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Abstract

We designed abicycle mounted system to automatically detect potholes through computervision and
accelerometerdataand catalogthe coordinatesto a database. At the same time the system will also
checkthe location of the riderand warn them of nearby potholes stored in the database.

We successfullyimplemented and integrated most of the features, but the computervision aspect still
needstuningtoimprove the accuracy to practical levels.
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1. Introduction

Potholesare anissue which plague cities all around the world. While damaging to cars, potholesare
particularly dangerous, even fatal, for bikers and can lead to millions of dollars in lawsuits for a city if not
patched [1]. Bikers needto be very aware of the surroundings around them while on the road, but with
so much goingon, itcan be easy to miss potholes, both atday and at night. However, forcities to be
able to fix potholes, they need to first know where they are. Currently, the city of Champaign s starting
to utilize aphone application forreporting problems like potholes, but few bikers are going to stop, get
off theirbikes, and pull out their phone tofillinareport [2]. Most cities simply utilizeatelephone
numberor website for potholereporting, which is even more inconvenient.

Our projectaimsto ease the issues of both pothole cataloging for municipalities as well as pothole
warningforbikers. We aim to do this by creatinga device which can detect potholes viacomputer vision
(forlong-range detection) as well as accelerometers (for potholes hit). In addition, ausercan report a
pothole theyride past by pressingabutton. Once a pothole is detected by the system, the device’s
current GPS locationand time is sentto a database for municipalities to access. Devices willalso hosta
local copy of this database, which will be used to warn bikers via hapticfeedback if they are riding
towards an area with many potholes. In addition, when the computervision portion detects a pothole,
theriderwill also be alerted, in case they didn’t spotitthemselves. Please referto Figure 1 while
readingthe following subsections.

1.1 Power

This module oversees powering the entiresystem. The Li-lon battery will be astandard phone battery
pack witha USB connection. We need a5V outputforthe Beaglebone. We need the 3.3V for the rest of
the sensors. Itis importantto note that the Beaglebone tends have a high-power draw whichiswhy
even though ourbattery pack has a voltage of 5V, we run it through a regulatorto stabilize the voltage
noise so that the Beaglebone doesn’t shut down unexpectedly.

1.2 Computer Vision

The computervision system consists of acamera and a dedicated MCU for image processing. Whenever
a potholeisdetected, the computervision module sends a high signal over one of its GPIO pins to the
control module. The computervision module is the only detection method that provides the user with
real time warning of new potholes.

1.3 Control/Feedback

The control/feedback module isin charge controlling the entire system depending upon the various
sensors aswell as computervision module. It consists of an LPC1114 MCU that is connected to the GPS,
Accelerometer, Bluetooth, Button, as well as the Buzzer.

At a highlevel, itsrequirementisto use input of the sensorsto detecta pothole. Thenit usesthe GPS
coordinates to store the location of the module in a database. For our system the database isinthe local
flash of the MCU however forfuture iterations it would be in the cloud, and the MCU would
communicate with it using Bluetooth paired with your phone. Thismodule is alsoin charge of checking



current GPS coordinatestothose inthe database. If the bikeris headed towards a pothole then it warns
the userusingthe haptic feedback buzzer. A more quantitative requirement for each specificsensor
withinthis module can be foundin R&V table in Appendix A.
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Figure 1: Block Diagram



2 Design

2.1 Control

Controlling the system efficiently was important to us since there are multiple sensors communicating
viamultiple interfaces. We were looking to avoid interrupts. They tend to mess up the system when
there are many of them, howeverseveral of the sensors that we were using had certain specifications
that made it unavoidable. We decided to go with a mainloop that is controlled by aset of flags. As
showninFigure 2 the looprelies onfourflags that are manipulated by interrupt and timed functions. As
shown by table 1 the two potDet flags are set when a pothole is detected. In this case the canDet flagis
used to control the potDetflags so that we don’t upload a similarlocation for potholes repeatedly. The
potEncflagis only setwhenthe bikerisaboutto hit an area with potholes. We went with 2 different
potDetflags because we wantthe computervision moduleto be able tointerruptthe loop separately so
that if the module detects apothole inadvance we can warn the userimmediately.
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T s mes Sets potDet and canDet to \_ canDet flag is false. }
- — - -\ false
Figure 2: Main Control Loop
Table 1: Control Flags
Flags Function
potEnc Set when pothole will soon be encountered
Set when pothole is detected by button or
potDet P Y
accelerometer
potDet_cv Set when pothole detected by cv module
Set when a pothole has not been detected
canDet
recently




Figure 3 shows a high-level diagram of the interrupt-based functions that occur. The MCU requests data
fromthe accelerometerat 120Hz and can set the potDet flagif it detects a pothole. New GPS
coordinates polled every second. Thisis will be addressed inthe GPS section in more detail.
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Figure 3: Interrupt and Timer Functions

2.2 Accelerometer

The accelerometerwas used forscenarios when the biker hits apothole. Design considerations were
decided by referencingseveral research papers that used accelerometers for the same purpose.

