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Abstract

A differential drive robotic platform is proposed to implement and test real-world applicability of cutting edge

exploration algorithms. A fully ROS integrated system with a forward mounted manipulator that can be used for

exploration and object retrieval. Single Shot Detection is used to classify and localize objects in the workspace and

to direct retrieval protocols. Object retrieval testing was mostly successful with individual components working as

desired, but design errors prevented full performance.
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Introduction

Purpose

After the Fukushima Daiichi disaster caused by the 2011 tsunami, robotics proved largely incapable of

responding to the disaster. Massive amounts of funding have since been allocated to solving the problems

that prevent robots from operating in unconstrained and unknown environments. Many teams developed

different platforms which have since been used in disaster response situations [1]. DARPA, in particular,

has a Robotics challenge that required robots to perform tasks that might be required in a disaster scenario

including interacting with objects, maneuvering in uneven and unknown terrain, and even driving a vehicle.

Unfortunately progress in the these directions have not made significant enough progress to be able to reliably

use in disaster scenarios [2].

Different disaster response robots are currently being used, however, as documented and run by the Center

for Robotic-Assisted Search and Rescue. These robots are for the most part human operated and are limited

by human restrictions and the ability to communicate with the operator. Since these robots are not being

used for heavy manipulation, their primary task is surveilance in inaccesible areas.

In disaster scenarios, it is often the case where finding survivors is a time critical operation given their

possible medical states. Having an autonomous robotic platform that is onsite and can immediately begin

exploration of the environment would increase the overall response time dramatically. It would reduce the

time that it takes for first responders to arrive on the scene, set up their robotics systems, and establish

safety parameters for operating in the environment. If an autonomous system can do a search and survey

and present accurate information to the first responders, they can act immediately and potentially safe lives.

In recent years, work has begun on using machine and reinforcement learning techniques to develop robotic

systems that can navigate through a simulated environment using visual and distance data, that eliminates

the need for classical navigation tasks such as localization and trajectory planning.

At the 2017 NIPS conference Pieter Abeel gave a keynote presentation about the use of meta-learning which is

an algorithm that can learn a policy for a reinforcement learning task, referencing work done by Mnih [3] This

method greatly cuts down on the number of training episodes needed to converge to an optimal behavior for

each new environment. It allows the system to generate a general policy for exploration that doesnt overfit to

a particular environment. This presentation inspired this project, but is beyond the necessary requirements

for this project.

We attempted to develop a real world platform that can function as a test bed for exploration algorithms as

both a tool to learn about the challenges involved with implementing these algorithms on a real robot and

as a precursor for more advanced and capable robots.

1



Functionality

The robot has been designed to perform object detection and retrieval of a goal object. It is fully integrated

and developed with the Robot Operating System, or ROS, and leverages many ROS functionalities. It

uses differential driving capabilities to move in the plane and Single Shot Detection to classify and localize

objects in its field of view. Once the goal object is detected, it performs retrieval by moving to the object

and grasping it with the attached manipulator. The robot then returns to a ending position.

Subsystem Overview

The physical breakdown of the robots components are shown in the block diagram given by Figure 1. The

blocks are grouped in a standard fashion for robots. The entire robot is controlled by a microprocessor, a

Raspberry Pi which runs all of the lower level robot controls as well as all of the algorithmic processing. A

high-level overview of the software is presented in Figure 2. The robot also contains a camera and an array of

ultrasonic sensors that feed input about the world to various components of the software. They are grouped

into the sensor block. The actuators are seperated into the driving motors and the manipulator servos.

Figure 1: Block Diagram

Nearly the entirety of the project was done in software, however, so the high-level overview is presented to

show how the different sections of functionality connect across both hardware and software. The robot takes

goal inputs from either the exploration block or the object detection block, based on the identification of
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the goal object and the start of the retrieval routine. It passes that goal to the ROS navigation stack, which

generates a trajectory to the goal pose. The corresponding linear and angular velocities needed to realize

this trajectory are passed to the differential drive controller, which dictates the speed at which the motors

should turn. The sensors pass data in at multiple points to provide the different blocks with information

about the environment surrounding the robot.

