable size of lettering can 
be displayed from the projector module. 

Have the glass cut to 6 cm by 3.5 cm 

 

Light Valve 
We have chosen to use a controllable shutter glass liquid crystal light valve to control the 
transparency of the display. This will be attached to the beam splitter mirror so that the mirror 
is in between it and the projection from the fresnel lens. The brightness of the valve will be 
connected to the “Brightness Select” user input potentiometer and has an input range of 0-5v 
(in which 5v input will cause complete opacity and 0v will cause complete transparency). 
 

Requirement Verification 

The light valve cannot receive an input 
above 5 volts. 

Covered by brightness select test. 

 

Brightness Select 
The Brightness Select is a potentiometer that will be adjusted by the user in order to control 
the transparency of the heads up display and change the display quality. This will be 
connected directly to the light valve and will not go through the microcontroller.  
 

Requirement  Verification 

The Brightness Select must be limited to 
controlling an input to the light valve 
between 0 and 3.3v. 

Measure the voltage across the light valve 
while sweeping the full range of the 
single-turn potentiometer. At fixed furthest 
left rotation the voltage should measure 0v 
and at the fixed furthest right rotation the 
voltage should measure 3.3v.  

 



Software Mapping 
MIDI: 

First the microcontroller receives the MIDI packets from the keyboard. It then reads them 
and keeps track of which notes are being played. It also treats notes that were only released 
100 ms ago as being still active, to avoid erroneous calculations on chord release. Then it 
compares the currently playing notes with a chord reference table. The notes being played 
are treated as one chord, with a closeness score for each chord in the table. It scores points 
for each note that matches with a candidate chord based on how fundamental to the 
candidate chord the notes are. Conversely, mismatched notes lose points according to how 
strongly they contradict the candidate chord. The candidate chord with the highest closeness 
score wins, with ties going to the least complex candidate chord. Complexity will be 
determined when the reference table is built, based on music theory. 

 

Storage: 

Upon boot, the system prepares a new file name for the next MIDI file it will store. Once the 
record button is pressed, it initializes a file with that name, and writes the MIDI file header. 
Once a packet that contains at least one note is sent, the system writes that and each 
subsequent packet to the file as they are received. Once the record button is pressed a 
second time, the system sends a flush command which ensures all of the data has moved 
from any buffers into proper file storage. It then closes the file and prepares a new file name 
for the next MIDI file it will store. 

 

Tolerance Analysis 

Image tolerance  

For most video projection systems, the two main calibrations are focus and convergence. 
Focus is self evident, and convergence is the overlap of the RGB components of the image. 
We will define a “good” convergence to mean that the RGB components overlap perfectly, 
and a “poor” convergence to mean that there exist visibly distinct overlapping segments.  

For our setup, focus is fixed at time of assembly, and rather than having separate RGB 
channels to converge, we have pre-integrated RGB pixels that might diverge due to the 
Fresnel lens. Additionally, said lens may introduce distortion. To test and correct for these, 
we will project a test pattern onto our display, and compare it with a reference image (Figure 
10). This test pattern will identify color divergence by having square regions of solid red, 
green, blue, cyan, magenta, yellow, and white, on a black background. While we will be 

 



generating our own test pattern to specifically suit the needs and resolution of our display, it 
should look something like Figure 11 below. 

 

If two colors are refracted at different relative angles, their respective joint color will see 
“fringing”, as will the white segment. If the aberration is within 6% (measured by apparent 
pixel displacement), no action is required. If it is greater than 6% but only between two 
colors, we can simply avoid pairing those colors. If it is greater than 6% and between each 
color, we can run in strict RGB, and the user won’t have any issues.  

Distortion will be measured by our test pattern being a grid. We can then compare the 
projected grid to the source grid and directly measure the displacement of each square from 
its intended location. If this distortion is variable, it means we need to make the lens more 
rigid, which can be solved with the use of a rigid transparent backing. If it is not variable, and 
is instead due to lens defects, we can programatically account for it (provided it’s within 
listed thresholds) by projecting an anti-distorted image. When distorted, this image will come 
out in our originally intended shape.  

As for focus, the same test pattern again can be used due to its sharp corners and clear 
contrast between colored blocks. Here we simply look for blurring at edges, and adjust the 
relative positions of the LCD screen, lens, and display surface until it disappears. All in all, 
the user should be able to clearly read lettering of 50 pixels tall at a distance of 3 feet. 

Cost 

Light Valve(s) $15.00 

Reflective Backing $15.99 

 



LCD Display $19.95 

Fresnel Lens(es) $5.99 

Memory card connector $2.52 

 

If we assume those component costs will triple by the end of the project, that gives us a total 
of $180 worth of materials. Based on projected work loads, this will take around 20 hours per 
partner per week, and we have already put in approximately 50 combined hours. At an 
estimated $25 per hour, this comes out to $9,250 in labor. Adding the suggested 2.5x fudge 
factor, this all ends up at a total of $23,600. This somewhat explains the massive reported 
R&D budgets from most major firms. 