The main design consideration forthe accelerometer was choosing an algorithm for pothole detection.
Afterreadingseveral research papers, it was decided that we should use aZ-Differential algorithm. This
takesthe current g value and subtracts it from the previous gvalue asshownin Figure 4. The difference
if the difference is higherthan a previously setthreshold valuethen the biker has ridden overapothole.
Figuring outthe thresholding value proved to be challenging since the flash memory onthe MCU was
not bigenoughtostore enoughvaluesfora test. If we received values through our UART debuggerthen
we would have to bike with the laptop which would likely affect the data. We decided to use the
Bluetooth outputto find the optimum threshold value. Table 2 describes the observations that we had
duringour testingand shows why we landed up at 1.95g as our threshold value.

Figure 4: Z-Differential Method



Table 2: Accelerometer Observations

Threshold Observations
1.95g Major potholes
Accurate and reliable
1l4g-1.9g Pothole detected for bumpy pavement
Seemingly random detections
<1.4g Random detections

Anotheraspect of design had to do with the range of the accelerometer. Ourchip had a +1.5g range
with a 6-bit output. However, whiletesting the system we realized that the accelerometer spread was a
lot higherthan expected and the 6-bit output was not precise enough fortesting purposes. Given more
time an accelerometer with greaterthan +5g range and 12-bit output would be desirable.

2.3 Computer Vision

When designing the computervision module the majordecisions we made wereabout how the module
wouldinterface with the rest of the project and which detection algorithm to use.The computer vision
module operates asynchronously to the main control module and only communicatesin one direction
from the computervision module to the control module. We chose this design forits simplicityandis
supported by the fact the that potholes willgenerally be encountered infrequently. We chose the
algorithm we used because it closely mirrored ourapplication and seemed to be computationally simple

enoughtorun quickly onan embedded system. Otheralgorithms were designed to detect potholes
froma topdownview or did notrun in real time.

The detectionalgorithm we usedisadapted from the paper Pothole Detection System Using a Black-box
Camera by Youngtae Jo and Seungki Ryu. It follows the flowchartin Figure 5.

Preprocessing Candidate Extraction Cascade Detector
Crop image Lane detection Check area
Convert to grayscale Find contours Check thickness

-
Find 20 largest
contours by area

Threshold image Check variance

Figure 5: Computer Vision Flowchart




The image is cropped toremove the sky to improve the performance of thresholdingin alaterstep. The
image isthen convertedto grayscale to simplify computations andis possible since we do not consider
any colorinformation. Next, the image is thresholded to create a binaryimage. Every pixelthat is
brighterthan the thresholdis changedto zero and every pixel less than the thresholdis changed to one.
The threshold value is determined using Otsu’s method. It searches for the value that minimizes the
intraclass variance. Mathematically it can be written as follows.

T, = argming, ., {1H,0,*(x) = Hyo, (x)}
Where T}, is the threshold value, H; isthe sum of pixel valuesinclass i, and g; (x) is the variance of class
i as created by a threshold value of x. Lane detection finds the boundaries of the road and excludes all
regions outside of the boundary. Since potholes only exist on the road, we can ignore all otherareas.
The paper recommends using automaticlane detection, butin ourimplementation, we used a
hardcoded mask for simplicity and to save on computation. Next, we group neighboring pixels that
passedthe threshold to generate alist of candidates for possible potholes. We then take the 20 largest
candidatesto run through the cascade detector. Thisstepis necessary because early onwe raninto
issues with an excessive number of trivial candidates, in the range of tens of thousands, thatare only a
few pixelslarge. Twenty allows us to check most of the viable candidates without sacrificing
performance. The cascade detectorruns each candidate through a series of tests. The candidate must
pass every testto be classified as apothole. First the area of the candidate is checked to make sure it is
withinarange of common pothole sizes. Then we apply adistance transform to the pothole which
calculatesthe distance of every non-zero pixel to the nearest zero pixel. To compute the average
thickness of the pothole we find the mean of the non-zero pixelsin the distance transformed image. This
isto check the candidate has roughly the correct shape andis not a large network of cracks for instance.
The final testisto calculate the variance in brightness of the candidate. Potholes tend to have a higher
variance compared to shadows.

