

By

Harshvardhan Bhatia

Jesse Chen

Andy Sun

Autonomous Pothole Detection and
Cataloging for Bikes

Final Report for ECE 445, Senior Design, Spring 2018

TA: Xinrui Zhu

May 2018

Project No. 62

ii

Abstract

We designed a bicycle mounted system to automatically detect potholes through computer vision and

accelerometer data and catalog the coordinates to a database. At the same time the system will also

check the location of the rider and warn them of nearby potholes stored in the database.

We successfully implemented and integrated most of the features, but the computer vision aspect still

needs tuning to improve the accuracy to practical levels.

iii

Contents

1. Introduction ...1

1.1 Power ...1

1.2 Computer Vision ..1

1.3 Control/Feedback ..1

2 Design ...3

2.1 Control ...3

2.2 Accelerometer ..4

2.3 Computer Vision..5

2.4 GPS...6

2.5 Bluetooth..8

2.6 Database ..8

2.6.1 Flash Memory ...8

2.8 Pothole Search ..9

2.9 PCB... 11

2.10 Physical Design .. 11

3. Verification ... 12

3.1 Accelerometer .. 12

3.2 Computer Vision.. 12

3.3 Pothole Search .. 12

3.4 System Level ... 13

4. Costs .. 14

4.1 Parts ... 14

4.3 Schedule ... 15

5. Conclusion.. 17

5.1 Accomplishments .. 17

5.2 Uncertainties .. 17

5.3 Ethical considerations .. 17

5.4 Future work .. 17

6 References .. 18

iv

Appendix A: Requirements and Verification Table .. 20

Appendix B: UART Development.. 23

1

1. Introduction
Potholes are an issue which plague cities all around the world. While damaging to cars, potholes are

particularly dangerous, even fatal, for bikers and can lead to millions of dollars in lawsuits for a city if not

patched [1]. Bikers need to be very aware of the surroundings around them while on the road, but with

so much going on, it can be easy to miss potholes, both at day and at night. However, for cities to be

able to fix potholes, they need to first know where they are. Currently, the city of Champaign is starting

to utilize a phone application for reporting problems like potholes, but few bikers are going to stop, get

off their bikes, and pull out their phone to fill in a report [2]. Most cities simply utilize a telephone

number or website for pothole reporting, which is even more inconvenient.

Our project aims to ease the issues of both pothole cataloging for municipalities as well as pothole

warning for bikers. We aim to do this by creating a device which can detect potholes via computer vision

(for long-range detection) as well as accelerometers (for potholes hit). In addition, a user can report a

pothole they ride past by pressing a button. Once a pothole is detected by the system, the device’s

current GPS location and time is sent to a database for municipalities to access. Devices will also host a

local copy of this database, which will be used to warn bikers via haptic feedback if they are riding

towards an area with many potholes. In addition, when the computer vision portion detects a pothole,

the rider will also be alerted, in case they didn’t spot it themselves. Please refer to Figure 1 while

reading the following subsections.

1.1 Power
This module oversees powering the entire system. The Li-Ion battery will be a standard phone battery

pack with a USB connection. We need a 5V output for the Beaglebone. We need the 3.3V for the rest of

the sensors. It is important to note that the Beaglebone tends have a high-power draw which is why

even though our battery pack has a voltage of 5V, we run it through a regulator to stabilize the voltage

noise so that the Beaglebone doesn’t shut down unexpectedly.

1.2 Computer Vision

The computer vision system consists of a camera and a dedicated MCU for image processing. Whenever

a pothole is detected, the computer vision module sends a high signal over one of its GPIO pins to the

control module. The computer vision module is the only detection method that provides the user with

real time warning of new potholes.

1.3 Control/Feedback

The control/feedback module is in charge controlling the entire system depending upon the various

sensors as well as computer vision module. It consists of an LPC1114 MCU that is connected to the GPS,

Accelerometer, Bluetooth, Button, as well as the Buzzer.