Figure 2: Software Diagram
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Differential Navigation

Differential Driving

Design

The differential drive capability is the core component of this robot. We chose to use brused DC gearmotors

at the recommendation of the machine shop. Brushless DC and stepper motors are also often used for robots,

but for accurate velocity control with a PWM, pulse-width modulation, signal we decided that the motors

we chose would work the best. The control loop is shown in Figure 3.

Figure 3: Wheel Control Loop

We used a PID, proportional-integral-derivative, control loop to control the velocities of both wheels. The

gains were manually tuned with a randomly seeded gradient descent approach. ROS provides a dynamic

reconfigure functionality that allows the user to manipulate values within the code as it runs, which proved

instrumental in tuning the controller. In order to create the control loop, we need the current velocity of

the wheel. The chosen motors come with an integrated quadrature encoder that allows us to determine the

position and velocity at which the wheels are spinning. We created a encoder driver to read the position and

velocity of the wheels, implementing and infinite horizon filter on the calculated velocity measurement in an

attempt to reduce the noise. Unfortunately, because the Raspberry Pi does not have a realtime operating

system, the driver missed some rotations of the wheel when the signal frequency was at about 2 kHz, which

is at the upper end of the wheel capability. The output wheel velocity value is still an estimation of the

actual velocity, which adds nonlinearities to the control system.

We used a ROS differential drive controller to implement the differential drive equations. The differential

drive equations are given by Equations 1 and 2.

v =
r

2
(ωr + ωl) (1)

ω =
r

L
(ωr − ωl) (2)

The differential drive controller solves these equations for the individual wheel velocities, where r is the

radius of the wheel and L is the seperation between the wheels. It takes as input a linear velocity, v and an

angular velocity, ω from the navigation stack that corresponds to the desired trajectory.

Verification

The verification of the differential driving starts with the performance of the velocity controller for the

wheels. The step response of the controller is shown in Figure 4. The response is within the performance
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requirements that were set. The overshoot is less than ten percent and the rise time is close to one tenth

of a second. The settling time, however is longer than expected. During the course of tuning the controller

gains, it became apparent that the derivative gain had little effect on the response, possibly because of the

signal noise. Since the sign of the derivative is changing almost continuously, the collective derivative control

effort cancels out. Tuning the proportional and integral gains became an issue of managing the oscillations.

The final controller gains are given below.

Figure 4: Step Response

kp = 35.0 (3)

kd = 620.0 (4)

ki = 110.0 (5)

After verifying the controller’s ability to track an input velocity, we tested the performance across the range

of feasible wheel velocities, up to 11 rad
s . The results of that testing is given in Appendix A. Three important

discoveries were made during this experiment. First, it showed that for velocities below 3 rad
s , the controller

would hit the lower saturation limit. This limit occurs because the control signal does not provide enough

voltage across the motor to overcome is inertia and does not produce movement. In order to average the

desired velocity, the controller produced an sinusoidal response as shown in Figure 5.

The second discovery was that because of the non-realtime nature of the Raspberry Pi, it would schedule

other tasks ahead of the PWM output to the motor controllers and there would be no output to the motors.

This happened more often above 7 rad
s . We confimed that it was the Raspberry Pi and not an issue with the

power circuity by probing the PWM output from the Pi as the controller was running. An example of this
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Figure 5: Slow Response

is shown by Figure 6. The third thing of note was the proportionally growing noise in the velocity signal

with increased reference velocities.

Figure 6: Lost Control Effort

The last verification for the differential driving system was to check the performance of the wheels to given

linear and angular velocities. The results are shown in Appendix A. Cells marked with an ”X” are where
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the wheel displayed either an oscillatory reponse or none at all. The sample points were spread out across

the feasible range for the robot.