2.4 GPS

The GPS was an essential part of our project, as it was the only method we had of locatingthe userand
potholes. We decided uponthe FGPMMOPAGH SOC, which utilizes a MediaTek MTK3339 chipset, asit
had a patch antenna, sowe didn’t have to design our own PCB trace antennaand was lost cost. One
downside of usinga MediaTek chipsetisthat we couldn’t query the chip forlocation data; it just outputs
the data at a predefined interval (usually 1second). Othervendors, such as SiRFstar, allow for querying
of data, which may have simplified some design portions. The accuracy was rated to be around 3min
open blue-sky conditions, which is standard for consumer GPS modules. Since the chip communicated
via UART, the first step was to write a UART driverforour MCU.

The data outputted fromthe GPS is formatted as an ASClI string following the NMEA protocol, whichis
essentially the standard forall GPS chips. This protocol consists of several types of messages, some of
which are standard amongall chips and some of which are proprietary to the vendor. Each message



begins witha ‘S’ character and ends with the ‘\r\n’ characters. In addition, every message consists of a
variety of data fields which are separated by commas. Figure 6shows an example of an ‘RMC’ message.

$GPRMC,064951.000,A,2307.1256,N,12016.4438,E,0.03,165.48,260406,3.05,W,A*2C
l J | J L J U I U J | J

T T |

Message uTC Data Latitude Longitude Speed Bearing Checksum
1D i
Time  Status N/S EAW
Indicator Indicator

Figure 6: GPS Dataflow

The message ID field tells us that thisisan ‘RMC’ message. The data status and checksum fields are used
to tell if we want to parse the message. When the datastatus fieldis ‘A’, that meansthereis valid data
presentinthe message, so we should parse it. The checksumiis calculated by performing a bitwise XOR
to all characters between ‘S’ and ‘*'. If the checksum that we calculate does not match the checksum at
the end of the message, that means something was corrupted during transmission and we throw the
message away. The remainingfields contain useful information which we store if the datais valid.

By default, the GPS chip outputs this ‘RMC’ message, plus four other message types, every second. We
don’t care about these other messages though, so at program bootup, we send a message to the GPS to
only outputthe ‘RMC’ messages.

In addition, the default baudrate of the GPSis 9600 bits per second, whichisa little slow when
transmitting such long messages. When considering the startand stop bytes required by the UART
protocol, the transferrate is about 960 characters/second. Since atypical RMC message isaround 78
characters long, that leads to a transmit time of nearly 78960=0.08125s everysecond. Thismeansa
minimum of 8.125% of our processingtime was used just to read GPS messages. Thisled toissues where
we would be interrupted while reading messages sinceittook so longto transmit. Therefore, at
program bootup we also modify the baudrate to be 115200, which causesthe read time to account for
only 0.677% of our processingtime.

Afterinitialization, we wait forthe ‘S’ character to be transmitted, after which we startreading
additional charactersinto abufferuntil we find the “\r\n’ end characters. Aflagis set indicatinganew
message is ready to be processed. When the main loop finds this flag set, it calls functions to verify the
message by checking the datastatus and checksum fields. If these tests pass, then we parse the message
and store the data locally. A summary of this software flow is shown in Figure 7.

Check for Check Parse Store

messages WIS message information
g validity g

Initialize

Figure 7: GPS Software Flow



2.5 Bluetooth

Bluetoothis usedtosimulate alink with acloud server where the main pothole database would be
located. We originally were planning on just having alocal database consisting of the potholesthe user
has detected but realized there was a much greater benefitin havingageneral database which all users
add to. It also provided avery useful tool fordebugging, as we can transmit debuginformation to our
phonesremotely without havingtorely ona wired UART connection.

We explored other ways to simulate this cloud database, such as a SIM card with 2G conne ctivity, but
this proved to be very expensive as we would have to purchase aSIM card and data plan.

