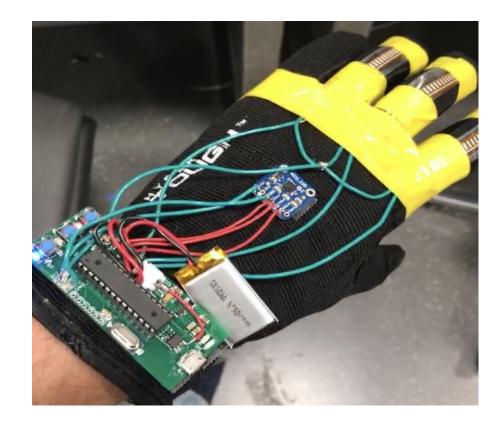
Wireless Midi Controller

By: Michael Brady, Sarah Palecki, Allan Belfort Group 57 TA: Anthony Caton

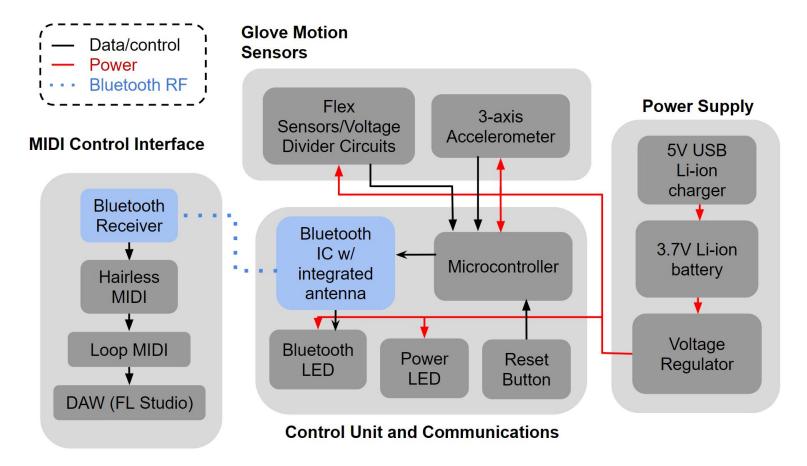
Introduction

- Wireless MIDI Glove Instrument
- For DJs or artists
 - Eliminates need to stand by soundboard or computer
- Uses simple gestures
 - Flex of a finger
 - Tilt of your wrist

Wireless MIDI Glove



Presentation Outline

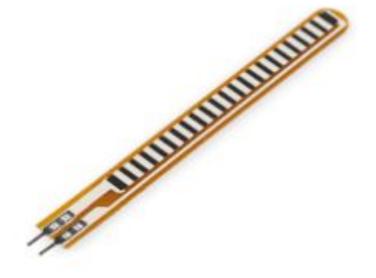

- System Overview and Block Diagram
- Hardware used
 - Sensors
 - Control Unit and Communications
 - Power Supply
- Software Used
 - MIDI Control Interface
 - MIDI Code
- Future Work/Acknowledgements/Thank You

System Overview

- Hardware:
 - Microcontroller: Atmega328
 - Bluetooth: RN-41
 - 2.2" flex sensors x3
 - 3-axis analog accelerometer
- Software
 - Sensor mapping/MIDI outputting/Microcontroller code
 - Hairless MIDI
 - Loop MIDI
 - FL Studio

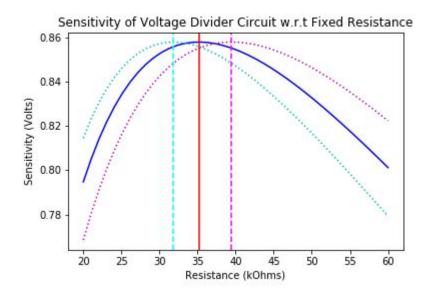
Block Diagram

Glove Motion Sensors-3-axis accelerometer

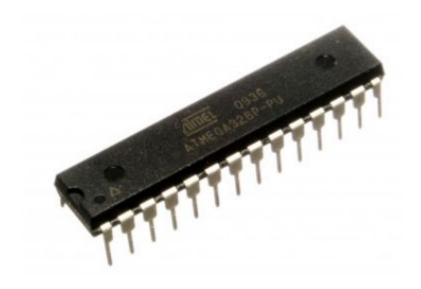

- Adafruit Adxl335 3-axis analog accelerometer
 - Full sensing range of +/- 3G
 - Runs on 3.3V
- X-axis tilt = sound panning
- Y-axis tilt = volume control
- Output directly to the microcontroller