Unfortunately because of the pace of out circuitry development, we were not able to run these tests with

the robot actually moving around. All the verification was done with the robot mounted on a block and

the wheels free-running. We were not able to account for the inertial effects of the frame of the robot on

the performance of the actual driving behavior. While we showed that the driving system was accurate

within tolerance, we were not able to perform slight motions in actual movement that we could do while

free-running.

Navigation

Design

We utilized the ROS navigation stack to control the motion of the robot. The navigation stack takes in a

goal position and guides the robot along a trajectory to that position. It creates a global plan using the

carrot planner, which simply takes the straight line trajectory to the nearest unoccupied position to the

goal position. We used this planner because it was the least computationally complex, and would allow

us to approach the goal object instead of trying to avoid it. The local planner uses the Dynamic Window

Approach to track the global trajectory. DWA samples the control space and simulates applying the control

to see what the best control output is to move towards the goal and stick to the global plan. It outputs

the angular and linear velocities to the differential drive controller to move the robot. The planners use a

costmap to place and avoid obstacles. The costmaps are generally populated by a laser scanner device, but

we used a fake laser scanner made up of our ultrasonic sensors. Since this pseudo-device had poor angular

resolution and high noise, it would populate the costmap with obstacles even when there were none. We

were unable to use the pseudo-scanner in the navigation, which added the additional complication of not

having a fixed object position in the costmap. This hampered the robot’s ability to move accurately to the

goal object position.

Verification

We verified the navigation system by setting goal poses in the odometric frame and checking that the final

position was within a tolerance of the desired value. Through the local planner we were able to set this goal

tolerance and show that the robot moved correctly. The actions that were tested were a forward movement

of 0.3 meters, and right and left turns each by 90 degrees. Even with successive motions, the robot moved

to within the tolerance value. During the object retrieval, however, the robot needed to make much smaller

rotations and the required trajectories would output velocities below the threshold to overcome to moment

of inertia and the robot would get stuck. The planners can only move on to a new action at the successful

completion or abortion of the previous action, so the robot would not be able to make the appropriate turns.
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Exploration

Design

We were unable to implement the reinforcement algorithm originally proposed due to issues setting up the

training environment and working with the reinforcement learning coding libraries. We chose to instead

implement and use the A* algorithm used for finding the shortest path through a maze environment. We

know that the path returned by the algorithm is the optimal one in the maze because our heuristic is both

admissable and consistent. We used the Manhattan distance between the current and goal cells as the

heuristic, which is the distance along grid lines between the two cells. The way A* algorithm works is by

using a heuristic to be able to decide what the next move at a given point should be. A heuristic is a hint

for the maze navigator, this can be implemented in many different ways.

Verification

Because of the issues faced with the navigation software, we were unable to test the actual robot performance

using the commands given by the search, but we were able to show that the actions required to navigate to

the goal could be output to the navigation stack sequentially. We also were able to verify that the calculated

path was indeed optimal by comparing it to the shortest path output by a breadth-first search of the maze.
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Object Detection and Localization

Single Shot Detection

Design

The implementation of the classification (what object is in a picture) and the localization (where is the

object in the picture) are handled by the Single Shot Detection algorithm. The steps for the algorithm are

as follows.

1. Pass image through convolutional layers to give feature maps.

2. For each location use convolutional filter to evaluate default bounding boxes.

3. For each box predict bounding box offset and class probabilities.

4. During training match ground truth with predicted boxes.

What this means is we first try to find the important features of an object in the frame. For humans this

would be the head/feet/arms/torso or any other part that the algorithm decides is important. The presence

of these are weighted when deciding the probability of what an object is. During the whole process of the

algorithm, it is going to be iterating over thousands of boxes within the image. Hence, for part two at each

box we will iterate over each of these boxes to evaluate them. What we are evaluating is the loss. That is,

how far is the box from being accurately drawn and is the classification correct. This is modeled by equation

6. The loss for a particular bounding box is given by a linear combination of the loss due to the error in the

confidence of the objects classification and the loss incurred due to the location error of the bounding box.

multiBoxLoss = confidenceLoss+ α ∗ locationLoss (6)

Where the α value is used for weighing and is tuned such that we can minimize our overall loss. For three,

the algorithm does calculations based on what features it identified and will attempt to make a prediction

of what the object is and what the probability is that it is that object. For four, the algorithm will attempt

to fix its weighing of values such that the loss is minimized for future iterations.