 

Scheduling 

Oct 7 Alexa: SD card storage software 
Andy: MIDI-in complete (can read individual 
MIDI note information and process) 

Oct 14 Andy + Alexa: Complete rough draft 
enclosure + arduino prototype 
Andy + Alexa: Finalize all components for 
PCB 
Alexa: Enclosure design, completing SD 
card storage 
Andy: Chord-identifying algorithm 

Oct 21 PCB Round 1 
Alexa: Finish PCB layout for round 1 
Andy: Enclosure CAD (Initial LCD reference 
image display development) 

Oct 28 Alexa + Andy: PCB Testing (beginning 
integration of memory storage and MIDI 
processing software and hardware 
components) 

Nov 4 PCB Round 2  
Andy: Enclosure printing + optics assembly 
testing (reference image displaying on 
Heads Up Display screen) 
Alexa: PCB alterations/improvements 

 



design 

Nov 11 Alexa + Andy: PCB 2 testing, 
software/hardware assembly off of 
prototype 

Nov 18 Fall break: Slack week for additional issues 
 

Nov 25 Mock demos (major subsystems 
constructed) 
Andy + Alexa: Testing/debugging  

 

Risk Analysis  

Over-arching the many modular components of this device are two main sections: the 
electronic components and the optical components. While each of these function very 
independently, the device as a whole depends on the fact they will be linked together 
successfully. Therefore the risk of this project lies in one of these sides failing.  

Firstly is the greatest risk in terms of probability: that the projection system fails in the key 
points that we have established in our individual component requirements. Though the optics 
consist of several components, a “successful” image (an image that meets our requirements 
in magnification and resolution) is only produced by each of these components having 
individual material quality and functioning successfully together.  

The electronic side of this device is controlled almost completely via the microcontroller. If 
the main processing module is not able to display correct chord values with the expected 
speed then this project will not be successful in any capacity. We expect that this has a 
much lower probability of risk than the optical aspect of the project, but the degree of failure 
is much more severe here. A poor display can still function as a display, but the data on the 
display is either correct or incorrect.  

We have only a few other examples of people using a setup similar to our own. This isn’t 
necessarily bad, but if we run into difficulties we won’t have many resources for 
troubleshooting this exact configuration. 

 

 



Ethics and Safety 
As for point one on the IEEE code of ethics regarding public welfare, MIDI is a freely 
available data protocol, and we were unable to find any other examples of our product on the 
market. It is technically possible for someone to plug the device into someone else’s 
instrument and use it to record their performances without their knowledge or permission, 
but given the size and shape, that seems unfeasible.  
 
On point nine, public safety, the biggest risk to the end user comes from the fact that we plan 
on using teleprompter glass and two LCD components (the screen and the light valve) for 
part of the display which could break and produce sharp edges. If testing shows this to be 
too great of a risk, we do have plans for an alternative display using a plastic reflective 
surface instead.  
 
Under point six, our own safety risks are no greater than any other computing electronics 
projects; we aren’t working with any high voltage equipment, so the most dangerous thing 
we might encounter is a soldering iron.  
 
On point two, neither of us have any conflicts of interest as we’re not currently employed by 
nor invested in anyone in the music production equipment marketplace.  
 
We have done our best on point three, finding making honest estimates based on good and 
reliable data, and will do our best on point seven, accepting honest technical criticism. The 
other points seem to be either not applicable or require no special effort to maintain. 
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Appendix 

Appendix A 
ATmega32U4 pin allocations 

 
 

Pin Function Connection 

2 UVcc 
USB internal regulator input 
supply voltage 

Power supply  

3 D- 
Negative data rail (external 
22 ohm resistor in serial) 

USB port 

4 D+ 
Positive data rail (external 
22 ohm resistor in serial) 

USB port 

5 UGnd 
USB ground 

Power supply (ground) 

6 UCap 
USB internal regulator 
output supply voltage 
(external 1μF capacitor in 
serial) 

Power supply (ground) 

7 VBus 
USB data connection 
(external 10μF in serial) 

USB port 

8 PB0 
TFT Reset  

LCD display 

9 PB1- SCLK 
Clock 

SD card connector, LCD 
display 

10 PB2- MOSI 
Master slave input 

LCD display 

11 PB3- MISO 
Master slave output 

LCD display 

14, 24, 34, 44 VCC/AVCC Power supply 

 



15, 23, 35, 43 GND Power supply 

18 PD0 
DAT0 (connector data line) 

SD card connector 

19 PD1 
DAT1 (connector data line) 

SD card connector 

20 PD2 
DAT2 (connector data line) 

SD card connector 

21 PD3 
CD/DAT3 (card detection) 

SD card connector 

22 PD5 Power button 

25 PD4 
CMD (command/answer) 

SD card connector 

26 PD6 Record button 

27 PD7 Battery status LED 

28 PB4 
TFT SPI Chip Select 

LCD display 

29 PB5 
TFT SPI Data / Command 

LCD display 

30 PB6 
LCD SD Chip Select 

LCD display 

 

Appendix B 

SD card connector pin descriptions 

Pin Function Description 

1 DAT2 Connector data line 2 

2 CD/DAT3 Card detection 

3 CMD Command/Answer 

4 Vdd Voltage 

5 CLK Clock 

 



6 Vss Ground 

7 DAT0 Connector data line 0 

8 DAT1 Connector data line 1 

 

Appendix C 

LCD pixel screen pin descriptions 

 

Pin Name Function 

BL Backlight control. Active High, PWM 
capable 

MISO  SPI Master In Slave Out pin (SD card only; 
TFT display is write-only) 

SCLK  
 

SPI clock input 

SI SPI Master Out Slave In pin (sends data 
from the microcontroller to the SD card 
and/or TFT) 

TF CS 
 

TFT SPI chip select 

SD CS SD card chip select 

DC 
 

TFT SPI data or command selector 

RT TFT reset pin. Active Low 

Vin 3 - 5 Volts in (goes through regulator) 

3Vo  3.3 V (can function as input or output) 

GND Ground 

 

 



 

 