At a high level, its requirement is to use input of the sensors to detect a pothole. Then it uses the GPS

coordinates to store the location of the module in a database. For our system the database is in the local

flash of the MCU however for future iterations it would be in the cloud, and the MCU would

communicate with it using Bluetooth paired with your phone. This module is also in charge of checking

2

current GPS coordinates to those in the database. If the biker is headed towards a pothole then it warns

the user using the haptic feedback buzzer. A more quantitative requirement for each specific sensor

within this module can be found in R&V table in Appendix A.

Figure 1: Block Diagram

3

2 Design

2.1 Control
Controlling the system efficiently was important to us since there are multiple sensors communicating

via multiple interfaces. We were looking to avoid interrupts. They tend to mess up the system when

there are many of them, however several of the sensors that we were using had certain specifications

that made it unavoidable. We decided to go with a main loop that is controlled by a set of flags. As

shown in Figure 2 the loop relies on four flags that are manipulated by interrupt and timed functions. As

shown by table 1 the two potDet flags are set when a pothole is detected. In this case the canDet flag is

used to control the potDet flags so that we don’t upload a similar location for potholes repeatedly. The

potEnc flag is only set when the biker is about to hit an area with potholes. We went with 2 different

potDet flags because we want the computer vision module to be able to interrupt the loop separately so

that if the module detects a pothole in advance we can warn the user immediately.

Table 1: Control Flags

Flags Function

potEnc Set when pothole will soon be encountered

potDet
Set when pothole is detected by button or

accelerometer

potDet_cv Set when pothole detected by cv module

canDet
Set when a pothole has not been detected

recently

Figure 2: Main Control Loop

4

Figure 3 shows a high-level diagram of the interrupt-based functions that occur. The MCU requests data

from the accelerometer at 120Hz and can set the potDet flag if it detects a pothole. New GPS

coordinates polled every second. This is will be addressed in the GPS section in more detail.

2.2 Accelerometer
The accelerometer was used for scenarios when the biker hits a pothole. Design considerations were

decided by referencing several research papers that used accelerometers for the same purpose.

The main design consideration for the accelerometer was choosing an algorithm for pothole detection.

After reading several research papers, it was decided that we should use a Z-Differential algorithm. This

takes the current g value and subtracts it from the previous g value as shown in Figure 4. The difference

if the difference is higher than a previously set threshold value then the biker has ridden over a pothole.

Figuring out the thresholding value proved to be challenging since the flash memory on the MCU was

not big enough to store enough values for a test. If we received values through our UART debugger then

we would have to bike with the laptop which would likely affect the data. We decided to use the

Bluetooth output to find the optimum threshold value. Table 2 describes the observations that we had

during our testing and shows why we landed up at 1.95g as our threshold value.

Figure 4: Z-Differential Method

Figure 3: Interrupt and Timer Functions

5

Table 2: Accelerometer Observations
Threshold Observations

1.95g Major potholes
Accurate and reliable

1.4g - 1.9g Pothole detected for bumpy pavement
Seemingly random detections

<1.4g Random detections

Another aspect of design had to do with the range of the accelerometer. Our chip had a ±1.5g range

with a 6-bit output. However, while testing the system we realized that the accelerometer spread was a

lot higher than expected and the 6-bit output was not precise enough for testing purposes. Given more

time an accelerometer with greater than ±5g range and 12-bit output would be desirable.

2.3 Computer Vision
When designing the computer vision module the major decisions we made were about how the module

would interface with the rest of the project and which detection algorithm to use.The computer vision

module operates asynchronously to the main control module and only communicates in one direction

from the computer vision module to the control module. We chose this design for its simplicity and is

supported by the fact the that potholes will generally be encountered infrequently. We chose the

algorithm we used because it closely mirrored our application and seemed to be computationally simple

enough to run quickly on an embedded system. Other algorithms were designed to detect potholes

from a top down view or did not run in real time.

The detection algorithm we used is adapted from the paper Pothole Detection System Using a Black-box

Camera by Youngtae Jo and Seungki Ryu. It follows the flowchart in Figure 5.

Figure 5: Computer Vision Flowchart

6

The image is cropped to remove the sky to improve the performance of thresholding in a later step. The

image is then converted to grayscale to simplify computations and is possible since we do not consider

any color information. Next, the image is thresholded to create a binary image. Every pixel that is

brighter than the threshold is changed to zero and every pixel less than the threshold is changed to one.