Verification

The model overall was fairly accurate overall. Class accuracies for the entire model are reported in Appendix

A. While the goal of 70% accuracy was not obtained in practice, the accuracy reported by the model creators

was found to be accurate over the course of experimentation. We placed the goal object at sets of positions

with respect to the camera and tracked whether detection occured.
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Object Retrieval

Distance Sensors

Design

We opted to use ultrasonic sensors because of their low cost as compared to other rangefinding options like

lidars or other laser based sensors. We mounted them across the front of the robot to get a spread of distance

readings from the surrounding environment. The sensors send out ultrasonic pulses and return the length of

time for the sensor to hear the echo. Using Equation 7, we were able to calculate the distance to the object.

Distance(m) = Time(µs) ∗ 1

2
∗ 0.000343(

m

µs
) (7)

We found these values to be quite noisy and decided to take an average of consecutive readings in an attempt

to reduce the spread. Unfortunately we found that our ultrasonic sensor output was still very noisy even

within the primary operating range. We needed a large perpindicular surface for the sensor to return an

accurate reading and the objects that were within the grasping capabilities of the manipulator did not meet

that requirement for the most part.

Verification

The accuracies of the ultrasonic sensors at operating ranges are given in Appendix A. Beyond these ranges,

the perpendicular profile of the bottles were too narrow to be properly detected, and the detection algorithm

also struggled to identify the bottle.

Manipulator

Design

We chose a very simple manipulator for this application, attaching a prefabricated gripper to servo oriented

such that grasped objects can be lifted off of the ground. Control of the servos are run directly from the

Raspberry Pi using a PWM output from the GPIO pins. We chose the servos based on the available torque,

which needed to be able to lift the gripper, the gripper servo, and the object itself. The gripper fit well

within the robot dimensions and allowed for a five centimeter wide object to be picked up.

Verification

The lifting capabilities of the manipulator were checked by grasping and lifting the goal object for a sustained

period, to simulate carrying it back to the end goal position.
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Retrieval

Design

The object retrieval protocol began when the object detection algorithm located on object of the goal class.

It can be broken down into three steps. First the robot rotates towards the object until it is within a angular

tolerance value. It calculates the angle to be turned through by calculating the distance from the pixel

centerline to the centroid of the bounding box drawn for the object. It then scales that against the field of

view of the camera. Figure 7 shows an illustration of the camera frame.

Figure 7: Retrieval Rotation Visualization

Once the robot has successfully turned to the object, it uses the distance measurement returned by the

forward facing ultrasonic sensor to move forward to the appropriate distance from the object to deploy the

gripper. When the robot is in the gripping position, it lowers the manipulator and graps the object, then

lifts it so that it is not dragging on the ground.

Verification

Succesful completion of this task was hampered by three factors. The lower classification accuracy for bottles

meant that a large fraction of the time, the robot would not detect the object and the retrieval protocol

would not be initiated. Secondly the large moment of inertia of the robot meant that it was not able to

complete small turns that were required when the bottle was placed close to the camera centerline. Lastly,

the inaccurate values reported by the ultrasonic sensors often caused the robot to drive through the goal

object because it expected to be further away. We were not able to achieve consistent success with the object

retrieval, but we could show that the components involved performed reasonably well individually.
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Cost

Parts

Table 1: Parts Costs

Part Manufacturer Retail Cost

($)

Quantity Shipping ($) Actual Cost

($)

