Photocell Music Board

Team 39

Alonzo Marsh, Sean Li

ECE 445 Spring 2018

Introduction

- Unexplored potential of non-traditional music instruments
- Unprecedented control over sound with synthesizers and digital signal processing
 - SuperCollider audio synthesis programming language
- Prototype music board designed by Dr. Eli Fieldsteel

Objective

- Create improved version of Dr. Fieldsteel's prototype board
 - Must be able to withstand national travel
- Allow the use of different sensors
- Modular design
- Send data to computer via USB Serial

Block Diagram

Final Product

Photocell Slave Board

Voltage Divider Circuit

Lighting	Photocell Resistance	V1 Node
Direct Light	< 1k Ohms	> 4.5 V
Normal Light	~ 2k Ohms	~ 3.5 V
Completely covered	> 50k Ohms	< 2.5 V

- Series resistor: 4.7k Ohms
 - Values between 1k and 50k considered
- Active Range between 2.5 V and 4.5 V

Slave Board

Bottom of Board

Top of Board

Master Control Board

- ATmega328PB microcontroller
- USB to Serial connection with computer
- Collects photoresistor data from all boards
- Status LED shows cross-board connection

Master Board

User Interface Board

User Interface - Buttons

- Six buttons to select presets
 - RC debounce circuit
 - Inverting Schmitt Trigger
- Button presses sent to SuperCollider

User Interface Board

Controlling the LCD Screen

- Powered with 5V supply
- LCD uses the SBN1661G controller
 - 8 data pins; digital control
 - SPI interface
- Adjustable contrast
- LED backlight

Image from:

https://www.crystalfontz.com/product/cfag1223 2dvvhva-transflective-graphic-lcd-122x32

I²C Algorithm Design

- Clock signal generated by supervisor board
- Each data value is 10 bits long
- Each data value requires 1 µs to send to supervisor board

I²C Algorithm Problems

Original Design:

1 µs

65 µs

For each slave board subset read to master

Timing of Full Masterboard operation:

- Reading each 4 slave board subset = 4 reads in 65 μs
- one package to user interface = 1 read/write in 1 μs
- one serial output = 8224 bits at 115200 bits per second
- Total = 71.65 ms → 13.96 Hz

I²C Algorithm Problems

Current State:

100 ms

6,500 ms

We have only managed to achieve a 10 ms clock cycle

Timing of Full Masterboard operation:

- Reading each 4 slave board subset = 4 reads in 6.5 s
- one package to user interface = 1 read/write in 100 ms
- one serial output = 8224 bits at 115200 bits per second
- Total = 26.17 s \rightarrow 0.038 Hz

Conclusion

- Photoresistor voltage divider circuits and MUX worked reliably
- Choose LCD screen with more support
- PIC32 ADC conversion reference voltage mismatch
- I²C style algorithm for board to board communication

Future Work and Revision 3

- Test different sensors, like flex sensors
- Design a higher speed communication protocol

Revision 3:

- Remove PIC microcontrollers from each slave board
- Use master board and extra 16 to 1 MUX to read all 16 slave boards in less time