
Autonomous	 Vehicle	 with	 VR	 Control	

(lower	part)	
Siping	Meng,	Chenliang	Li,	Honglu	He	
ECE	445	Project	Proposal	–	Fall	2018	

TA:	Amr	Martini	
	

1 Introduction	

1.1 Objective	
Everyday,	 people	 spend	more	 and	more	 time	 outside	 of	 their	 homes.	We	may	 go	
vacations	 overseas;	 we	 may	 hangout	 after	 work.	 We	 can	 certainly	 control	 some	
appliance	when	we	 are	 out,	 but	what	 if	 you	need	 to	 feed	 your	 cat	while	 having	 a	
coming	meeting,	or	organize	your	stuff	when	you	want	to	invite	someone	you	meet	at	
the	 pub	 to	 your	 home?	 There	 are	 numerous	 detailed	 situations	 that	 are	 hard	 to	
accomplish	by	simply	using	programmed	command	and	smart	appliances	nowadays	in	
the	market.	Though	smart	house	is	already	able	to	support	remote	control	to	turn	air	
condition	on	or	off	through	host’s	mobile	phone,	there	are	still	something	that	a	smart	
house	 system	can	not	achieve.	 In	order	 to	 find	a	better	way	of	 interaction	way	we	
decide	to	use	virtual	reality	as	the	communication	method.	

1.2 Background	
The	smart	appliances	are	very	common	for	modern	families.	We	want	to	try	some	
new	interaction	ways	that	can	enlighten	the	smart	appliance	industry.	With	the	VR	
experience,	we	designed	a	unique	interaction	way	with	future	smart	appliance.	We	
hope	this	will	inspire	more	innovations	in	the	smart	appliance	manufacturers	and	
designers.	
	
Our	goal	is	to	build	a	robot	that	can	do	tasks	which	is	relatively	flexible	for	normal	
appliances	such	as	grab	things	and	send	things	in	our	house,	with	an	immersive	
interaction	way.	

1.3 High	Level	Requirements	

l The	robot	can	go	to	the	location	we	specify	from	VR.	
l The	robot	can	recognize	the	object	we	specify.	
l The	robot	can	grip,	hold,	and	place	the	object.	

1.4 Experiment	Settings	

The	experiment	area	is	a	4m*4m	flat	tile	surface.	We	divided	it	into	100	grids.	In	our	
coordinate	system,	every	unit	length	is	0.4m.	



l The	“furnitures”(including	sofa,	table,	trash	bin	and	cat	bowl)will	be	placed	
as	the	graph	shows.	

l The	“car”	will	always	start	at	the	initial	position.	
l The	“obstacle”	which	is	not	shown	in	the	initial	map	can	be	placed	anywhere	

in	the	experiment	area	for	testing	the	path	planning,	self-navigate,obstacle	
detection	function.	

l The	“object”	with	color	label	which	is	also	not	shown	in	the	map	can	be	
placed	anywhere	in	the	experiment	area	for	testing	object	recognition,	path	
planning,	self-navigate	and	robot-arm	function.	

	

Figure	1:	Experiment	setting	map	(above)	



	
Figure	2:	Experiment	setting	map	(aside)	

	

1.5 Solution	Description	
In	this	system,	user	will	first	produce	an	expected	result	in	a	virtual	environment	
which	is	a	mimic	of	the	real	situation,	like	a	living	room	or	a	street.	By	using	VR	
helmet	and	controller,	user	could	freely	change	not	only	their	position	but	their	view	
perspective	in	the	VR	world	in	order	to	have	a	better	understanding	of	the	
correlation	between	the	world	and	the	object	that	will	be	modified	next.	Then	user	
could	move,	rotate	and	even	create	objects	(if	possible)	in	VR.	All	of	these	data	will	
be	stored	and	transmit	to	an	autonomous	robot	through	Wi-Fi.	This	robot	can	
automatically	find	the	object	and	search	a	path	to	move	it	to	the	target	position	with	
correct	orientation.	In	this	case,	user	will	never	be	worried	about	the	procedure	of	
completing	the	task	and	they	can	even	save	this	task	into	the	database	for	the	next	
time.	