The threshold value is determined using Otsu’s method. It searches for the value that minimizes the

intraclass variance. Mathematically it can be written as follows.

Where 𝑇𝑏 is the threshold value, 𝐻𝑖 is the sum of pixel values in class 𝑖, and 𝜎𝑖(𝑥) is the variance of class

i as created by a threshold value of x. Lane detection finds the boundaries of the road and excludes all

regions outside of the boundary. Since potholes only exist on the road, we can ignore all other areas.

The paper recommends using automatic lane detection, but in our implementation, we used a

hardcoded mask for simplicity and to save on computation. Next, we group neighboring pixels that

passed the threshold to generate a list of candidates for possible potholes. We then take the 20 largest

candidates to run through the cascade detector. This step is necessary because early on we ran into

issues with an excessive number of trivial candidates, in the range of tens of thousands, that are only a

few pixels large. Twenty allows us to check most of the viable candidates without sacrificing

performance. The cascade detector runs each candidate through a series of tests. The candidate must

pass every test to be classified as a pothole. First the area of the candidate is checked to make sure it is

within a range of common pothole sizes. Then we apply a distance transform to the pothole which

calculates the distance of every non-zero pixel to the nearest zero pixel. To compute the average

thickness of the pothole we find the mean of the non-zero pixels in the distance transformed image. This

is to check the candidate has roughly the correct shape and is not a large network of cracks for instance.

The final test is to calculate the variance in brightness of the candidate. Potholes tend to have a higher

variance compared to shadows.

2.4 GPS

The GPS was an essential part of our project, as it was the only method we had of locating the user and

potholes. We decided upon the FGPMMOPA6H SOC, which utilizes a MediaTek MTK3339 chipset, as it

had a patch antenna, so we didn’t have to design our own PCB trace antenna and was lost cost. One

downside of using a MediaTek chipset is that we couldn’t query the chi p for location data; it just outputs

the data at a predefined interval (usually 1 second). Other vendors, such as SiRFstar, allow for querying

of data, which may have simplified some design portions. The accuracy was rated to be around 3m in

open blue-sky conditions, which is standard for consumer GPS modules. Since the chip communicated

via UART, the first step was to write a UART driver for our MCU.

The data outputted from the GPS is formatted as an ASCII string following the NMEA protocol, which is

essentially the standard for all GPS chips. This protocol consists of several types of messages, some of

which are standard among all chips and some of which are proprietary to the vendor. Each message

7

begins with a ‘$’ character and ends with the ‘\r\n’ characters. In addition, every message consists of a

variety of data fields which are separated by commas. Figure 6 shows an example of an ‘RMC’ message.

The message ID field tells us that this is an ‘RMC’ message. The data status and checksum fields are used

to tell if we want to parse the message. When the data status field is ‘A’, that means there is valid data

present in the message, so we should parse it. The checksum is calculated by performing a bitwise XOR

to all characters between ‘$’ and ‘*’. If the checksum that we calculate does not match the checksum at

the end of the message, that means something was corrupted during transmission and we throw the

message away. The remaining fields contain useful information which we store if the data is valid.

By default, the GPS chip outputs this ‘RMC’ message, plus four other message types, every second. We

don’t care about these other messages though, so at program bootup, we send a message to the GPS to

only output the ‘RMC’ messages.

In addition, the default baudrate of the GPS is 9600 bits per second, which is a little slow when

transmitting such long messages. When considering the start and stop bytes required by the UART

protocol, the transfer rate is about 960 characters/second. Since a typical RMC message is around 78

characters long, that leads to a transmit time of nearly 78960=0.08125s every second. This means a

minimum of 8.125% of our processing time was used just to read GPS messages. This led to issues where

we would be interrupted while reading messages since it took so long to transmit. Therefore, at

program bootup we also modify the baudrate to be 115200, which causes the read time to account for

only 0.677% of our processing time.

After initialization, we wait for the ‘$’ character to be transmitted, after which we start reading

additional characters into a buffer until we find the ‘\r\n’ end characters. A flag is set indicating a new

message is ready to be processed. When the main loop finds this flag set, it calls functions to verify the

message by checking the data status and checksum fields. If these tests pass, then we parse the message

and store the data locally. A summary of this software flow is shown in Figure 7.