Glove Motion Sensors- Flex Sensors

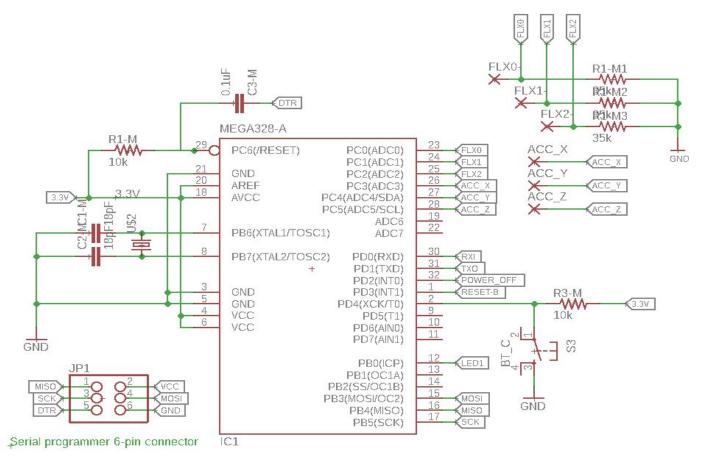
- Sparkfun 2.2" Flex Sensors
- 3 sensors:
 - Index, middle, ring finger
- Voltage divider circuit
- Output of voltage divider circuits are read as analog inputs to microcontroller


$$V_{out} = V_{in} \frac{(R_{flex})}{(R_{flex} + R_2)}$$

Analog Sensor Mapping	pppp ppp	= 8 = 20
	pp	= 31
	p	= 42
Mar _ Input	mp	= 53
$Output = \frac{Max - Input}{Max - Min} * 127$	mf	= 64
Max – Min	ſ	= 80
	ſſ	= 96
	ſſſ	= 112
	JJJ	= 127


Flex Sensors Voltage Divider Data and Tolerance Analysis

- Maximize sensitivity of voltage divider circuit
- Looked for fixed resistance
- Modeled the errors
 - Due to inconsistencies in sensors



Control Unit and Communications-Microcontroller

- Atmega328p
 - 8-bit AVR RISC based
 - 32KB ISP Flash memory
 - Operating at 3.3V
 - 8 MHz clock

Microcontroller: Atmega328 Schematic

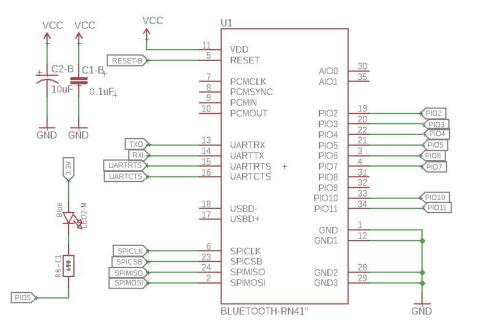
Connections needed for communications are TXD, RXD, & GND. 3.3V is internally regulated

Microcontroller: Programming (Pin map to Arduino map)