	 	
This	project	can	majorly	be	separated	into	two	big	parts,	the	VR	control	frontend	and	
the	autonomous	robot.	For	the	VR	control	part,	we	need	to	create	a	complete	virtual	
world	that	is	exactly	the	same	with	an	experimental	real	world.	Because	of	the	
difficulty	of	mapping	a	complex	real	environment,	we	should	find	an	empty	space	
(research	lab)	and	place	several	objects	in	it	for	experiment.	We	also	need	to	build	a	
server	for	storing	and	transmitting	data	between	the	VR	frontend	and	the	robot.	

	 	
For	the	autonomous	robot,	we	need	to	create	our	own	robot	based	on	a	pre-build	
robot	vehicle.	Our	robot	should	have	the	ability	to	move	objects	and	find	path	
automatically.	Several	sensors	and	electronic	parts	need	to	be	used	to	obtain	this	



goal,	such	as	LiDAR,	gyroscope	and	servos.	A	camera	and	LiDAR	will	be	placed	on	the	
robot	in	order	to	recognize	the	object	and	calculate	the	position	of	that	in	world	
coordinates.	We	won’t	transmit	the	video	of	the	camera	to	the	VR	helmet	because	it	
will	severely	affect	the	convenience.	Furthermore,	a	microcontroller	(Raspberry	Pi)	
should	be	placed	on	this	robot	and	we	plan	to	utilize	ROS	system	to	control	this	
robot.	By	using	these	sensors	and	several	algorithms,	this	robot	is	able	to	do	path	
planning	and	obstacle	avoidance.	We	hope	our	robot	could	also	memorize	all	the	
positions	of	obstacles	encountered	and	store	all	of	them	into	its	own	database.	In	
this	way,	the	path	planning	algorithm	can	be	optimized	time	to	time	by	using	ML.	 	
	

2 Design	

2.1 Block	Diagram	

	



Figure	3:	Block	diagram	
	

T	 Target	object	 P	 Old	position	 E	 Data	from	encoder	

O	 Obstacles	 P*	 New	position	 ω	 Data	from	gyroscope	

Mwheel	 Signal	to	control	
wheel	motor	

Marm	 Signal	to	control	
robot	arm	motor	

Mservo	 Signal	to	control	
gripper	servo	motor	

Figure	4:	Variables	Reference	Table	

2.2 Physical	Design	
The	physical	design	of	our	robot	basically	consists	of	a	chassis	vehicle	with	four	
wheels	on	two	sides	for	moving,	a	robotic	arm	on	the	top	of	the	chassis	to	grip	items,	
and	a	camera	and	LiDAR	on	the	front	of	the	vehicle	as	sensors	to	detect	the	
surroundings.	The	dimensions	of	the	chassis	vehicle	is	200mm	x	170mm	x	105mm.	
The	chassis	basically	has	two	levels:	we	put	the	microcontroller,	PCBs	and	LiDAR	on	
the	first	level	and	fix	the	robotic	arm	as	well	as	camera	on	the	second	level.	 	

	
Figure	5:	Physical	Design	Overview	

	

2.3 Proposal	1	(upper	part)	

2.3.1 Robotic	Arm	

The	robotic	arm	is	divided	into	two	beams,	the	upper	beam	has	a	gripper	at	its	end	
while	the	other	end	is	connected	by	a	rotatable	joint	with	the	lower	beam,	which	is	
fixed	to	the	chassis	vehicle.	The	robotic	arm	needs	to	adjust	the	height	of	gripper.	This	
is	achieved	by	using	a	timing	belt	pulley	that	is	driven	by	a	motor;	the	pulley	rotates	
with	the	upper	beam	so	that	we	can	adjust	height	of	the	gripper.	 	