Raspberry Pi CanaKit 42.99 1 0 42.99

99:1 Gearmotor Pololu 34.95 2 2.37 72.27

47:1 Gearmotor Pololu 34.95 2 0 69.90

Mounting Hub 3M Pololu 6.95 1 0 6.95

Mounting Hub 4-40 Pololu 6.95 1 0 6.95

HC-SR04 Ultrasonic Keywish 10.59 1 0 10.59

32 GB MicroSD Card Sandisk 11.99 1 0 11.99

Raspberry PiCam V2 Amazon 25.55 1 0 25.55

RaspiCam 24” Cable Adafruit 7.23 1 0 7.23

HS-422 Servo Motor RobotShop 11.49 2 9.00 31.98

Large Robot Gripper RobotShop 19.50 1 0 19.50

DRV8835 Motor Driver TI 1.43 16 29.62 58.17

DRV8835 Driver Chip Pololu 3.89 5 3.95 23.40

Gearmotor Bracket Pololu 7.45 1 8.95 16.40

2200 mAh 3S Lipo Turnigy 8.79 2 8.10 25.68

Wheel Pair 70x8mm Pololu 8.49 1 8.95 17.44

Multipurpose Bracket Pololu 11.95 1 9.00 20.95

”C” Servo Bracket Pololu 7.95 1 0 7.95

PCB PCBWay 20.00 5 0 100.00

Total 575.89

Labor

This project was the culmination of many hours of work amongst the group. We also asked the ECE Machine

Shop to fabricate and assemble the frame of the robot. We estimate that the cost of the required labor for

this project can be estimated with the following equations.

675 hours ∗ 35
$

hour
∗ 2.5 = $59062.5 (8)

11 hours ∗ 35
$

hour
∗ 2.5 = $962.5 (9)
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Equation 8 gives the cost estimate of the groups’ collective labor. Equation 9 follows the same formula for

calculating labor value. The hour value is an estimate of how long it took our contact at the machine shop

to fabricate all of the components. Combined, these sum to a total labor cost of $60025.
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Conclusion

Accomplishments

This project produced a fully ROS integrated differential drive robot that is nearly capable of using an

advanced machine learning algorithm to identify and retrieve target objects. We were able to show proper

functionality of the single shot detection algorithm for finding and correctly localizing several classes of

objects. The full retrieval operation was shown to work in parts, from locking on to picking up the object.

While struggling to cooperate with the object detection, the navigation system was also shown to work to a

degree. Its performance was limited by several factors, but it still consituted a fully functional differential

drive robotic platform.

Ethical considerations

We believe that our project is aligned with the first tenet of the IEEE Code of Ethics, to hold paramount

the safety, health, and welfare of the public, [4] because our project is designed to help move robotic un-

derstanding of real world systems towards the ability to save lives. We strive to use the understanding of

intelligent systems to benefit the public good. This leads to the importance of #5 of the Code, to improve

the understanding by individuals and society of the capabilities and societal implications of conventional

and emerging technologies, including intelligent systems [4] in that it will be our duty to inform the public

about the beneficial uses of the technology that we are working with and how they can be further used to

help society. Since the success of the project is directly dependent on the functionality of the reinforcement

learning algorithm, it is very important that we accurately report our results, regardless of the outcome.

Inconsistent data and unreliable reporting would violate #3 of the Code [4] and would negatively impact

the field of robotics research and our character as engineers. In the same vein, it is very important that we

give appropriate credit for the previous works that we use and build on to develop our system. It would be

unethical to take credit for the work of others in accordance with #7 of the Code [4]. We will be using and

learning from many different research sources as well as from our peers and faculty members as we progress

through this project and need to accurately present the chain of knowledge and development.

Future work

The major obstacles that affected the robot’s performance were the large weight of the frame, the inaccuracy

and limited angular resolution of the rangefinding system, and the Raspberry Pi’s limited and non-realtime

processing capabilities. These will be the first obstacles to overcome.

