
Wireless Midi
Controller

By: Michael Brady, Sarah Palecki, Allan Belfort
Group 57

TA: Anthony Caton

Introduction

● Wireless MIDI Glove Instrument
● For DJs or artists

○ Eliminates need to stand by
soundboard or computer

● Uses simple gestures
○ Flex of a finger
○ Tilt of your wrist

Wireless
MIDI
Glove

Presentation Outline
● System Overview and Block Diagram
● Hardware used

○ Sensors
○ Control Unit and Communications
○ Power Supply

● Software Used
○ MIDI Control Interface
○ MIDI Code

● Future Work/Acknowledgements/Thank You

System Overview
● Hardware:

○ Microcontroller: Atmega328
○ Bluetooth: RN-41
○ 2.2’’ flex sensors x3
○ 3-axis analog accelerometer

● Software
○ Sensor mapping/MIDI

outputting/Microcontroller code
○ Hairless MIDI
○ Loop MIDI
○ FL Studio

Block Diagram

Glove Motion Sensors-
3-axis accelerometer
● Adafruit Adxl335 3-axis analog accelerometer

○ Full sensing range of +/- 3G
○ Runs on 3.3V

● X-axis tilt = sound panning
● Y-axis tilt = volume control
● Output directly to the microcontroller

Glove Motion Sensors- Flex Sensors
● Sparkfun 2.2’’ Flex Sensors
● 3 sensors:

○ Index, middle, ring finger

● Voltage divider circuit
● Output of voltage divider circuits are

read as analog inputs to microcontroller

Analog Sensor Mapping

Flex Sensors Voltage Divider Data and
Tolerance Analysis

● Maximize sensitivity of voltage
divider circuit

● Looked for fixed resistance
● Modeled the errors

○ Due to inconsistencies in sensors

Control Unit and Communications-
Microcontroller

● Atmega328p
○ 8-bit AVR RISC based
○ 32KB ISP Flash memory
○ Operating at 3.3V
○ 8 MHz clock

Microcontroller:
Atmega328
Schematic

Microcontroller: Programming (Pin map to
Arduino map)

Control Unit and Communications:
Bluetooth Transceiver
● Model RN-41

○ Fully certified class 1 Bluetooth
○ Used in transmitting mode
○ 115,200 baud
○ Bluetooth receiver is built in to

computer or added via
bluetooth-usb receiver

○ Blue LED for debugging

Bluetooth Transceiver: Programming
● Necessary to pair the transmitting

RN-41 Bluetooth module with the
Bluetooth module located inside
a laptop

● Easy first-time setup through
computer

● LED on PIO5 (Status) pin to show
connection state

Power Supply: Li-Ion Battery & USB
Charger

● MCP73831T charging IC
○ 5V micro USB input
○ Variable charge rate

■ Optimal charging speed
■ Extended battery life

○ Full charge in 1-2 hours
○ Charge status LEDs

■ Red- charging
■ Green- charge complete

● 350 mAh Li-Ion battery
○ 3.7-4.2V output depending on charge
○ Device run time > 6 hours

Power Supply: Voltage Regulator

● L4931 very low
dropout regulator

○ Input 3.7-4.2V from
battery

○ Output 3.3V +/- 1%
○ 4-6 mA current draw

MIDI Control Interface: Bluetooth Receiver

● Located inside of most laptops
○ External bluetooth-USB receiver can be used if needed

● Simple pairing procedure
● We used the software “Tera Term” to debug the Bluetooth output
● Settings used:

○ Baud rate of 115200 bits/second
○ Line ending: CR-LF

MIDI Control Interface: Hairless MIDI

● Serial <-> MIDI Bridge
● Debug tool for MIDI messages

MIDI Control Interface: Loop MIDI
● Create virtual MIDI ports on the computer

○ Free
○ Easy to download

● Input from Hairless MIDI
● Output to DAW

○ Lets DAW recognize data as MIDI

MIDI Control Interface: DAW

● FLStudio
● Allows musicians to create, edit,

record or arrange their music
● Works with MIDI protocol to record

and play MIDI files
● Received the glove’s codes and

processed them to create/modify
sounds

MIDI Control Interface: MIDI Code
● Used the Arduino Midi Library by FortySevenEffects on Github

○ Allows for use of Midi.SendNoteOn(note, channel, velocity);
■ Cleans up the code

● MIDI Code Format
○ Status Bytes
○ Data Bytes

● Two types of MIDI messages:
○ “Note On”
○ “Control Change”
○ Made up of Status + Data Bytes Status Number Channel Number

MIDI “Note On”
● A “Note On” Midi message

contains 3 bytes:
○ 1 “Status Byte”: 0x9?

■ ? = Channel
○ 2 “Data Bytes”: 0x?? + 0x??

■ 1st Byte ?? = note value (60 =
middle C)

■ 2nd Byte ?? = velocity value

● Velocity value is used to change
volume

MIDI “Control Change”
● A “Control Change” Midi message

contains 2 bytes:
○ 1 “Status Byte”: 0xB?

■ ? = Channel
○ 1 “Data Byte”: 0x??

■ ?? = Controller Number

● Used to change effects
○ Pan
○ Vibrato
○ Pitch Bend

Future Hardware Development
● Power Button

○ Turn device On/Off

● LEDs
○ In fingers with flex sensors
○ Change intensity

● Pressure sensors
○ In fingertips
○ Control different sounds

● Better materials
● Slimmed down package

Future Software Development
● Enable a “tapping” feature on the accelerometer

○ Uses sudden acceleration along z-axis
○ “Single tap” vs. “Double tap”
○ Change programs
○ Control separate functions

● Change the sensor mapping algorithm
○ Simple linear algorithm vs. specifically designed algorithm for each sensor

Overall Analysis of Wireless MIDI Glove
Strengths:

● Can be used at a range of ~50
feet from computer

● Low-latency

Weaknesses:

● Possible difficulty in user setup
● Only produces sounds, does

not edit them

Opportunities:

● Innovative performance wear
● Can use in addition to

supplement a different
instrument

Threats:

● Global DJ Tornado Gloves
● Remidi Glove and Controller

Acknowledgements

● Professor Lippold Haken, ECE 402
● Mr. Anthony Caton

Thank you!