Requirement:	Able	 to	grip	a	cylinder	 that	weighs	at	 least	500g	and	to	hold	 it	while	
moving	for	at	least	10	seconds	without	slippery	 	

3 	

	 	

	
Figure	6:	Robotic	Arm	Overview	[1]	

	

2.3.1.1 Robot	Gripper	with	Servo	Motor	

We	need	a	gripper	at	 the	very	 front	of	our	 robot	arm	 to	grip	 items.	The	gripper	 is	
controlled	using	a	N20	servo	motor.	When	the	servo	spins,	the	gripper	will	be	pushed	
to	open	or	pulled	 to	 close	 thanks	 to	 the	mechanical	 design.	 The	operating	 voltage	
range	of	the	gripper	is	5-12V	DC.	 	
Requirement	1:	Open-width	is	adjustable	given	different	and	proper	inputs	to	screw	
motor	
Requirement	2:	Maximum	open-width	should	be	at	least	60mm	

2.3.1.2 Motor	

We	need	a	DC	motor	to	control	the	timing	belt	pulley	in	order	to	adjust	the	height	of	
gripper.	The	operating	voltage	range	of	the	motor	is	5-12V	DC.	 	
Requirement:	Be	able	to	provide	enough	torque	to	change	the	angle	of	the	beam	as	
well	as	the	height	of	gripper	



2.3.1.3 Motor	Controller	

A	motor	controller	will	be	implemented	in	our	PCB	to	handle	large	current	and	high	
voltage	(12V)	to	drive	motors.	Basically	we	use	an	H-bridge	design	to	drive	the	motors,	
using	two	pairs	of	transistors	to	control	the	direction	of	current	and	thus	the	direction	
of	motor	rotation.	The	controller	receives	signals	from	the	microcontroller	in	order	to	
control	motor	motion.	 	
Requirement:	The	direction	of	motor	rotation	is	adjustable	

	

	
Figure	7:	Schematics	of	Motor	Driver	[2]	

2.3.2 User	(VR)	

We	will	first	ensure	that	by	directly	inputting	P*	and	T	into	the	microcontroller	of	the	
robot,	it	could	work	functionally.	VR	part	is	a	kind	of	a	stretch	goal	for	our	project.	
We	decide	to	use	Oculus	Go	with	controller	as	our	front-end	in	this	project,	because	
of	the	portability	of	the	helmet	and	good	maneuverability	of	the	controller.	In	VR,	
user	could	emerge	in	a	virtual	environment	that	is	exactly	the	same	with	the	real	
experimental	environment	(the	design	of	map	is	shown	in	introduction	section).	User	
is	able	to	see	the	target	objects	and	the	obstacles	stored.	Because	we	only	save	the	
2D	position	for	every	objects	and	obstacles,	models	for	them	will	be	placed	in	the	
same	x,y	coordinates	in	VR	but	the	height	for	those	models	may	be	differ	from	that	in	
real	world.	By	using	the	controller,	we	can	grab	the	object	freely	and	move	it	to	
somewhere	else.	Then,	the	new	position	P*	of	the	target	object	T	will	be	transmitted	
to	the	server	and	then	sent	to	the	robot	in	order	to	finish	the	task	in	real	world.	
Requirement	1:	Must	implement	a	virtual	world	identical	to	the	real	experimental	
environment	and	enable	user	to	move	the	avatar	and	objects	in	VR	freely	and	
comfortably	



Requirement	2:	Latest	obstacles	will	to	be	shown	in	VR	if	the	robot	detects	a	new	one	

2.3.3 Server	

The	raspberry	pi	will	open	up	a	TCP/IP	communication	port,	and	on	the	PC	side	we’ll	
use	labview	to	receive	the	map	info	including	the	object	location,	obstacle	location,	
and	the	robot	location	and	plot	them	out.	In	this	project,	we	will	use	computer	as	the	
server.	First	we	will	connect	our	computer	and	raspberry	pi	to	a	router	and	then	find	
the	IP	address	of	the	raspberry	pi.	Then	we	can	let	them	communicate	easily	through	
WiFi.	If	we	want	to	remote	access	the	Pi	we	can	either	use	the	third-party	service	
such	as	remote.it	or	configuring	port	forwarding	on	our	router.	If	we	want	to	
remotely	access	the	Pi’s	command	line,	we	could	enable	SSH	locally.	If	we	want	to	
copy	the	files,	we	could	use	secure	file	transfer	protocol	using	FileZilla	or	Nautilus	
while	using	Ubuntu.	
Requirement:	On	the	PC	side	we	should	see	the	2D	representation	of	the	
environment	and	the	robot.	