Figure 6: GPS Dataflow

Figure 7: GPS Software Flow

8

2.5 Bluetooth
Bluetooth is used to simulate a link with a cloud server where the main pothole database would be

located. We originally were planning on just having a local database consisting of the potholes the user

has detected but realized there was a much greater benefit in having a general database which all users

add to. It also provided a very useful tool for debugging, as we can transmit debug information to our

phones remotely without having to rely on a wired UART connection.

We explored other ways to simulate this cloud database, such as a SIM card with 2G conne ctivity, but

this proved to be very expensive as we would have to purchase a SIM card and data plan.

The Bluetooth module communicated with the MCU via a modified SPI protocol. Due to the hardware

limitations of the underlying nRF51822 SOC, a 100us delay had to be added between asserting the chip

select (CS) line and writing any data on the SPI bus. In addition, rather than toggling the CS line every

byte, the CS line had to be asserted for the entirely of a packet, which could be up to 20 bytes.

Whenever we want to send data over Bluetooth, we store it into a character buffer and transfer it to the

Bluetooth module using Adafruit’s Simple Data Exchange Protocol (SDEP). If the message is greater than

16 characters, we must break it into separate SDEP packets and send them separately, indicating in each

packet if there is another packet following it.

2.6 Database
In addition to a cloud database, we wanted to implement a local database since bike rides often take

place in the countryside where cellular connection is not reliable. The concept was that the rider would

download the most recent version of the database beforehand and store it in local memory before their

ride. Since this database needed to be saved between power cycles, it had to be stored in non -volatile

memory.

2.6.1 Flash Memory

The flash memory present on our MCU proved to be a convenient storage location. It consists of 8

sectors of 4 kB each, totaling 32 kB. However, much of that is used to store the code, so we can only

reserve the last 4kB of memory for our database. This corresponds to around 240 pothole entries,

where each entry consists of two doubles corresponding to the latitude and longitude of the pothole.

One issue was that the MCU utilized NAND flash memory, which doesn’t allow writes to individual

memory addresses like SRAM or other volatile memories do. We can only write in 256-byte chunks and

only on 256-byte word boundaries. In addition, NAND memory writes can only flip 1’s to 0’s. To turn 0’s

to 1’s requires erasing an entire sector to all 1’s. For us, this means erasing our entire database.

Therefore, the challenge was to somehow store all potholes as well as our current index in the database

without writing any 0’s to 1’s. The index is needed to know where to store the next pothole location.

We accomplish this by using the first 256 bytes to store our current index in the database. These 256

bytes all start off as 0xFF. Every time we write a new pothole location, we rewrite this 256-byte section

9

with an additional 0x00 byte and fill the rest with 0xFF. The next time the device is started, it reads the

number of 0x00 bytes at memory location 0x0007000 (where the database is stored) which gives it the

current database index.

Whenever we write a new pothole location, to avoid flipping any unnecessary 1’s to 0’s, we must pad

our new pothole data with data from previous potholes before it and 0xFF’s after it. This is shown in

Figure 8.

This way, only the bits at the memory location where the new data is located are changed.

2.8 Pothole Search

One of the main functionalities of our device was to warn the user of any nearby potholes. This

essentially consisted of us taking the user’s current location and comparing it to potholes in our

database.

The search was done in two stages. In stage 1, we check if the user is within 25m of any pothole in our

database. If it is, we store it in a list of risky potholes. We continue until three potholes are stored or

until the database is exhausted.

If we stored any potholes, we go to stage 2 once we receive the next GPS coordinate. In stage 2, we

check if we are still within 25 m of any risky potholes. If we are, we calculate the direction the user

should be heading to hit the pothole and compare it to the user’s actual direction (taken from the GPS).

If they are within 60 degrees of each other, we alert the user.

Calculating the distance between two GPS coordinates is not a trivial task, as the coordinates represent

points on an ellipsoid surface. We tried three equations to do this calculation, shown below:

Haversine

Law of Cosines

Figure 8

10

Equirectangular Approximation

All three equations gave similar accuracy for our use case, but equirectangular approximation proved to

be the fastest as shown in Figure 8.