The frame of the robot requires a far lighter material and possibly a redesign of the layout to minimize

the weight, while still maintaining functionality. The camera, rangefinder, and the manipulator all need to

be forward mounted and must share vertical real estate, so any potential redesign must account for their

collective placement.

The ultrasonic sensors produced a large amount of noise and were not able to accurately range objects of

the size and perpendicular profile that we were working with and could be picked up by the manipulator.

This damaged the performance of both general navigation as well as object retrieval. The expectation of
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ROS robots using the full navigation stack is that they are equipped with a lidar sensor, and it would be

prudent to upgrade to a reasonably priced laser-based rangefinding system.

The Raspberry Pi struggled to handle the realtime nature of the signal handling for the hardware compo-

nents of the robot in addition to doing computationally heavy machine-learning computer vision. It is the

recommendation of experts that for controlling robots with a Raspberry Pi, an additional microcontroller

is used to handle the peripherals while the Raspberry Pi is used for high level control. A Pi Hat with an

ATMega processor has been purchased for this purpose with which the Pi can share the load. It will also be

useful to add an inertial measurement unit in order to better localize the robot.

After these hurdles are dealt with, the goal will be to accomplish the original goal of the project, implementing

a reinforcement-based exploration of simple environments. This project has the potential to be useful in

many future applications.
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Data Tables

Distance Sensor Data

Table 2: Ultrasonic Sensor Accuracy

Actual

Distance

(cm)

Meas 1 Meas 2 Meas 3 Meas 4 Meas 5 Average Error

5 6.42 6.41 6.41 6.41 6.42 6.414 28

10 12.058 12.07 12.12 12.05 13.64 12.387 23.876

15 15.905 15.967 15.943 16.02 15.988 15.965 6.43

20 20.78 20.78 20.67 20.66 20.67 20.712 3.56

25 25.667 25.605 25.649 25.637 25.625 25.583 2.33

Object Detection Data

Table 3: SSD Class Detection Accuracies

Object Accuracy Object Accuracy

Aeroplane 0.8739 Dining Table 0.435

Bicycle 0.4864 Dog 0.673

Bird 0.7727 Horse 0.5575

Boat 0.75 Motor Bike 0.5023

Botlle 0.5706 Person 0.821

Bus 0.614 Potted Plant 0.7723

Car 0.6823 Sheep 0.8661

Cat 0.7598 Sofa 0.9067

Chair 0.332 Train 0.9133

Cow 0.6408 TV Monitor 0.7107

Overall 0.7177

Differential Drive Data
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Table 4: Motor Angular Speed Response

Angular Velocity

(rad/s)

Lower Bound

(rad/s)

Upper Bound

(rad/s)

Range (rad/s)

1 1.73 0.32 1.41

2 2.69 1.34 1.35

3 3.1 2.91 0.19

4 4.13 3.85 0.28

5 5.15 4.85 0.3

6 6.21 5.79 0.42

7 7.28 6.79 0.49

8 8.29 7.7 0.59

9 9.3 8.63 0.67

10 10.38 9.72 0.66

11 11.35 10.5 0.85

Table 5: Differential Drive Wheel Response

Input ωr( rad
s ) ωl(

rad
s ) Input ωr( rad

s ) ωl(
rad
s )