2.3.4 Control	Unit	

2.3.4.1 Microcontroller	

The	microcontroller	will	take	in	data	from	Camera	(2D	matrix	of	pixels),	LiDAR	(1D	
array),	wheel	encoder	(2	values	from	both	wheels),	and	gyroscope	(1	single	value).	
The	microcontroller	will	store	current	frame	of	the	camera	as	2D	matrix	of	pixels	
containing	RGB	values	through	USB.	Readings	from	Lidar	through	USB	are	distances	
will	be	converted	to	relative	position	in	robot’s	frame,	and	then	convert	to	world	
frame,	with	origin	at	start	point.	The	value	passed	by	wheel	encoder	through	analog	
to	digital	converter	will	need	to	converted	to	an	average	linear	velocity.	The	gyro	
value	will	also	be	read	through	analog	to	digital	converter	and	converted	to	actual	
angular	velocity.	
	
Requirement:	The	microcontroller	should	be	able	to	receive	data	from	all	sensors,	
including	LiDAR,	camera,	gyroscope,	wheel	encoder,	and	be	able	to	send	outputs	to	
motors	of	robotic	arm	and	motors	of	the	wheels.	

2.3.4.2 Algorithm	for	Localization	Calibration	

Due	to	the	continuously	accumulated	error	from	dead-reckoning	system,	a	way	of	
calibration	has	to	be	performed.	Everytime	the	robot	has	to	starts	from	home	
position,	which	is	the	origin	of	world	frame.	Everytime	the	robot	finds	the	object,	the	
location	of	the	robot	will	be	calibrated,	because	the	position	of	the	objects	are	
specified	beforehand.	 	
	
Depending	on	how	previous	calibration	works,	we	might	add	waypoints	at	each	
corner,	so	that	each	time	the	robot	receives	a	command,	it	will	go	to	the	nearest	
waypoint	first	for	calibration,	and	then	go	to	the	object.	At	the	corner,	we’ll	have	a	
red	paper	on	one	side,	and	a	blue	paper	on	the	other	side.	 	The	color	in	the	image	



will	determine	which	side	the	robot	is	facing	to	correct	gyro,	and	the	fact	that	the	
robot	is	at	the	corner	will	correct	the	position.	
	
Requirement:	The	robot	will	successfully	correct	its	position	and	orientation	with	an	
error	range	within	+/-	5cm	and	+/-	5	degrees	at	waypoints,	the	origin	and	the	
location	of	the	target	object.	 	
	

2.3.5 Sensors	

2.3.5.1 LiDAR	

The	LiDAR	will	pass	in	an	array	of	distance	in	different	angles	around	every	0.2	
seconds.	The	data	will	be	sent	to	the	microcontroller	and	be	continuously	used	for	
obstacle	avoidance.	
	
Requirement:	The	robot	will	receive	the	array	of	LiDAR	and	successfully	produce	the	
map	with	obstacle,	and	continuously	update	the	map	based	on	its	location.	Because	
of	the	grid	environment,	the	obstacle	should	be	shown	up	exactly	the	same	as	real	
environment.	
	

2.3.5.2 Camera	

The	camera	will	output	a	2D	matrix	of	pixels,	where	each	pixel	contains	its	RGB	value.	
However	the	camera	will	only	be	used	when	the	robot	gets	close	enough	to	the	
object.	The	position	of	the	object	is	given,	and	the	robot	will	find	its	only	path	to	that	
object,	but	when	it	gets	around	0.5m	away	from	the	object,	the	camera	will	be	used	
to	calculate	the	center	of	the	object	(with	Green	cap)	in	the	frame.	And	then	the	
robot	will	adjust	its	position	to	facing	the	object	directly,	following	by	go	straight	and	
pick	it	up.	If	the	memory	is	not	enough	for	the	microcontroller,	we’ll	change	the	
camera	to	grayscale	to	save	memory.	The	camera	will	also	be	used	when	calibrating	
the	location	of	the	robot,	but	only	to	check	the	color	the	robot	is	facing	to.	
	