The equation used to calculate the bearing between two GPS coordinates is shown below:

Figure 9

11

2.9 PCB
While designing the PCB we decided to go with a relatively large board that is easy to modify and debug.

We realized that we would prefer to debug through UART since it is easier to look at data as the system

is running, however the MCU only has one UART interface. To solve this problem, we added two

electrically controlled single pole double throw switches to the TX and RX lines of the MCU. Whenever

the MCU wants to use printf statements for debugging it sets a line high the turns the switch from the

GPS UART to the debugger UART.

We also added several test pads around the PCB for easier debugging and testing. Please check

Appendix C for the PCB diagram.

2.10 Physical Design

To mount the device on the bike we decided to 3D print a base for the PCB, camera and Beaglebone.

The base had to be big enough to contain the 2 MCUs as well as have the frontside long enough for a

camera mount. As shown in figure 9 we were able to mount the PCB on the base, however we never

mounted the Beaglebone since we did not use the Beaglebone for the computer vision part in our final

demo. The yellow armband that the user wears on the right is for the haptic feedback buzzer. We expect

further iterations to be waterproof as well as more compact, as the PCB becomes smaller.

Figure 10: Photo of prototype model

12

3. Verification

3.1 Accelerometer
The main requirement for the accelerometer was to detect potholes with a true positive rate of 80%.

We tested this at a parking lot which simulated three various parts of a road. A pothole, bumpy paved

road, and smooth paved road. We then rode the bike around all three parts and counting that as one

lap. We took the bike around for 5 laps and recorded the true positive rate shown in Table 3. We tested

for several thresholds finally using 1.95g. Since this part of our requirements worked, we were able to

confirm the verification of the I2C communication, and other accelerometer re quirements on the R&V

table.

Table 3
Threshold True Positive Rate

1.95 100%

1.4-1.9 30%-70%
<1.4 <10%

3.2 Computer Vision
The main requirements for our computer vision module were to run at real time and be accurate. We

computed the average speed for 20 frames and found the system took about 79ms per frame to process

or about 13 frames per second, satisfying our real time requirement. In terms of accuracy, the computer

vision was a bit too sensitive for practical use. In broad noon daylight, we were able to achieve a 100%

sensitivity, but only a 28.6% precision. The algorithm does an excellent job identifying potential

potholes, but still needs work to distinguish potholes from other dark aberrations on the road’s surface.

3.3 Pothole Search
The main requirement for the database system was to be able to warn a user if they were within 25 m of

a known pothole and are traveling towards it. To test this, we set two potholes on Clark St. using the

manual report feature. The pothole locations are shown in Figure 11: We will refer to pothole 1 as the

one on Clark and 6th and pothole 2 as the one between Clark and 6th and Clark and Wright.

Figure 11

13

We then walked from Clark and Wright heading west, past Clark and 6th (where pothole 1 is located). As

expected, as we neared pothole 2, the haptic buzzer started going off. Once we passed pothole 2, the

buzzer stopped for a bit until we got closer to pothole 1, when it started going off again. After we

walked past pothole 1, the buzzer stopped once more. We then turned around and repeated the route

with the same results. We did an additional test walking south down 6th street towards pothole 1 and

another test walking south down Wright St. Both produced the expected results.

3.4 System Level
Our design really depends on the system components all working in harmony to deliver quick feedback

to the user. As a result, many of our requirements involved measuring the time it took for system input

to transform into system output.

We made a stopwatch module within the software for this purpose, allowing us to measure the time it

took to get from one line of code to another line of code and print it. For example, for the requirement

of warning the user within 100ms of the computer vision module detecting a pothole, we simulated the

pothole detection with a button press: so, we measured the time it took to get from reading that the

button press had occurred to the line of code activating our warning system. This time was on ~50 ms on

average. The rest of our timing requirements were easily met as well.

