
ECE445 Presentation

Team 18: Butter Passing Robot

Yujie Hsiao, Yuchen He and Yuxiang Sun

Introduction

● Idea from the cartoon Rick and Morty.

Pass the butter!!

Problem Statement & High Level Requirement

● Self moving on a regular-sized (~ 2m*1m) table.

● Edge detection.

● The object detection program can distinguish yellow, cubed

butter from other common breakfast objects and direct the

vehicle toward butter.

Objectives

● It’s fun to have a robot to work for you in daily breakfast

time.

● As long as this works, we may apply it to get other stuffs

which is beneficial to those who have physical disabilities.

Problem Description

Define butter:

Butter with or without the thin

package all count.

Plate:

Can be any plates but their

edges should be black.

Block Diagram

Physical Design

Infrared sensor

Servo motor

Rasberry pi

PCB

Batteries

Camera

Control

The microcontroller is mainly operating 2 parts of the motions, one

for moving the car and one for controlling the hook.

1. Moving the car

We use H-bridge to driver our motors and make the turns

that we need to the butter and back to the user.

Control

MCU code:

1. Turn 60°clockwise

2. Move Forward

3. Turn 30° clockwise

4. Move Forward

Going Forward and Making Turns

Control

Stop at Edge

Control

Control

The microcontroller is mainly operating 2 parts of the motions, one

for moving the car and one for controlling the hook.

2. Controlling the hook

After the infrared sensor senses the plate, the hook will be

driven down by a servo motor to get the plate of the butter, and

then raises up as the butter is back to the user.

Control

Schematic: Power Booster, two power Switches

Schematic: H-bridge circuit and MCU

Booster (TPS61032)

In order to meet requirement of supplying robot at least 30 minutes running, I designed two Lithium batteries

(3400mAh * 2) in parallel instead of in series as power source for whole system. Because when the batteries

connected in series, we need to check whether the batteries are in saturation. So I use boot converter TPS61032

as first part of circuit to provide system 5V since the main chip and some components are used a stable 5V power

The input range of booster (TPS61032) could be 1.8V to 5.5V, which cover the both Lithium battery and power

bank output. The output current at 5V is up to 4000mA that also meet our design requirement.

I also reserved the R3 and R4 for tuning 5V output accuracy and a jumper JP1 for isolation.

For verification, when I received my PCB board, I could connect the batteries as input and see if the output is fixed

5V. I plan to apply different voltages (2.5V – 3.7V) to the boost converter using function generator in lab.

Meanwhile, we will use the multimeter to measure the output voltage of the regulator, which should always be 5V.

Input Voltage (V) Output Voltage (V)

1.8 4.935

2.2 4.962

2.6 4.977

3.0 4.965

3.4 4.963

3.7 4.961

4.2 4.965

5.8 5.119

Power Switch (TPS2022D) (TPS2023D)

I added two power-distribution switch with overcurrent protection and undervoltage lockout. One is for the main

system and one is for Raspberry subsystem (USB). The main controller can enable/disable subsystem power and

monitor subsystem overcurrent. A reset switch is to make warm reset if needed.

When the output load exceeds the current-limit threshold or a short is present, the TPS202x limits the output

current to a safe level by switching into a constant-current mode, pulling the overcurrent (OC) logic output low.

When continuous heavy overloads and short circuits increase the power dissipation in the switch, causing the

junction temperature to rise, a thermal protection circuit shuts off the switch to prevent damage.

The TPS2022 at 1.5-A load, the TPS2023 at 2.2-A load

The TPS2023 at 2.2-A load

H-Bridge Logic

Enable Logic Pin 1 Logic Pin 2 Result

High Low High Forward

High High Low Reverse

High Low Low Stop

High High High Stop

Low / / Off

Flow Chart

Object Detection

Object Detection

Trial 1: OpenCV Object Detection API -- Haar Classifier

First Training Session: 1500 images in total

Second Training Session: 10500 images in total

Two Types of Positive Images:

- photos of butter (different

angles) taken in the similar

environment

- positive photos inserted into

backgrounds by OpenCV

Object Detection

Trial 1: OpenCV Object Detection API -- Haar Classifier

Too many false positive

- Both rounds hold same accuracy, 62%

- Number of false positive detections decreases

by ~20% in the second model

Object Detection

Trial 1: OpenCV Object Detection API -- Haar Classifier

Object Detection

Trial 1: OpenCV Object Detection API -- Haar Classifier

Object Detection

Trial 2: Tensorflow Object Detection API with ssd mobilenet

Object Detection

Trial 2: Tensorflow Object Detection API with ssd mobilenet

First Training Session: 1030 images

Second Training Session: 2300 images

Object Detection

Trial 2: Tensorflow Object Detection API with ssd mobilenet

Works Okay with images

After 1587 steps

Object Detection

Trial 2: Tensorflow Object Detection API with ssd mobilenet

Works Okay with images

After 17349 steps

Object Detection

Trial 2: Tensorflow Object Detection API with ssd mobilenet

Accuracy decreases later

After 17349 steps

Object Detection

Trial 2: Tensorflow Object Detection API with ssd mobilenet

Accuracy decreases later

After 59640 steps

Object Detection

Trial 2: Tensorflow Object Detection API with ssd mobilenet

67%

35%

Object Detection

Trial 2: Tensorflow Object Detection API with ssd mobilenet

Won’t work with video stream

The butter has to be very close

to the camera

Object Detection

Trial 2: Tensorflow Object Detection API with ssd mobilenet

Second Training Session: 2300 images

- Took more photos in the target environment

- Placed the butter further away from camera

- when manually selecting target region in images,

included the plate

Object Detection

Trial 2: Tensorflow Object Detection API with ssd mobilenet

Object Detection

Trial 2: Tensorflow Object Detection API with ssd mobilenet

High CPU load (which can go up to 300%) causes Pi to freeze

Object Detection Trial 3: HSV Color Detection

- Define a HSV color range

- tested with different values

- also used opencv to get the color value in the actual

image. Surprisingly, this range doesn’t work well

- Apply the color range on the image to get a “mask” image

- Find contours in the “mask” image

- Among all the contours, we only used the largest one to

derive location info about the butter

Object Detection Trial 3: HSV Color Detection

actual image mask image

Object Detection Trial 3: HSV Color Detection

- works well with just butter

- accuracy drops drastically with similar-color object present

Object Detection Trial 3: HSV Color Detection

Object Detection Trial 3: HSV Color Detection

Object Detection Trial 3: HSV Color Detection

Object Detection Pi-MCU Communication

- i2c communication protocol

Future Work

- integration between software parts and hardware platform

- object detection

- Optimization for HSV method:

- could merge close contours

- Use different photos to train another model

- keep the package, which may contain more unique

features

Acknowledgement

We would like to express our appreciation to:

- our TA, Xinrui Zhu

- Professor Kumar

- all the course staff of ECE 445