Requirement:	The	robot	will	correctly	identify	the	object,	and	report	the	object	
identified	signal	to	user	end.	
	

2.4 Proposal	2	(lower	part)	

2.4.1 Mechanical	Unit	

2.4.1.1 Motor	

We	choose	to	use	brushed	motor	rather	than	the	brushless	motor	because	it	is	
cheap,	steady,	and	easy	to	control:	we	can	simply	use	voltage	to	control	the	speed	of	
the	motor	and	we	can	also	change	the	voltage	direction	to	change	the	rotation	



direction	of	the	motor.	The	maximum	speed	is	0.9	m/s	and	the	working	voltage	is	3-
12V	DC.	
	
Requirement:	The	motor	should	provide	enough	torque	to	start	the	car	with	all	the	
components	on	it,	and	output	the	speed	and	direction	precisely	controlled	by	the	
controller’s	voltage	signal.	 	
	

2.4.1.2 Chassis	

We	need	a	chassis	vehicle	as	the	main	body	of	our	robot	that	can	be	assembled	with	
four	wheels	and	is	able	to	carry	all	other	components,	including	microcontroller,	PCB,	
battery	and	all	sensors.	The	material	of	our	chassis	is	aluminum	and	the	size	is	
200mm	x	170mm	x	105mm.	
	
Requirement:	The	chassis	should	have	great	weight-bearing	performance,	and	
provide	enough	space	and	interfaces	for	all	the	components.	
	

2.4.2 Control	Unit	

2.4.2.1 Motor	Controller	

	

Figure	8:	Schematics	of	motor	controller	[3]	
For	brushed	130-motor,	the	speed	control	mostly	depend	on	the	voltage	provided	to	
the	motor,	and	the	direction	of	rotation	is	depend	on	the	current	direction.	 	
	
We	use	two	BTS7960B	chips	to	control	since	we	need	to	make	the	motors	run	in	two	
directions.	We	choose	to	use	BTS7960B	is	because	that	chip	can	provide	precisely	
voltage	control	to	the	motor	at	the	high	current	condition(43A).	 	
	
Requirement:	The	motor	controller	part	must	send	precise	voltage	to	the	motor	
according	to	the	signal	it	received	from	the	higher	level	controller.	



	

2.4.2.2 Protection	Circuit	

We	will	design	a	protection	circuit	in	the	PCB	to	prevent	our	circuit	from	any	
misconnection	of	the	power	or	overload.	 	

	
Figure	9:	Schematics	of	protection	circuit	

	
The	PMOS	we	choose	may	change	eventually	depend	on	the	circumstance.	It	will	
restrict	the	direction	of	the	current.	 	
We	will	also	use	resettable	fuse	in	the	circuit	to	constrain	the	current	and	make	sure	
our	circuit	will	not	burn	due	to	excessive	current.	
	
Requirement:	Protect	the	whole	circuit	from	damaging	by	mis-operation.	
	

2.4.3 Power	Supply	

2.4.3.1 Battery	

We	will	use	4S	Li-po	rechargeable	battery(14.8V,	7000mA)	as	the	power	source	for	
the	whole	vehicle	including	the	motors,	controller,	the	signal	receiver,	and	the	sensor	
system.	To	power	the	different	systems	we	need	to	connect	the	battery	to	the	pcb	
board	which	will	convert	the	voltage	of	the	battery	14.8V	for	different	components.	
	



	
Figure	10:	Battery	overview	

Requirement:	The	battery	should	provide	steady	power	for	our	components	and	
work	safely.	
	

2.4.3.2 DC-DC	Converter	

We	are	going	to	use	the	4S	Li-Po	battery	whose	voltage	is	about	14.8V.	The	controller	
we	use	is	raspberry	Pi,	which	works	at	5V.	 	The	motors	work	at	3-12V.	Therefore	we	
need	converters	to	output	different	voltage	for	the	different	components	in	our	
robot.	 	
	