14

4. Costs

4.1 Parts

Part Distributer Part Number or Name (if applicable) Cost

GPS Module Adafruit FGPMMOPA6H $30

Button Adafruit B3F-1000 $2.50 for pack of 20

Bluetooth Module Adafruit Bluefruit LE SPI Friend $17.50

Piezo Buzzer Adafruit Buzzer 5V - Breadboard friendly $0.95

Accelerometer Digikey MMA7660FCT $1.81

MCU Digikey LPC1114FDH28 $2.58

Computer Vision MCU Digikey BeagleBone Black $56.25

USB Webcam Amazon $45.99

Battery Amazon Anker PowerCore II Slim $25.99

3.3V Voltage Regulator Digikey LD1117AV33 $0.53

5V Voltage Regulator Digikey LP3856ET-5.0/NOPB $5.04

Barrel Jack Connector x 2 Digikey PJ-002AH-SMT-TR $1.44 per unit

Labor1 N/A N/A $45,000

TOTAL COSTS $45,189.65

Labor Cost = 3 people $30/hour 20 hours/week 10 weeks 2.5 = $45,000

15

4.3 Schedule

Week Andy Harsh Jesse

2/5 Work on project
proposal

Work on project proposal Work on project proposal

2/12 Research computer
vision

Work on design
document

Research accelerometer
and MCU

Work on design
document

Research power, GPS, and bluetooth

Work on design document

2/19 Finish design document

Order camera

Finish design document

Order accelerometer,
MCU

Finish design document

Order GPS, bluetooth module, buzzer,
button, battery, voltage regulators,
barrel jack connectors, etc

2/26 Complete first python
prototype of detection
algorithm

Build circuit on
breadboard
Set up I2C protocol
Set up Accelerometer
tests

Write SPI and UART protocols
Build initial test circuit on breadboard

3/5 Optimize algorithm to
improve speed and
accuracy

Design PCB and order
Finalize Accelerometer
pothole detection
algorithm
Design PCB case

Write firmware to communicate with
GPS and store location data

3/12 Optimize algorithm to
improve speed and
accuracy

Assemble and test PCB
Assemble and test PCB
Case
Begin to integrate GPS
module to MCU
Start to implement
control workflow

Write firmware to communicate with
Bluetooth

3/19
(spring
break)

3/26 Copy program onto
MCU

Begin testing pothole
detection system
Integrate Bluetooth with
control workflow

Design algorithm to detect if user is
approaching stored potholes based
upon current location

16

4/2 Continue to debug and
integrate detection unit

Test, debug and optimize
system

Write piezo buzzer and pothole report
button code

Test and debug GPS, bluetooth, and
haptic feedback modules

4/9 Test, debug and optimize
system

Test, debug and optimize
system

Test and debug pothole detection
module interface with feedback
modules

4/16
(mock
demo)

Test to ensure complete
functionality

Test to ensure complete
functionality

Test to ensure complete functionality

4/23 Start final report

Prepare for final demo

Start final report

Prepare for final demo

Start final report

Prepare for final demo

4/30 Complete final report Complete final report Complete final report

17

5. Conclusion

5.1 Accomplishments
Overall the system works well given a controlled environment and good weather. If the biker hits a

pothole, it is highly likely to be recorded accurately. The GPS module and database work as expected,

storing pothole locations correctly. The pothole encounter algorithm checks the database to warn the

user of any incoming potholes. The Bluetooth module works well as a debugger for now, giving the user

location updates and pothole warnings.

5.2 Uncertainties

While the system works well, it does so only in a controlled environment. If the biker enters the road

from the curb it is likely that the system will detect that as a pothole. Given some more time it is likely

that we would be able to make the accelerometer detection more robust to differentiate potholes from

other jerk like movements.

The computer vision detects too many false positives to be fully integrated. 28.6% precision is not a

useful accuracy level. Our current method of manual lane detection could be improved by automating

the process. In addition, our current system seems to be sensitive to daylight conditions and appears to

work better later in the evening when the Sun is lower.

5.3 Ethical considerations
In the course of our work we were mindful to adhere to the IEEE code of ethics. We strove to “be honest

and realistic in stating claims or estimates based on available data” and to “seek, accept, and offer

honest criticism of technical work, acknowledge and correct errors, credit properly the contributions of

others,” in accordance to point 3 and 7[4]. There are some ethical questions involved with privacy as

well since we are continuously recording video. However, none of the data is stored and is immediately

overwritten after it is processed.

