

Bike Navigation Assistant

Final Presentation Group 48

Akshat Khajuria | Saumil Agrawal | Arvind Arunasalam

Project Introduction

- On-bike peripheral that improves ease of navigation
- Communicates with mobile application
- Features include
 - LEDs and buzzer to indicate upcoming turn
 - Ultrasonic sensor and blinkers for improved safety
 - Speedometer

Objective

- Lack of directional knowledge in new location
- Reduce car use
- Increase short term bike rental
- Bike safety growing concern:
 - 1000 bike-related deaths
 - 0.5M injuries

Physical Design

- Microcontroller, Buzzer, Bluetooth
 Module and Power Supply
- 2. LEDs
- 3. Ultrasonic Sensor
- 4. Indicators/Blinkers
- 5. Reed Switch and Magnet

Block Diagram

Mobile Application

Connect to Bluetooth device

Current Location every 2 seconds

Enter Destination

Call Google Maps API
Send data to Bluetooth module

Distances

Directions

Speedometer

- Reed Switch on bike fork
- Magnet on spoke
- Microcontroller reads HIGH when switch is closed by magnet
- Speed calculated using diameter
 and time between two revolutions

Speedometer R&V

Ultrasonic Sensor - Max Sonar EZ2

- Operating range of 15 cm to 645 cm
- Pulse Width to calculate distance
- Obtains readings by pulling trig(RX) pin high

Ultrasonic Sensor R&V

Voltage Readings at Specific Distances

Beeper - CEM-1203(42)

- Beeper to notify user
- Varying frequencies based on distance
- Continuous beep if alerted by ultrasonic sensor

Power Supply (Voltage Regulator)

- Outputs 5V regardless of input voltage
- Powers microcontrollers and ultrasonic sensor

Primary Microcontroller

- Receives data from application and speedometer microcontroller
- Calculates distance traveled (from speedometer data)
- Sends signals to LEDs and buzzer
- Communicates with ultrasonic sensor

Secondary Microcontroller

- Calculates speed
- Send revolution count to primary microcontroller via I2C protocol
- Control logic for blinkers

Lab Test (Left Turn)

Distance: 44 m

Distance: 35 m

Distance: 21 m

Road Test (Right Turn)

Distance: 42 m

Distance: 37 m

Distance: 24 m

Latency

- Application to Bluetooth Communication: 2 ± 0.260 seconds
- Google Maps Directions API: 0.031 seconds (median)
- LEDs insignificant
- Beeper: insignificant

Total Latency: 2 ± 0.291 seconds

Challenges

- PCB design
- GPS signal strength
- Bulky circuit and wiring
- Delicate components
- Sensitivity of ultrasonic sensor

Next Steps

- Develop compact circuit
- Partner with bike sharing services
- Partner with bike manufacturing companies
- Sell as standalone mountable product

Thank You!

Appendix

Project Circuit Schematic

Application Flowchart

Microcontroller Logic

Google Maps Directions API Latency