The Bluetooth module communicated with the MCU viaa modified SPI protocol. Due to the hardware
limitations of the underlying nRF51822 SOC, a 100us delay hadto be added between asserting the chip
select (CS) line and writing any data on the SPIbus. In addition, rather than toggling the CSline every
byte, the CS line had to be asserted forthe entirely of a packet, which could be up to 20 bytes.

Wheneverwe wantto send data over Bluetooth, we store itinto a character bufferand transferit to the
Bluetooth module using Adafruit’s Simple Data Exchange Protocol (SDEP). If the message is greater than
16 characters, we must break it into separate SDEP packetsand send them separately, indicatingin each
packetif thereisanotherpacketfollowingit.

2.6 Database

In additionto a cloud database, we wanted toimplement alocal database since bike rides often take
placeinthe countryside where cellular connectionis notreliable. The concept was that the rider would
download the mostrecent version of the database beforehand and store itinlocal memory before their
ride. Since this database needed to be saved between powercycles, ithadto be stored in non-volatile
memory.

2.6.1 Flash Memory
The flash memory presenton our MCU proved to be a convenient storage location. It consists of 8

sectors of 4 kB each, totaling 32 kB. However, much of thatis used to store the code, so we can only
reserve the last 4kB of memory for our database. This corresponds to around 240 pothole entries,
where each entry consists of two doubles corresponding to the latitude and longitude of the pothole.

Oneissue was that the MCU utilized NAND flash memory, which doesn’t allow writes to individual
memory addresses like SRAM or othervolatile memories do. We can only write in 256-byte chunks and
only on 256-byte word boundaries. In addition, NAND memory writes canonly flip 1’sto 0’s. To turn 0’s
to I's requireserasingan entire sectortoall 1’s. For us, this means erasing our entire database.
Therefore, the challenge was to somehow store all potholes as well as ourcurrentindex in the database
withoutwritingany0’sto 1’s. The indexis needed to know where to store the next pothole location.

We accomplish this by usingthe first 256 bytesto store our currentindexinthe database. These 256
bytes all start off as OxFF. Every time we write a new pothole location, we rewrite this 256-byte section



with an additional 0x00 byte and fill the rest with OxFF. The next time the device is started, it reads the
number of 0x00 bytes at memory location 0x0007000 (where the database is stored) which givesitthe
current database index.

Wheneverwe write anew pothole location, to avoid flippingany unnecessary 1’s to 0’s, we must pad
our new pothole datawith datafrom previous potholes before itand OxFF’s afterit. Thisis shown in
Figure 8.

Previous pothole data New data ... OXFF OxFF OxFF ....

256 byte boundary 256 byte boundary

Figure 8

This way, only the bits at the memorylocation where the new datais located are changed.

2.8 Pothole Search

One of the main functionalities of our device was to warn the user of any nearby potholes. This
essentially consisted of us taking the user’s current location and comparingitto potholesin our
database.

The search was done in two stages. In stage 1, we check if the useris within 25m of any pothole in our
database. Ifit is, we storeitin a list of risky potholes. We continue until three potholes are stored or
until the database is exhausted.

If we stored any potholes, we goto stage 2 once we receive the next GPS coordinate. In stage 2, we
checkif we are still within 25 m of any risky potholes. If we are, we calculate the direction the user
should be headingto hitthe pothole and compare itto the user’s actual direction (taken from the GPS).
If they are within 60 degrees of each other, we alert the user.

Calculating the distance between two GPS coordinates is not a trivial task, as the coordinates represent
pointsonan ellipsoid surface. We tried three equations to do this calculation, shown below:

Haversine
a = sin*(Ap/2) + cos @y - cos ©, - sin?(AL/2)
¢ =2 - atan2( Va, V(1-a))
d=R-c
Law of Cosines

d=acos( sin @ * sin @, + cos @ * cos P - cos AL ) - R



Equirectangular Approximation

X = A\ COS @

y=Agp

d=R-Vx2+y?
All three equations gave similar accuracy for our use case, but equirectangularapproximation proved to
be the fastestasshownin Figure 8.

Runtimes of Various Distance Equations

800

600

400

Time for 1000 runs (ms)

200

Haversine Cosines Equirectangular

Figure 9

The equation used to calculate the bearing between two GPS coordinatesis shown below:

0 = atan2( sin AL - cos @2, COS (7 * Sin @ — Sin @ * oS P2 * cos AR )
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2.9 PCB

While designingthe PCBwe decided to go with a relatively large board that is easy to modify and debug.
We realized that we would preferto debug through UART sinceitis easierto look at data as the system
isrunning, howeverthe MCU only has one UART interface. To solve this problem, we added two
electrically controlled single pole double throw switches to the TXand RX lines of the MCU. Whenever
the MCU wants to use printf statements for debuggingitsetsaline high the turns the switch fromthe
GPS UART to the debugger UART.