5.4 Future work

The next step for our project is to make the computer vision aspect more consistent and to fully flesh

out the database system.

The computer vision needs more work to improve its accuracy. Automatic lane detection would be a

major improvement. More time is needed to find out how to tweak the algorithm to make it more

specific to potholes. Most likely more tests will need to be added to the cascade detector. Using the

same inputs as the paper we followed, we were able to achieve similar results. The foundation is there,

but adjustments still need to be made.

In the fully realized system, we would like to have a cloud database where users can contribute to a

crowdsourced map of pothole locations. We also do not currently have a way to automatically remove

potholes that have been filled in from the database.

18

Since our project is meant to be used outside, we will need to make it waterproof to protect it from rain

and other water hazards. Finding a way to shrink the design will also make it more user friendly.

6 References
[1] R. Annis, "$6.5 Million Settlement Given to LA Cyclist for Injuries from Pothole", Bicycling, 2017.

[Online]. Available: https://www.bicycling.com/news/when-cyclists-sue-the-city. [Accessed: 08- Feb-

2018].

[2] "Report A Problem - City of Champaign", City of Champaign. [Online]. Available:

http://champaignil.gov/public-works/report-a-problem/. [Accessed: 08- Feb- 2018].

[3] Y. Jo and S. Ryu, "Pothole Detection System Using a Black-box Camera", Sensors, vol. 15, no. 12, pp.

29316-29331, 2015.

[4] "IEEE Code of Ethics", IEEE. [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 20‐ Feb‐ 2018].

[5] R. Keim, "UART Baud Rate: How Accurate Does It Need to Be?", Allaboutcircuits.com, 2017. [Online].

Available: https://www.allaboutcircuits.com/technical-articles/the-uart-baud-rate-clock-how-accurate-

does-it-need-to-be/. [Accessed: 25- Mar- 2018].

[6] NXP Semiconductors “LPC111x/LPC11Cxx User manual,” LPC111x/LPC11Cxx datasheet, July. 2010

[Revised Dec. 2016].

19

20

Appendix A: Requirements and Verification Table

Requirements Verification

Power Bank

> 5000 mAh of capacity

1. Connect fully-charged battery (as indicated by LED on
commercial power bank)

2. Discharge battery at 500 mA +/- 5% for 10 hours using
constant current load circuit

3. Check if commercial power bank will still allow current to
flow using ammeter, as they will automatically shut current
off when voltage is too low.

Voltage Regulator

Provide 3.3V +/- 5% output from
4.7V - 5.3 V source at 0.5A +/- 5%

1. Connect the input to a power supply
2. Draw 0.5A from power supply using constant current load

circuit
3. Sweep the power supply from 4.7 to 5.3 V
4. Measure the output is 3.3V +/- 5% at 0.5A +/- 5% with a

multimeter

Provide 5V +/- 5% output from 5V
- 5.3 V source at 2.5A +/- 5%

1. Connect the input to a power supply
2. Draw 2.5A from power supply using constant current load

circuit
3. Sweep the power supply from 5 to 5.3 V
4. Measure the output is 5V +/- 5% at 2.5A +/- 5% with a

multimeter

MCU

Must be able to communicate over
I2C in at least standard mode (100
kHz)

1. Set-up I2C on MCU.
2. Set up oscilloscope to trigger mode
3. Connect positive probe to SCL pin
4. Connect negative probe to GND
5. Send any data via the I2C bus
6. When oscilloscope is triggered find the frequency of the

clock waveform by measuring any 2 rising edges.