Due	to	the	components	working	voltage	range	is	lower	than	the	voltage	that	the	
battery	provides,	we	choose	to	use	Buck	DC/DC	converter,	which	can	step	down	the	
dc	voltage.	 	The	Buck	converter	needs	the	TPS62130A	chip	as	the	center	component.	
The	circuit	layout	shows	below	is	an	example	for	12V	input	to	3.3V	output.	 	

	



Figure	11:	Circuit	layout	of	TPS62130A	[4]	
Requirement:	The	converters	on	the	PCB	need	to	work	individually	without	any	
disturbance	to	each	other.	The	whole	circuit	should	generate	heat	in	a	normal	
amount	range.	 			
	

2.4.4 Algorithms	

2.4.4.1 Localization	

With	the	linear	velocity	and	current	rotation	we	could	get	from	wheel	encoder	and	
gyro,	it’s	plausible	to	calculate	the	current	position	in	the	previous	robot’s	frame.	
Once	we	get	this	vector,	we	could	convert	it	to	world	frame	and	add	to	previous	
location	of	the	robot.		 	

	

x,	y,	theta	are	current	location	regarding	to	world	frame,	and	theta_old	is	the	old	
total	rotation.	V	and	w	are	current	linear	velocity	and	angular	velocity	of	the	robot	
respectively;	while	t	is	the	time	difference	between	the	data	published.	x_old,	y_old	
and	theta_old	are	previous	location.	
	
Requirement:	The	robot	should	report	its	current	location	with	less	than	0.5m	error	
within	10	min	after	the	robot	starts	from	home.	
	

2.4.4.2 Speed	Control	

User	will	set	the	desired	speed	for	the	motor,	with	the	proportional	control	and	
feedback	from	wheel	encoder,	the	linear	velocity	should	stay	around	the	desired	
speed.	 	
	

	

Figure	12:	Flow	chart	of	speed	control	



Requirement:	The	robot	should	be	able	to	go	along	a	straight	path	with	the	user	
specified	velocity	+/-	0.1m/s.	
	
As	for	turning,	with	a	given	angle,	the	robot	should	turn	that	angle,	while	the	
position	stays	the	same.	This	will	also	be	accomplished	by	the	proportional	control,	
and	the	rotation	direction	for	wheels	on	two	sides	will	be	different.	

	

Figure	13:	Flow	chart	of	angle	control	
Requirement:	The	robot	should	turn	the	user	desired	angle	with	+/-	5	degrees	error.	
And	the	position	after	turning	should	be	within	0.03m	from	the	position	before	
turning.	
	

2.4.4.3 Object	Detection	

The	camera	will	continuously	stream	photos	back	to	the	microcontroller	and	we	will	
setup	a	time	interval	to	regularly	fetch	image	data	but	not	consume	all	memories	of	
the	controller.	Then	we	will	change	the	picture	to	grayscale	image	or	directly	get	
grayscale	image	in	order	to	further	cut	down	the	usage	of	the	memory.	Because	a	
bundle	with	high-saturation	color	will	be	stick	to	the	target	object,	our	implemented	
convolutional	neural	networks	(CNNs)	could	clarify	the	region	with	prominent	color	
quickly.	The	microcontroller	will	calculate	the	vector	from	the	center	of	the	image	to	
the	mass	center	of	the	claried	region	and	then	adjust	the	vehicle	to	move	closer	to	
the	target	object	in	order	to	pick	it	up.	
	
Requirement:	Utilize	at	most	5	masks	to	recognize	the	object	and	calculate	the	
relative	position	to	the	robot.	
	

2.4.4.4 Obstacle	Avoidance	



The	basic	path	planning	has	already	circumvent	all	the	obstacles.	Nonetheless	there	
will	be	situations	that	the	robot	will	crush	into	obstacles.	As	an	emergency	method,	
basic	obstacle	avoidance	will	be	implemented.	If	the	LiDAR	has	detect	something	
closer	than	20cm	to	the	robot	at	front,	the	robot	will	turn	left	or	right	based	on	the	
final	goal	location	until	there	are	no	obstacle	at	front.	
	
Requirement:	The	robot	will	bypass	all	obstacles	if	they	are	at	front,	and	not	even	a	
touch.	
	