We also added several test pads around the PCB for easier debugging and testing. Please check
Appendix Cforthe PCB diagram.

2.10 Physical Design

To mountthe device onthe bike we decided to 3D printa base forthe PCB, camera and Beaglebone.
The base had to be bigenoughto containthe 2 MCUs as well as have the frontside longenoughfora
camera mount. Asshownin figure 9 we were able to mount the PCB on the base, however we never
mounted the Beaglebone since we did not use the Beaglebone forthe computervision partin ourfinal
demo. The yellow armband that the user wears on the rightis for the haptic feedback buzzer. We expect
furtheriterationsto be waterproof as well as more compact, as the PCB becomes smaller.

Figure 10: Photo of prototype model
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3. Verification

3.1 Accelerometer

The main requirement forthe accelerometer was to detect potholes with atrue positive rate of 80%.
We tested this ata parkinglot which simulated threevarious parts of a road. A pothole, bumpy paved
road, and smooth paved road. We thenrode the bike around all three parts and countingthatas one
lap. We took the bike around for 5 laps and recorded the true positive rate shownin Table 3. We tested
for several thresholds finally using 1.95g. Since this part of our requirements worked, we were able to
confirmthe verification of the 12C communication, and otheraccelerometer re quirements on the R&V
table.

Table 3
Threshold True Positive Rate
1.95 100%
1.4-1.9 30%-70%
<14 <10%

3.2 Computer Vision

The main requirements for our computervision module wereto run at real time and be accurate. We
computedthe average speed for20 frames and found the system took about 79ms per frame to process
or about 13 frames persecond, satisfying our real time requirement. Interms of accuracy, the computer
visionwas a bittoo sensitiveforpractical use. In broad noon daylight, we were able to achieve a 100%
sensitivity, but only a 28.6% precision. The algorithm does an excellent job identifying potential
potholes, butstill needs work to distinguish potholes from other dark aberrations on the road’s surface.

3.3 Pothole Search

The main requirement forthe database system was to be able to warn a userif they were within 25 m of
a known pothole and are traveling towards it. To test this, we settwo potholes on Clark St. using the
manual report feature. The pothole locations are shownin Figure 11: We will referto pothole 1 as the
one on Clark and 6th and pothole 2 as the one between Clark and 6th and Clark and Wright.

oa state
nce -

Pothole 1
0o -
1Gas =
é.
=
%)
9 40.11534,-88.23038 NP o Al | -

2\

E Clark St 9 LC\arko

9S

Figure 11




We then walked from Clark and Wright heading west, past Clark and 6th (where pothole 1is located). As
expected, as we neared pothole 2, the hapticbuzzer started going off. Once we passed pothole 2, the
buzzerstoppedfora bituntil we got closerto pothole 1, when it started going off again. Afterwe
walked past pothole 1, the buzzer stopped once more. We then turned around and repeated the route
with the same results. We did an additional test walking south down 6th street towards pothole 1and
anothertest walking south down Wright St. Both produced the expected results.

3.4 System Level

Our designreally depends on the system components all workingin harmony to deliver quick feedback
to the user. As a result, many of our requirements involved measuring the time it took for systeminput
to transforminto system output.

We made a stopwatch module within the software forthis purpose, allowing us to measure the time it
tookto get fromone line of code to anotherline of code and printit. For example, forthe requirement
of warningthe userwithin 100ms of the computervision module detecting a pothole, we simulated the
pothole detection with abutton press: so, we measured the time ittook to getfromreading that the
button press had occurred to the line of code activating our warning system. This time was on ~50 ms on
average. The rest of our timing requirements were easily metas well.
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4. Costs

4.1 Parts

Part Distributer | Part Number or Name (if applicable) | Cost

GPS Module Adafruit FGPMMOPAGH $30

Button Adafruit | B3F-1000 $2.50 for pack of 20
Bluetooth Module Adafruit | Bluefruit LE SP1 Friend $17.50

Piezo Buzzer Adafruit | Buzzer 5V - Breadboard friendly $0.95
Accelerometer Digikey MMAT7660FCT $1.81