Must be to communicate over
UART at 9600 baud

1. Connect MCU to a computer terminal using UART and
PuTTY

2. Set PuTTY baud rate to 9600 and make connection
3. Send a test string from MCU to computer upon button press
4. Ensure that string on terminal matches test string sent

21

MCU + Button

Button and debouncing software
should register press within 500 ms

1. Connect button to MCU GPIO pin
2. Set MCU to output to computer terminal via UART if press

is detected
3. Start timer and press button simultaneously
4. Wait for output to appear on terminal
5. Once output appears, stop timer
6. Check if time allotted is less than 500 ms

Button should register press
accurately 19 out of 20 times

1. Connect button to MCU GPIO pin
2. Set MCU to output to computer terminal via UART if press

is detected
3. Press button 20 times
4. Check if at least 19 outputs are displayed on terminal

MCU + Bluetooth Module

Must have range greater than 2m 1. Place the receiver 2m away from the module
2. Ensure that phone can see module while it is advertising

using Bluetooth scanner app

Must transmit latest GPS location
after pothole detection within 1s

1. Connect phone to bluetooth module
2. Open Serial Bluetooth Terminal app
3. Start timer and simulate pothole detection using user report

button
4. Stop timer once coordinate appears on phone
5. Ensure time allotted is less than 1s

MCU + GPS

Location accuracy of 5m (best
case, open sky scenario)

1. Determine the precise longitude and latitude of a location
using Google Maps (such as a street lamp).

2. Take the GPS module there.
3. Compare that to the output of the GPS module.

Warn user if they are within 25 m
of a known pothole and are
traveling towards it

1. Manually set pothole location using user report button
2. Mark location 25 m away from pothole
3. Walk 30 m away, then start walking towards pothole
4. See if haptic feedback sensor goes off

MCU + Accelerometer

Must have sampling rate of 100 Hz 1. Connect accelerometer to MCU
2. Create timer interrupt at a 100 Hz on the MCU

22

 3. Set AMSR[2:0] of accelerometer to 111 (120 samples/sec)
4. Set accelerometer to Active Mode
5. Read either X,Y or Z register at every MCU interrupt while

moving the accelerometer
6. Output data to any platform and check for consecutive

duplicate values

±1g range with .1g sensitivity 1. Measure the weight of the accelerometer
2. Place it on one end of a balance and put known weights on

the other side
3. Record the output of the accelerometer and compare with

the expected computed values.

MCU must detect potholes with the
accelerometer. True Positive rate of
80%

1. Find 3 potholes
2. Run bike through pothole track at least 5 times
3. Keep track of each detected event as well as each true

positive event
4. Divide true positives by detected events to get rate

MCU + Piezo Buzzer

Must be able to be detected on bare
skin

1. Connect buzzer to GPIO pin on MCU
2. Place the piezo buzzer on wrist
3. Set GPIO pin high
4. Observe if buzzer can be felt

Must warn user within 100 ms of
pothole detection from computer
vision module

1. Connect control module to computer via PuTTY and
UART-USB connector

2. Place function to output system clock count when the GPIO
pin connected to the computer vision module goes HIGH

3. Place function to output system clock count when code to
activate buzzer is entered.

4. Attach SPDT switch and hardware debouncer to GPIO pin
normally connected to computer vision module. Attach
GND to one input and 3.3V to the other.

5. Set switch to GND.
6. Run control module normally.
7. Simulate computer vision pothole detection by flipping

switch to 3.3V and immediately flipping back to GND.
8. Look at output values on computer terminal. Calculate time

elapsed based upon MCU clock speed and compare to
100ms.

Detection Microcontroller

The camera captures at least 10
frames per second

1. Connect the camera over USB to a computer and capture 5
seconds of video.

2. Use a python program to count the number of frames and
divide by the video length

23

The module should have a
sensitivity of 70% and a precision
of 70%

1. Bike the system past 5 potholes
2. Record the outputs of the camera module
3. Repeat 3 times for each pothole

Appendix B: UART Development
Writing the UART driver involved setting a couple of clock dividers to get as close as possible to our

desired baudrate. Since UART has no clock line, it is just expected that each device is operating at an

agreed upon baudrate. If each baudrate is within 3.5% of each other, the UART should work as expected

[5]. The process for calculating the clock divider values DLH, DLL, MULVAL, and DIVADDVAL is shown in

Figure 12.

Figure 12

24

The table mentioned in the above flowchart is shown here:

These values come together to determine the actual baudrate using the following equation:

For our final baudrate of 115200, we used DLM = 0, DLL = 4, DIVADDVAL = 5, and MULVAL = 8. This led

to an actual baudrate of 115384, which is 0.16% from the specified baudrate of 115200. This meets our

requirements.

25

Appendix C PCB Diagram

