Assistive Digital Piano

Group 45
Anna Shewell, Jae Kwak, Shruti Chanumolu

Presentation Overview

- Project Overview
- Design
- Successes and Failures
- Future Steps

Project Overview - The Problem

Motivation:

- Piano lessons are expensive (\$30-\$70/hr)¹ and often boring for children
- Users may teach themselves incorrectly

Goal:

- Force the player to use proper keys and fingering
- Use gamification in order to improve the learning experience for children

Project Overview - The Solution

A digital piano designed to teach the keys and fingerings to programmed songs.

Achieved through the use of:

- **Photointerrupters** for velocity-sensitive key input
- Color sensors and colored fingertip sleeves for finger detection
- RGB LEDs to indicate fingering for keys
- Software to assess performance and stops wrong notes from making sound

Project Overview - Physical Design

Project Build

A full piano octave

- Physical mechanism to trigger photointerrupters w/ velocity sensitivity
- Note validation w/ simple indicator LEDs

Block Diagram

Power Module

Voltage regulator

Goal: 9V from AC/DC wall converter

5V, 3.3V

and 1.8V Output

MAX Current=1.5A

Power Requirement	Module
5V	Input Module (Photointerrupter), Control Module, Indicator Module
3.3.V	Input Module (Color sensor)
1.8V	Input Module (Photointerrupter)

Power Module (Schematic)

Vout (1.8V) = 1.25 (1+R5/R1)

 $R5 = 100\Omega$

 $R1 = 240\Omega$

Input Module - Photointerrupters

Goal: Detect keypress and determine velocity of keypress.

- Digital Low Output
- Two for each key, triggered sequentially
- 4 x 9 x 9 mm

Input Module - Color Sensors

Goal: Detect finger sleeve color.

Each key includes a I2C color sensor

Size: 2mm X 2.4mma

Clear key top and placement of the color sensor

Input Module - Color Sensors (Schematic)

Input Module - Color Sensors (Results)

	0010 (11000	*ito')		
COLOR	RED	GREEN	BLUE	FINGERING
RED	1.60-1.66	0.23-0.25	0.31-0.34	Left Pinky
ORANGE	1.62-1.68	025-0.3	0.26-0.28	Left Ring Finger
YELLOW	1.6-1.69	0.55-0.6	0.20-0.22	Left Middle Finger
YELLOW-GREEN	1.2-1.22	0.53-0.6	031-0.35	Left Index Finger
GREEN	0.81.10	0.5-0.6	0.22-0.25	Left Thumb
SKYBLUE	1.07-1.10	0.5-0.61	0.43-0.46	Right Thumb
DARK-BLUE	0.86-1.0	0.43-0.56	0.65-1	Right Index Finger
PURPLE	1.2-1.23	0.48-0.53	0.5-0.8	Right Middle Finger
MAGENTA	1.4-1.55	0.33-0.35	0.41-0.44	Right Ring Finger
PINK	1.57-1.62	0.23-0.26	0.33-0.36	Right Pinky
WHITE	1.7-1.9	0.7-0.9	0.7-1	

Input Module - Color Sensors (Results)

Color identification between simultaneous key presses:

less than 146 ms

Error Analysis:

- Incident Light
- Distance from color sensor
- Similar Colors, e.g Red, Pink

Color sensor reading Red finger sleeve

Indicator Module - Schematic

Goal: Indicate which keys should be pressed with which fingers.

- 4-bit color code to
 6-bit color code
- 6 control circuits total (for 1 octave)

Indicator Module - Original Design

Indicator Module - Final Design

I/O Expander

R/V

- 10 distinct colors
- Unnoticeable latency

** Never fully integrated

Diodes

Control Module - Overview

Goal: Handle I/O between modules, key verification, and key processing.

Three modes of operation:

- 1. Normal Piano
- 2. Piano with programmed note verification
- 3. Piano with programmed note and finger verification

Control Module PCB Design

Control Module - Original Microcontroller Program

Control Module - Requirements

- Process I²C to I/O Expanders at 1.7MHz
- Output color codes to the correct LEDs
- Process 10 simultaneous key presses within 1 ms

Control Module - ???

Designed to be scalable (up to full 88 keys)

- 174 Photointerrupters
- 88 Color Sensors
- 88 Indicator LEDs

Soft Requirement: Ensure time resolution of velocity sensing

Will return to this topic later

Software Module - GUI

Try again...
Your Choice

Correct Choice

Verification Failures

- Power Module
 - 1.67 V supplied (1.8 V required)
 - 250 mA supplied (350 mA required)
- Control Module
 - Serial communication from computer to microcontroller did not work

Integration and Reliability Failures

These components worked alone, but could not be integrated into the final build.

- Color Sensor (all 12)
- Indicator Module
- GUI

These components worked most of the time.

- Input Module Color Sensors
 - I²C Communication sometimes shut down (Interrupts failed to trigger)
 - Values were inconsistent without a bright white light source

Velocity Sensing Time Resolution (1)

Velocity Sensing Time Resolution Mistake

Original Target: minimum 0.5 ms per scan

1.7MHz I²C

- ~.259 ms to scan 174 Photointerrupters
- ~.140 ms to output 10 colors to indicator LEDs

TCS3471 Color Sensor is only capable of 400kHz I²C!

~1.8 ms to scan 10 color sensors

Velocity Sensing Time Resolution (2)

Assuming \sim .1ms for all other program logic .10 + .259 + .14 + 1.80 = 2.30 ms

The next keyscan in 1.80 ms late!

- Not significant latency, but is significant for dynamic control.
- Fast keypresses were measured in under 2ms.

Improving the Time Resolution (1)

Color Sensor Scanning - Hardware Solution

- Use an intermediate data buffer
- Poll color sensors at a fixed interval
- Faster communication between microcontroller and buffer

Disadvantages:

- Results in a much more complicated and costly circuit
- Increases power consumption significantly

Improving the Time Resolution (2)

Color Sensor Scanning - Software Solution

- Keep a queue color sensors to scan
- Ensure photointerrupter scans are not delayed
- Trades inaccurate velocity sensing for a negligible amount of latency

Improving the Time Resolution (3)

Increasing Photointerrupter Scanning Speed

Use layers of multiplexers or a large key matrix:

- Much faster than I²C to I/O port expanders
- Uses a large number of pins

Physical Considerations

Piano

- Keys need good alignment and solid structure
- Indicator LED placement

Colored Finger Sleeves

- Bother experienced players
- Color sensing is difficult
 - Placement
 - Lighting

Future Steps

- Finish integrating all modules
- Graphical display of notes compared to metronome beats
- Detailed analysis of key press data
- Pedal and speaker integration
- On-board memory
- Full 88 keys
- Key action improvements
- And more...

Questions