MCU Digikey LPC1114FDH28 $2.58
Computer Vision MCU Digikey BeagleBone Black $56.25

USB Webcam Amazon $45.99
Battery Amazon | Anker PowerCore Il Slim $25.99

3.3V Voltage Regulator Digikey LD1117AV33 $0.53

5V Voltage Regulator Digikey LP3856ET-5.0/NOPB $5.04

Barrel Jack Connector x 2 | Digikey PJ-002AH-SMT-TR $1.44 per unit
Labor: N/A N/A $45,000
TOTAL COSTS $45,189.65

Labor Cost = 3 people $30/hour 20 hours/week 10 weeks 2.5 = $45,000
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4.3 Schedule

Week Andy Harsh Jesse
2/5 Work on project Work on project proposal | Work on project proposal
proposal
2/12 Research computer Research accelerometer | Research power, GPS, and bluetooth
vision and MCU
Work on design document
Work on design
Work on design document
document
2/19 Finish design document | Finish design document | Finish design document
Order camera Order accelerometer, Order GPS, bluetooth module, buzzer,
MCU button, battery, voltage regulators,
barrel jack connectors, etc
2/26 Complete first python Build circuit on Write SP1and UART protocols
prototype of detection breadboard Build initial test circuit on breadboard
algorithm Set up 12C protocol
Set up Accelerometer
tests
3/5 Optimize algorithm to Design PCB and order Write firmware to communicate with
improve speed and Finalize Accelerometer | GPS and store location data
accuracy pothole detection
algorithm
Design PCB case
3/12 Optimize algorithm to Assemble andtest PCB | Write firmware to communicate with
improve speed and Assemble andtestPCB | Bluetooth
accuracy Case
Begin to integrate GPS
module to MCU
Start to implement
control workflow
3/19
(spring
break)
3/26 Copy program onto Begin testing pothole Design algorithm to detect if user is

MCU

detection system
Integrate Bluetooth with
control workflow

approaching stored potholes based
upon current location
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412

Continue to debug and
integrate detection unit

Test, debug and optimize
system

Write piezo buzzer and pothole report
button code

Test and debug GPS, bluetooth, and
haptic feedback modules

4/9 Test, debug and optimize | Test, debug and optimize | Testand debug pothole detection

system system module interface with feedback
modules

4/16 Test to ensure complete | Test to ensure complete | Test to ensure complete functionality

(mock functionality functionality

demo)

4/23 Start final report Start final report Start final report
Prepare for final demo Prepare for final demo Prepare for final demo

4/30 Complete final report Complete final report Complete final report
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5. Conclusion

5.1 Accomplishments

Overall the system works wellgiven a controlled environment and good weather. If the biker hitsa
pothole, itis highlylikely to be recorded accurately. The GPS module and database work as expected,
storing pothole locations correctly. The pothole encounteralgorithm checks the database to warn the
userof anyincoming potholes. The Bluetooth module works well as adebuggerfor now, giving the user
location updates and pothole warnings.

5.2 Uncertainties

While the systemworks well, it does so onlyina controlled environment. If the biker enters the road
fromthe curbitis likely thatthe system will detect that as a pothole. Given some more time itis likely
that we would be able to make the accelerometer detection more robust to differentiate potholes from
otherjerk like movements.

The computervision detects too many false positives to be fully integrated. 28.6% precisionis nota
useful accuracy level. Our current method of manual lane detection could be improved by automating
the process. In addition, ourcurrent system seems to be sensitive to daylight conditions and appears to
work betterlaterinthe eveningwhenthe Sunislower.

5.3 Ethical considerations

In the course of our work we were mindful to adhere to the IEEE code of ethics. We strove to “be honest
and realisticin stating claims or estimates based on available data” and to “seek, accept, and offer
honest criticism of technical work, acknowledge and correct errors, credit properly the contributions of
others,” inaccordance to point 3 and 7[4]. There are some ethical questionsinvolved with privacy as
well since we are continuously recording video. However, none of the datais stored and isimmediately
overwritten afteritis processed.

5.4 Future work

The nextstep for our projectis to make the computervision aspect more consistentand to fully flesh
out the database system.

The computervision needs more work toimprove itsaccuracy. Automaticlane detection would be a
majorimprovement. More time is needed tofind out how to tweak the algorithm to make it more
specificto potholes. Most likely more tests willneed to be added to the cascade detector. Using the
same inputs as the paperwe followed, we were able to achieve similarresults. The foundationis there,
but adjustmentsstill need to be made.