v(m
s ) ω( rad

s ) Expected Actual Expected Actual v(m
s ) ω( rad

s ) Expected Actual Expected Actual

0.1 0 2.857 2.78 2.857 2.78 0.1 1.0 5.536 5.55 0.179 X

0.2 0 5.714 5.62 5.714 5.62 0.1 3.0 10.893 10.87 -5.179 -5.20

0.3 0 8.571 8.58 8.571 8.58 0.1 -1.0 0.179 X 5.536 5.56

0.4 0 11.428 11.41 11.428 11.41 0.1 -3.0 -5.179 -5.21 10.893 10.91

-0.1 0 -2.857 -2.8 -2.857 -2.8 0.2 2.0 11.071 11.24 0.357 X

-0.2 0 -5.714 -5.56 -5.714 -5.56 0.2 -2.0 0.357 X 11.071 11.27

-0.3 0 -8.571 -8.48 -8.571 -8.48 0.3 1.0 11.25 11.38 5.893 6.05

-0.4 0 -11.428 -11.31 -11.428 -11.31 0.3 -1.0 5.893 6.14 11.25 11.43

0 1.0 2.687 X -2.687 X -0.1 1.0 -0.179 X -5.536 -5.45

0 2.0 5.357 5.44 -5.357 -5.32 -0.1 3.0 5.179 5.53 -10.893 -10.74

0 3.0 8.036 8.11 -8.036 -7.92 -0.1 -1.0 -5.536 -5.25 -0.179 X

0 4.0 10.714 10.77 -10.714 -10.58 -0.1 -3.0 -10.893 -10.61 5.179 5.48

0 -1.0 -2.687 X 2.687 X -0.2 2.0 -0.357 X -11.071 -11.01

0 -2.0 -5.357 -5.38 5.357 5.46 -0.2 -2.0 -11.071 -10.94 -0.357 X

0 -3.0 -8.036 -7.93 8.036 8.11 -0.3 1.0 -5.893 -5.64 -11.25 -11.01

0 -4.0 -10.714 -10.7 10.714 10.77 -0.3 -1.0 -11.25 -11.07 -5.893 -5.71

Requirement and Verification Table
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Table 6: System Requirements and Verifications

Requirement Verification Verification
status (Y

or N)

1. Object Detection Requirements
(a) Object detection is accurate to

within 70 percent.
(b) Object centroid placement

within .5 cm.

1. Verification
(a) Test algorithm on VOC 2010

image set (approx 10,000 im-
ages). Check the prediction
accuracy by keeping track if
the model properly classifies
the object.

(b) Get the frame size from the
object detection program that
the robot is running. This
corresponds to the size of the
camera image. Divide it into
the right and left image halves
each corresponding to a turn-
ing direction. The range of de-
grees for the camera is at max
31.1 degrees, so each frame
unit corresponds to 0.155 de-
grees. Using the inverse tan-
gent we need a distance of at
least 2 meters for 0.5 cm cen-
troid error. This assumes a
perfect placement model.

2. Maze Solving Requirements
(a) The A-star algorithm outputs

the optimal path through the
created maze, from the start
position to the goal position.

(b) The robot uses reinforcement
learning model to navigate
from the start to the object lo-
cation.

2. Verification
(a) Run the maze under a

Breadth-First Search (BFS).
BFS is guaranteed to give
an optimal path on the one
start one end maze that we
are using. So, comparing the
output of the A* to the BFS
can give an idea about how
optimal it is.

(b) Monitor the decision making of
the reinforcement learning al-
gorithm at each state of the
process to show that it is us-
ing a model to make decisions.
Monitor that the robot is able
to explore a maze environment
without hitting the environ-
ment.

Continued on next page
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Table 6 – continued from previous page
Requirement Verification Verification

status (Y
or N)

3. Navigation Requirements
(a) The robot is able to move

within 5 cm for a 30cm straight
linear motion.

(b) The robot is able to move
within 5 degrees for a 90 de-
gree turn in either direction.

3. Verification
(a) Use a tape measure to show

the distance to be traveled by
the robot. Publish a move-
ment goal of 0.3 in the x direc-
tion with the identity quater-
nion. Calculate the physical
error and compare to the odo-
metric position of the robot as
reported by the system.

(b) Use a 90 degree angle on the
floor, either drawn on paper
or a tile corner. Place the
robot on the vertex of the an-
gle aligned with one of the
rays. Publish a movement goal
of the 90 degree rotation equiv-
alent quaternion. Calculate
actual turned angle and com-
pare to the reported angle of
the system.

Continued on next page
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Table 6 – continued from previous page
Requirement Verification Verification

status (Y
or N)

4. Driving Requirements
(a) The motors can be driven at

specific angular velocities up
to 13 radians per second with
a 0.2 radians per second noise
tolerance.