2.4.4.5 Path	Planning	

This	is	a	known	environment,	2	dimension	and	known	target	problem.	So	one	
solution	is	to	go	through	A*	search	every	time	the	robot	encounters	an	obstacle.	This	
dynamically	computation	makes	sure	our	path	planning	is	up	to	date.	If	there	is	no	
possible	path	between	robot	and	object,	the	robot	will	go	back	to	its	starting	position	
and	send	back	a	signal.	Moreover,	consider	such	case,	if	there	are	three	obstacles	
that	lies	in	front	of	our	robot.	Two	of	them	locates	closely	that	the	robot	cannot	pass	
through	and	another	two	of	them	has	a	relative	bigger	space,	which	is	big	enough	to	
pass	through.	Our	robot	will	choose	a	safest	path,	which	means	the	path	passing	
through	the	bigger	space	using	free	segments	and	turning	points	algorithm.	 	
	
Requirement:	The	robot	should	go	to	the	user	input	object	location	without	crashing	
into	obstacles.	The	final	goal	the	robot	reaches	should	be	within	0.1m	from	the	
actual	designated	point.	
	

2.5 Risk	Analysis	

In	our	project,	there	will	be	several	risks	that	we	need	to	come	through.	
	
The	major	problem	we	will	face	is	the	localization	of	the	robot.	Gyroscope	sensor	
could	drift	dramatically	and	affect	the	precision	of	the	localization	severely.	What’s	
more,	two	motors	for	the	wheels	could	rotate	in	different	speeds	even	under	the	
same	power	supply.	In	this	case,	we	decide	to	first	take	several	careful	tests	for	the	
gyroscope	and	encoder	to	make	sure	that	their	data	won’t	drift	away	too	much	in	
short	time.	Then	we	would	speed	control	to	minimize	the	speed	difference	between	
two	motors.	What’s	more,	by	using	local	motion	calibration	algorithm	and	our	LiDAR	
and	camera,	the	robot	could	recalculate	its	position	in	2D	map.	We	design	to	ask	the	
robot	to	implement	local	motion	calibration	after	finishing	one	task	given	by	the	user.	
	
Another	problem	we	need	to	pay	attention	is	the	memory	cost.	We	only	use	one	
Raspberry	Pi	as	our	microcontroller	but	we	have	at	least	four	motors,	two	sensors,	
one	camera	and	one	LiDAR	that	should	be	connected	to	this	controller.	This	
controller	is	also	required	to	run	more	algorithms	at	the	same	time.	Thus,	memory	of	
the	Raspberry	Pi	will	soon	be	consumed	if	don’t	be	cautious	about	using	memory.	



Definitely,	we	should	try	to	mitigate	the	memory	usage	for	every	softwares	as	much	
as	possible.	Our	robot	could	also	storage	the	data	that	isn’t	in	high	priority	in	the	
server	to	further	cut	down	the	usage	of	memory.	
	
Improper	physical	design	could	be	a	huge	trouble	for	us	still.	The	robot	should	
balance	itself	while	shipping	the	object	to	the	destination.	During	this	process,	it	
would	probably	encounter	new	obstacles	and	implement	the	obstacle	avoidance	
algorithm	after.	It	is	possible	for	it	to	turn	around	so	fast	or	stop	immediately	for	
avoiding	the	obstructs	and	lose	its	balance	as	well	as	drop	off	the	object	finally.	Thus,	
we	need	to	cautiously	control	the	speed	of	the	wheels	and	shorten	the	processing	
time	between	the	moment	of	finding	a	obstacle	and	the	time	sending	the	signal	to	
stop	the	wheel.	We	will	put	additional	weight	on	the	vehicle	in	order	to	stabilize	the	
whole	robot	and	control	the	speed	at	the	same	time.	
	

2.6 Hardware	components	

LiDAR:	YDLiDAR	or	RPLiDAR	A2	
Camera:	Diatone	600TVL	120°	Mini	Camera	Black	
Gyroscope:	Sparkfun	MPU6050	
Motor	with	encoder:	2WD	Beginner	Robot	Chassis	
Microcontroller:	Raspberry	Pi	
Robot	Arm:	DC	Motor-37	12V/50RPM,	Strong	Robot	Gripper	
VR:	Oculus	Go	with	controller	
	

3 Safety	and	Ethics	

In	our	project	we	will	use	PCB,	motors,	Li-po	battery	and	VR	headset.	We	will	buy	our	
components	and	devices	from	qualified	sellers,	and	follow	the	product	instructions	
during	the	whole	experiment.	 	
	