In the fully realized system, we would like to have a cloud database where users can contribute toa
crowdsourced map of pothole locations. We also do not currently have a way to automatically remove
potholesthat have beenfilledinfromthe database.
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Since our projectis meantto be used outside, we willneed to make it waterproof to protectitfromrain
and otherwater hazards. Findingaway to shrink the design will also make it more userfriendly.
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Appendix A: Requirements and Verification Table

Requirements

Verification

Power Bank

> 5000 mAh of capacity

Connect fully-charged battery (as indicated by LED on
commercial power bank)

Discharge battery at 500 mA +/- 5% for 10 hours using
constant current load circuit

Check if commercial power bank will still allow current to
flow using ammeter, as they will automatically shut current
off when voltage is too low.

Voltage Regulator

Provide 3.3V +/- 5% output from
4.7V - 5.3 V source at 0.5A +/- 5%

=

~w

Connect the input to a power supply

Draw 0.5A from power supply using constant current load
circuit

Sweep the power supply from 4.7 t0 5.3 V

Measure the output is 3.3V +/- 5% at 0.5A +/- 5% with a
multimeter

Provide 5V +/- 5% output from 5V
- 5.3V source at 2.5A +/- 5%

=

~w

Connect the input to a power supply

Draw 2.5A from power supply using constant current load
circuit

Sweep the power supply from5t0 5.3 V

Measure the output is 5V +/- 5% at 2.5A +/- 5% with a
multimeter

MCU

Must be able to communicate over
12C in at least standard mode (100
kHz)

O AWM

Set-up 12C on MCU.

Set up oscilloscope to trigger mode

Connect positive probe to SCL pin

Connect negative probe to GND

Send any data via the 12C bus

When oscilloscope is triggered find the frequency of the
clock waveform by measuring any 2 rising edges.

Must be to communicate over
UART at 9600 baud

w ™

Connect MCU to a computer terminal using UART and
PUTTY

Set PUTTY baud rate to 9600 and make connection

Send a test string from MCU to computer upon button press
Ensure that string on terminal matches test string sent
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MCU + Button

Button and debouncing software 1. Connect button to MCU GPI10O pin
should register press within 500 ms 2. Set MCU to output to computer terminal via UART if press
is detected
3. Starttimer and press button simultaneously
4. Wait for output to appear on terminal
5. Once output appears, stop timer
6. Checkif time allotted is less than 500 ms
Button should register press 1. Connect button to MCU GPI10 pin
accurately 19 out of 20 times 2. Set MCU to output to computer terminal via UART if press
is detected
3. Press button 20 times
4. Checkif at least 19 outputs are displayed on terminal

MCU + Bluetooth Module

Must have range greater than 2m

=

Place the receiver 2m away from the module
Ensure that phone can see module while it is advertising
using Bluetooth scanner app

Must transmit latest GPS location
after pothole detection within 1s

wn e

o~

Connect phone to bluetooth module

Open Serial Bluetooth Terminal app

Start timer and simulate pothole detection using user report
button

Stop timer once coordinate appears on phone

Ensure time allotted is less than 1s

MCU + GPS

Location accuracy of 5m (best
case, open sky scenario)

w N

Determine the precise longitude and latitude of a location
using Google Maps (such as a street lamp).

Take the GPS module there.

Compare that to the output of the GPS module.

Warn user if they are within 25 m 1. Manually set pothole location using user report button
of a known pothole and are 2. Mark location 25 m away from pothole
traveling towards it 3. Walk 30 m away, then start walking towards pothole
4. See if haptic feedback sensor goes off
MCU + Accelerometer
Must have sampling rate of 100 Hz 1. Connect accelerometer to MCU

2.