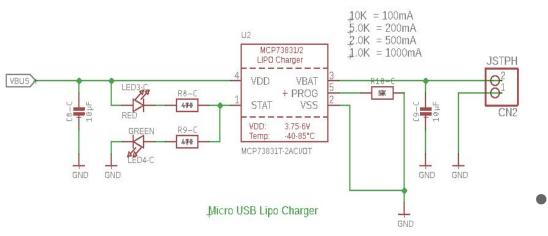
Arduino function		~ ~		Arduino function
reset	(PCINT14/RESET) PC6	20	PC5 (ADC5/SCL/PCINT13)	analog input 5
digital pin 0 (RX)	(PCINT16/RXD) PD0	27	PC4 (ADC4/SDA/PCINT12)	analog input 4
digital pin 1 (TX)	(PCINT17/TXD) PD1	26	PC3 (ADC3/PCINT11)	analog input 3
digital pin 2	(PCINT18/INT0) PD2	1 25	PC2 (ADC2/PCINT10)	analog input 2
digital pin 3 (PWM)	(PCINT19/OC2B/INT1) PD3	5 24	PC1 (ADC1/PCINT9)	analog input 1
digital pin 4	(PCINT20/XCK/T0) PD4	3 23	PC0 (ADC0/PCINT8)	analog input 0
VCC	VCCE	/ 22	GND	GND
GND	GND	9 21	AREF	analog reference
crystal	(PCINT6/XTAL1/TOSC1) PB6	20	AVCC	VCC
crystal	(PCINT7/XTAL2/TOSC2) PB7	10 19	PB5 (SCK/PCINT5)	digital pin 13
digital pin 5 (PWM)	(PCINT21/OC0B/T1) PD5	13 58	PB4 (MISO/PCINT4)	digital pin 12
digital pin 6 (PWM)	(PCINT22/OC0A/AIN0) PD6	12 17	PB3 (MOSI/OC2A/PCINT3)	digital pin 11 (PWM)
digital pin 7	(PCINT23/AIN1) PD7	13 16	PB2 (SS/OC1B/PCINT2)	digital pin 10 (PWM)
digital pin 8	(PCINTO/CLKO/ICP1) PB0	14 15	PB1 (OC1A/PCINT1)	digital pin 9 (PWM)

ATmega328 Pin Mapping

Degital Pins 11, 12 & 13 are used by the ICSP header for MISO, MOSI, SCK connections (Atmega 168 pins 17, 18 & 19). Avoid lowimpedance loads on these pins when using the ICSP header.

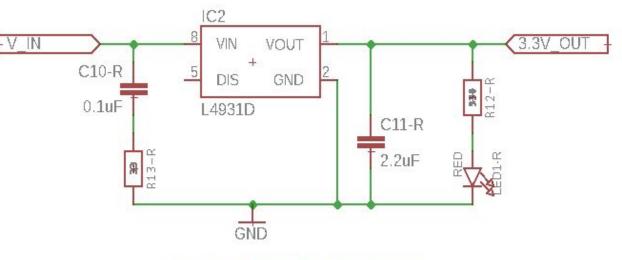

Control Unit and Communications: Bluetooth Transceiver

- Model RN-41
 - Fully certified class 1 Bluetooth
 - Used in transmitting mode
 - 115,200 baud
 - Bluetooth receiver is built in to computer or added via bluetooth-usb receiver
 - Blue LED for debugging



Bluetooth Transceiver: Programming

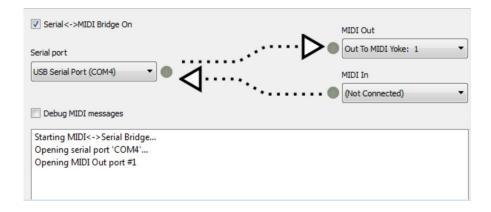
- Necessary to pair the transmitting RN-41 Bluetooth module with the Bluetooth module located inside a laptop
- Easy first-time setup through computer
- LED on PIO5 (Status) pin to show connection state


Power Supply: Li-Ion Battery & USB Charger

- MCP73831T charging IC
 - 5V micro USB input
 - Variable charge rate
 - Optimal charging speed
 - Extended battery life
 - Full charge in 1-2 hours
 - Charge status LEDs
 - Red- charging
 - Green- charge complete
 - 350 mAh Li-Ion battery
 - 3.7-4.2V output depending on charge
 - Device run time > 6 hours

Power Supply: Voltage Regulator

- L4931 very low dropout regulator
 - Input 3.7-4.2V from battery
 - Output 3.3V +/- 1%
 - 4-6 mA current draw


 \mathbf{a}_{i}

MIDI Control Interface: Bluetooth Receiver

- Located inside of most laptops
 - External bluetooth-USB receiver can be used if needed
- Simple pairing procedure
- We used the software "Tera Term" to debug the Bluetooth output
- Settings used:
 - Baud rate of 115200 bits/second
 - Line ending: CR-LF

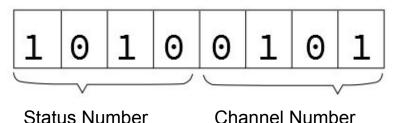
MIDI Control Interface: Hairless MIDI

- Serial <-> MIDI Bridge
- Debug tool for MIDI messages

MIDI Control Interface: Loop MIDI

- Create virtual MIDI ports on the computer
 - Free
 - Easy to download
- Input from Hairless MIDI
- Output to DAW
 - Lets DAW recognize data as MIDI