We	will	use	flyback	diode	and	Transient	Voltage	Suppressor	to	protect	the	circuit	
since	we	will	connect	the	motor	to	the	PCB	which	will	also	have	other	functioning	
circuits.	 	
	
As	for	the	Li-po	battery,	which	needs	to	be	particularly	taken	care	about	due	to	the	
explosibility,	we	will	make	sure	the	temperature	of	the	battery	during	the	processing,	
charging	and	storing	is	in	the	safe	range	of	the	industrial	standard.Our	charger	is	an	
industry	made	IC	device	and	it	shuts	charge	controller	off	when	charging	input	is	
higher	than	required	voltage	range,	which	will	reduce	the	likelihood	of	hazards	while	
charging.	 		
	
For	the	VR	headset,	we	will	operate	it	follow	the	safety	manual	of	the	product.	We	
will	also	make	sure	only	to	test	VR	device	with	other	teammates	around	and	



objectively	predicting	whether	a	user	will	experience	discomfort	from	our	content	
without	obtaining	feedback	from	inexperienced	users	can	be	difficult.	[5]	
	
We	will	follow	the	electricity	using	manual	during	the	experiment,	and	will	also	check	
our	circuit	before	connecting	it	to	battery	in	order	to	prevent	short	circuit	which	may	
lead	to	electric	shock.	
	
For	the	ethical	issues,	we	will	follow	IEEE	and	ACM	code	of	ethics.	We	may	encounter	
many	problems	in	the	project.	When	the	problems	occur,	we	will	not	try	to	disguise	
the	problems	and	move	on	recklessly.	Based	on	#5	of	IEEE	Code	of	Ethics,	“to	seek,	
accept,	and	offer	honest	criticism	of	technical	work,	to	acknowledge	and	correct	
errors”	[6].	Therefore,	when	the	problems	show	up,	we	will	try	our	best	to	find	a	way	
with	our	teammates	to	solve	the	problem.	If	we	can’t	solve	the	problem	by	
ourselves,	we	will	turn	to	our	TA	for	help.	
	

4 Stretch	Goal	

l VR	
l Automatic	object	detection:	Automatically	find	objects	and	put	them	in	base	

station	without	user	specify	object	location	
l Moving	obstacles	detection	

	

Reference	

[1]	“Robotic	Arm	Add-on	Pack	for	Starter	Robot	Kit,”	github.com,	July	23,	2014.	
[Online].	
Available:	https://github.com/Makeblock-official/Robotic-Arm-Add-On-Pack-For-
Starter-Robot-Kit/blob/master/Assembly%20Instructions.pdf.	[Accessed	Sep.	20,	
2018]	
	
[2]	Sam,	“Motor	Drivers	vs.	Motor	Controllers,”	core-electronics.com,	June	27,	2017.	
[Online].	Available:	https://core-electronics.com.au/tutorials/motor-drivers-vs-
motor-controllers.html.	[Accessed	Sep.	20,	2018]	
	
[3]	Infineon	Technologies,	“High	Current	PN	Half	Bridge	NovalithIC”	,BTS7960,	Dec	
2004[Accessed	17	Sep.2018]	
	
[4]	Glaser,	Chris.	“Five	Steps	to	a	Great	PCB	Layout	for	a	Step-down	Converter.”	
Analog	Applications	Journal,	Texas	Instruments,	
www.ti.com/lit/an/slyt614/slyt614.pdf.	
	
[5]	Oculus	VR	stuff,	Oculus	Best	Practice,	Oculus	VR,	2017.	
	



[6]	Ieee.org.	(2018).	IEEE	IEEE	Code	of	Ethics.	[online]	Available	at:	
https://www.ieee.org/about/corporate/governance/p7-8.html	[Accessed	19	Sep.	
2018].	