Create timer interrupt ata 100 Hz on the MCU
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3. Set AMSR[2:0] of accelerometer to 111 (120 samples/sec)
4. Setaccelerometer to Active Mode
5. Readeither X,Y or Z register at every MCU interrupt while
moving the accelerometer
6. Output data to any platform and check for consecutive
duplicate values
+1g range with .1g sensitivity 1. Measure the weight of the accelerometer
2. Place it on one end of a balance and put known weights on
the other side
3. Recordthe output of the accelerometer and compare with
the expected computed values.
MCU must detect potholes with the 1. Find 3 potholes
accelerometer. True Positive rate of 2. Run bike through pothole track at least 5 times
80% 3. Keeptrack of each detected event as well as each true
positive event
4. Divide true positives by detected events to get rate

MCU + Piezo Buzzer

Must be able to be detected on bare 1. Connect buzzer to GP1O pin on MCU
skin 2. Place the piezo buzzer on wrist
3. SetGPIO pin high
4. Observe if buzzer can be felt
Must warn user within 100 ms of 1. Connect control module to computer via PuTTY and
pothole detection from computer UART-USB connector
vision module 2. Place function to output system clock count when the GP10O
pin connected to the computer vision module goes HIGH
3. Place function to output system clock count when code to
activate buzzer is entered.
4. Attach SPDT switch and hardware debouncer to GP1O pin
normally connected to computer vision module. Attach
GND to one input and 3.3V to the other.
5. Setswitch to GND.
6. Run control module normally.
7. Simulate computer vision pothole detection by flipping
switch to 3.3V and immediately flipping back to GND.
8. Look at output values on computer terminal. Calculate time

elapsed based upon MCU clock speed and compare to
100ms.

Detection Microcontroller

The camera captures at least 10
frames per second

Connect the camera over USB to a computer and capture 5
seconds of video.

Use a python program to count the number of frames and
divide by the video length
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The module should have a
sensitivity of 70% and a precision
of 70%

1. Bike the system past 5 potholes
2. Recordthe outputs of the camera module
3. Repeat 3times for each pothole

Appendix B: UART Development

Writing the UART driverinvolved setting a couple of clock dividers to get as close as possible to our
desired baudrate. Since UART has no clock line, itis just expected that each device is operatingatan
agreed upon baudrate. If each baudrate is within 3.5% of each other, the UART should work as expected
[5]. The process forcalculatingthe clock dividervalues DLH, DLL, MULVAL, and DIVADDVALisshownin

Figure 12.

Calculating UART
baudrate (BR)

| DL, =PCLK/(16 x BR) |

t

DL is an True

integer?

Pick another FR
esf

t

from

the range [1.1, 1.9]

4

DL_, = Int(PCLK/(16 xBR x FR __))

est

=PCLK/(16 xBRxDL_)

t est

FR
es

False
11<FR , <1.9?

DIVADDVAL = table(FR _ )
MULVAL = table(FR

!

DLM =DL__ [15:8]

est

DLL=DL_ [7:0]

Figure 12

est)
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The table mentionedin the above flowchartis shown here:

FR DivAddVvall FR DivAddvall FR DivAddvall FR DivAddVal/
MulVal MulVal MulVal MulVal
1.000 01 1.250 1/4 1.500 1/2 1.750  3/4
1.067 1/15 1.267  4/15 1.533 8/15 1.769  10/13
1.071 114 1.273 31 1.538 7/13 1.778 719
1.077 113 1.286  2/7 1.545  6/11 1.786  11/14
1.083 112 1.300 3/10 1.556  5/9 1.800  4/5
1.091 111 1.308 4/13 1.571 417 1.818 911
1.100 1/10 1.333  1/3 1.583 7/12 1.833 56
1.111 1/9 1.357 5/14 1.600 3/5 1.846  11/13
1.125 1/8 1.364  4/1 1.615 8/13 1.857  6/7
1133  2/15 1.375  3/8 1.625 5/8 1.867  13/15
1.143  1/7 1.385 5/13 1.636  7/11 1.875 7/8
1.154  2/13 1400 2/5 1.643 9/14 1.889  8/9
1.167 1/6 1.417 512 1.667  2/3 1.900 9/10
1.182 2/11 1429  3/7 1.692 9/13 1.909 10/11
1.200 1/5 1.444  4/9 1.700 7/10 1.917 1112
1.214  3/14 1455  5/1 1.714 57 1.923  12/13
1.222 2/9 1.462 6/13 1.727  8/11 1.929 13/14
1.231 3/13 1.467 7/15 1.733 11115 1.933  14/15

These values come togetherto determine the actual baudrate using the following equation:

PCLK

UART . =
baudrate ] +DivAddVa[)

16 % (256 x UODLM + UODLL) x (
MulVal

For our final baudrate of 115200, we used DLM = 0, DLL =4, DIVADDVAL=5, and MULVAL = 8. Thisled
to an actual baudrate of 115384, whichis0.16% fromthe specified baudrate of 115200. This meets our
requirements.
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Appendix C PCB Diagram
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