MIDI Control Interface: DAW


- FLStudio
- Allows musicians to create, edit, record or arrange their music
- Works with MIDI protocol to record and play MIDI files
- Received the glove's codes and processed them to create/modify sounds

MIDI Control Interface: MIDI Code

- Used the Arduino Midi Library by FortySevenEffects on Github
 - Allows for use of Midi.SendNoteOn(note, channel, velocity);
 - Cleans up the code
- MIDI Code Format
 - Status Bytes
 - Data Bytes
- Two types of MIDI messages:
 - "Note On"
 - "Control Change"
 - Made up of Status + Data Bytes

If MSB is 0, this is a data byte. If MSB is 1, this is a status (command) byte

MIDI "Note On"

- A "Note On" Midi message contains 3 bytes:
 - 1 "Status Byte": 0x9?
 - ? = Channel
 - 2 "Data Bytes": 0x?? + 0x??
 - 1st Byte ?? = note value (60 = middle C)
 - 2nd Byte ?? = velocity value
- Velocity value is used to change volume

MIDI Status Messages					
Message Type	MS Nybble*	LS Nybble [*]	Number of Data Bytes	Data Byte 1	Data Byte 2
Note On	0x9	Channel	2	Note Number	Velocity

* A Nybble is equivalent to 4 bits

MIDI "Control Change"

- A "Control Change" Midi message contains 2 bytes:
 - 1 "Status Byte": 0xB?
 - ? = Channel
 - 1 "Data Byte": 0x??
 - ?? = Controller Number
- Used to change effects
 - o Pan
 - Vibrato
 - Pitch Bend

Message Type	MIDI Status Messages					
	MS Nybble*	LS Nybble*	Number of Data Bytes	Data Byte 1		
Control Change	OxB	Channel	1 Con	trol Number		

* A Nybble is equivalent to 4 bits

Future Hardware Development

- Power Button
 - Turn device On/Off
- LEDs
 - In fingers with flex sensors
 - Change intensity
- Pressure sensors
 - In fingertips
 - Control different sounds
- Better materials
- Slimmed down package

Future Software Development

- Enable a "tapping" feature on the accelerometer
 - Uses sudden acceleration along z-axis
 - "Single tap" vs. "Double tap"
 - Change programs
 - Control separate functions
- Change the sensor mapping algorithm
 - Simple linear algorithm vs. specifically designed algorithm for each sensor

Overall Analysis of Wireless MIDI Glove

Strengths:

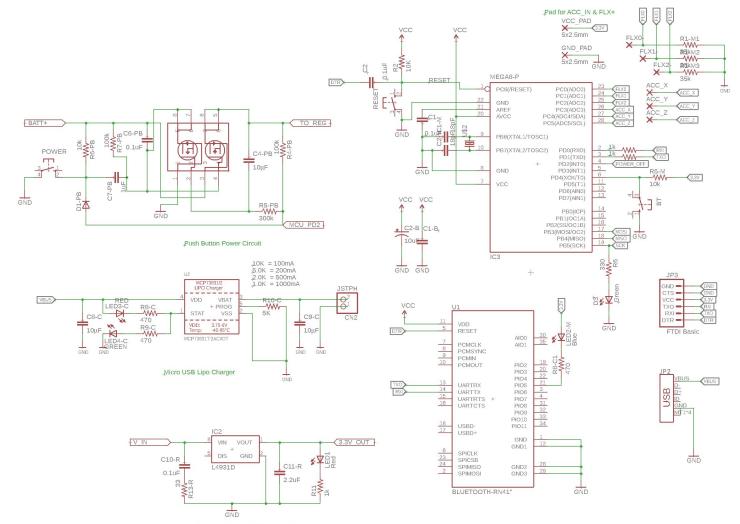
- Can be used at a range of ~50 feet from computer
- Low-latency

Threats:

- Global DJ Tornado Gloves
- Remidi Glove and Controller

Weaknesses:

- Possible difficulty in user setup
- Only produces sounds, does not edit them


Opportunities:

- Innovative performance wear
- Can use in addition to supplement a different instrument

Acknowledgements

- Professor Lippold Haken, ECE 402
- Mr. Anthony Caton

Very Low Dropout Voltage Regulator