(b) The motor step response has
less than 10 percent overshoot.

(c) The motor step response has
less than 0.1 second rise time.

(d) The motors can be driven in
tandem using a set linear and
angular velocity input.

(e) The encoder reading, control
calculation, and motor output
control can all be run at least
50 Hz.

4. Verification
(a) Output desired angular veloc-

ity for the wheels using the
ROS message publishing func-
tionality. Plot the angular ve-
locity of the wheels as reported
by the motor encoders. Check
to see that the current angular
velocity matches the desired.
Test at integer values of angu-
lar velocity up to 13 radians
per second.

(b) Use the ROS plotting func-
tionality to visualize the mo-
tor step response. Plot the an-
gular velocity of a wheel, and
input the desired wheel veloc-
ity. Wait for the wheel veloc-
ity to stabilize, then increase
the desired wheel velocity by 1
radian per second. Pause the
plot to see the response. Cal-
culate the relevant parameter
of the response.

(c) Use the ROS plotting func-
tionality to visualize the mo-
tor step response. Plot the an-
gular velocity of a wheel, and
input the desired wheel veloc-
ity. Wait for the wheel veloc-
ity to stabilize, then increase
the desired wheel velocity by 1
radian per second. Pause the
plot to see the response. Cal-
culate the relevant parameter
of the response.

(d) Use the differential drive equa-
tions for wheel velocities to cal-
culate the correct angular ve-
locity of each wheel. Compare
to the average value of each
motor as reported by the sys-
tem.

(e) Use the ros publishing rates to
verify the speed of each type of
function.

Continued on next page
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Table 6 – continued from previous page
Requirement Verification Verification

status (Y
or N)

5. Sensor Requirements
(a) The ultrasonic sensor returns

valid distance readings to
within 10 percent of the mea-
sured actual value for valid
measurement ranges, between
20 and 50 centimeters.

(b) The pseudo-laser sensor cor-
rectly integrates and outputs
the values of the separate ul-
trasonic sensors.

(c) Subrequirement

5. Verification
(a) Set the robot along a tape

measurement such that the ul-
trasonic sensor speakers line
up with the origin of the line.
Place a flat object at 5 cm in-
tervals and calculate the error
of the measurement output by
the system.

(b) Calculate the origin of the
pseudo-laser sensor by finding
the intersection of the normals
to the ultrasonic sensor boards
above the body of the robot.
Place objects in front of all
three ultrasonic sensors in the
valid range of 20 to 50 centime-
ters and measure the distance
from the laser origin point to
the objects. Calculate the
measurement error.

(c) Subverification

6. Hardware Requirements
(a) 6V Voltage regulator must

supply a constant 6V ± 5 %
output voltage while the bat-
tery discharges. It must be
able to sustain currents up to
1.8 amps.

(b) 5V Voltage regulator must
supply constant 5V ± 5 % out-
put voltage while the battery
discharges. It must be able to
sustain currents up to 1 amp.

6. Verification
(a) Measure the voltage output of

the regulator over the course
of a gully charged battery op-
erating discharge. Clamp the
motors and drive until the mo-
tor drivers engage over current
protection shutdown. Measure
the amperage with a multime-
ter.

(b) Measure the voltage output of
the regulator over the course of
a gully charged battery oper-
ating discharge. Measure the
amperage with a multimeter
when all peripherals are con-
nected to the Raspberry Pi
and running.

Continued on next page
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Table 6 – continued from previous page
Requirement Verification Verification

status (Y
or N)

7. Gripper Requirement
(a) The grasping servo must pro-

vide at least 1 N*m to grasp
object to overcome the gravi-
tational pull.

(b) The lifting servo must provide
at least 1.5 N*m to lift the
gripper, grasping servo, and
the object.

7. Verification
(a) Grip object above ground level

to check that it doesn’t slip.
(b) Pick up object with gripper as-

sembly to test the ability to lift
goal objects.
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