

BUTTER PASSING ROBOT

By

Yu Jie Hsiao

Yuchen He

Yuxiang Sun

Final Report for ECE 445, Senior Design, Spring 2018

TA: Xinrui Zhu

26 April 2018

Project No. 18

ii

Abstract

This document demonstrates the design, development, test work we devoted into our project, the

Butter Passing Robot. It also demonstrated the result of our project. The purpose of our project is to

build a robot that can find and bring back butter by itself on a dining table. The project idea came from

the sitcom Rick and Morty. With further work, our project can potentially be helpful to people with

physical disability.

iii

Contents

1. Introduction .. 1

1.1 Objective ... 1

1.2 High-Level Requirement ... 1

1.3 Block Diagram ... 1

2 Design ... 2

2.1 Power Module ... 2

2.1.1 Booster ... 2

2.1.2 Power Switch.. 3

2.2 Vehicle Module ... 5

2.2.1 H-bridge Circuit .. 5

2.2.2 Servo Motor ... 5

2.2.3 Infrared Sensor ... 5

2.2.4 Physical Design ... 5

2.3 Control Module ... 6

2.3.1 Microcontroller (ATmega328p) ... 6

2.3.2 Raspberry Pi and Camera ... 7

2.4 Object Detection Module ... 7

3. Design Verification .. 8

3.1 Circuit Verification .. 8

3.1.1 Booster Verification ... 8

3.1.2 Power Switch Verification .. 8

3.1.3 USB port verification .. 9

3.2 Vehicle Verification ... 9

3.2.1 H-Bridge Chip and Motor Verification ... 9

3.2.2 Infrared Sensor and Hook Verification... 10

3.3 Object Detection Verification ... 10

3.3.1 Verification of Haar Classifier model ... 10

3.3.2 Verification of model trained with Tensorflow Object Detection API 11

3.3.3 Verification of HSV Color Detection Model ... 12

iv

4. Costs .. 13

4.1 Parts .. 13

4.2 Labor ... 13

5. Conclusion ... 14

5.1 Accomplishments .. 14

5.2 Uncertainties ... 14

5.3 Ethical considerations ... 14

5.4 Future work ... 14

References .. 15

Appendix A Requirement and Verification Table ... 16

Appendix B Comparison between Haar Classifiers .. 18

Appendix C Test Results of Tensorflow Model .. 19

1

1. Introduction

1.1 Objective
For the senior design project, we are trying to build a small robot that can find butter on the table and

bring it back. This idea was inspired by the famous sitcom “Rick and Morty”. In one of the episodes, Rick

built a robot which could fetch the butter once it received a verbal command from its owner. [1] Such

robot has the ability to move around on its own, detect target objects, recognize human speech and

recognize faces. To make our project useful but also manageable, we will mainly try to implement a

small autonomous vehicle with an object detection module. We assume that the butter is cube-shaped,

yellow in color, with or without boxing and placed in a plate. After this project is done and works well,

we can then make it stronger and apply it to detect some other objects, which can potentially be helpful

for those with physical disabilities.

1.2 High-Level Requirement

• The vehicle can move by itself on a regular-sized (~ 2m*1m) table.

• The vehicle can detect the edge of the table and it will stop in order to prevent itself from falling

• The object detection program can distinguish yellow, cubed butter from other common

breakfast objects (juice, bread… etc) and direct the vehicle toward butter. It should have an

accuracy of at least 80%.

1.3 Block Diagram
Our project consists of three modules: the power supply, the control module and the robotic platform.

Figure 1 contains a detailed diagram for different modules in the project. Compared to the original block

diagram, we replaced the voltage regulator with the booster, replaced the current-limiting resistor with

power switches and removed the temperature sensor. These decisions were made after we consulted

our PCB design with our TA and other experienced people.

Figure 1 Block Diagram

2

2 Design

2.1 Power Module

2.1.1 Booster

To meet requirement of supplying robot at least 30 minutes running, we decided to use two Lithium

batteries (3400mAh * 2) in parallel instead of in series as the power source for the whole system. The

reason is that we need to check whether the batteries are in saturation when the batteries are

connected in series. Since the microcontroller and other components require a stable 5V power, we

added a boost converter TPS61032 in the circuit.

According to the data sheet from TI, the input range of our booster could be 1.8V to 5.5V, which cover

both the Lithium battery and power bank output. The output current at 5V is up to 4000mA that also

meet our design requirement. We also reserved the R3 and R4 for tuning 5V output accuracy and a

jumper JP1 for isolation.

The current through the resistive divider should be about 100 times greater than the current into the LBI

pin. The typical current into the LBI pin is 0.01uA, and the voltage across R2 is equal to the LBI voltage

threshold that is generated on-chip, which has a value of 500 mV. The recommended value for R2 is

therefore in the range of 500K ohms. From that the value of resistor R1, depending on the desired

minimum battery voltage 𝑉𝑏𝑎𝑡, can be calculated using the following equation

The output of the low battery supervisor is a simple open-drain output that goes active low if the

dedicated battery voltage drops below the programmed threshold voltage on LBI. The output requires a

pullup resistor with a recommended value of 1M ohms. The maximum voltage which is used to pull up

the LBO outputs must not exceed the output voltage of the dc/dc converter. If not used. The LBO pin can

be left floating or tied to GND.

Reference EVM:

 TPS61032 LBI (R1, R2) Robot R1, R2 ==> EVM R1, R2

TPS61032 Robot --> L1, C1, C2, C3, C4 mapping to EVM ----> L1, C3, C4, C1, C2

3

Table X TPS6103x EVM Bill of Materials

The output voltage of the TPS61030 dc/dc converter section can be adjusted with an external resistor

divider. The typical value of the voltage on the FB pin is 500 mV. The maximum allowed value for the

output voltage is 5.5V. The typical current into the FB pin is 0.01uA, and the voltage across R6 is typically

500 mV. Recommended value for R4 from datasheet is 500K ohms, in order to set the divider current at

1uA or higher. From datasheet,

Capacitors can be divided into two groups, input capacitors and output capacitors. From datasheet, at

least a 10-uF input capacitor is recommended to improve transient behavior of the regulator and EMI

behavior of the total power supply circuit. On the other hand, the major parameter necessary to define

the output capacitor is the maximum allowed output voltage ripple of the converter. This ripple is

determined by two parameters of the capacitor, the capacitance and the ESR. It is possible to calculate

the minimum capacitance needed for the defined ripple using equation:

Schematic R5 is pull-up resistor, usually use 100k ~ 1M OHM, it is for keeping a logic level.

The circuit for boost converter, I’ve followed the TI’s TPS61032 evaluation modules (EVM) design and

also bill of material that include schematic, PCB layout guide, component manufacture and selection.

And power-distribution switch too. So that we can make sure there is lower risk in the power circuit

design.

2.1.2 Power Switch

We used two power-distribution switches with overcurrent protection and under-voltage lockout. One is

for the main system and one is for Raspberry subsystem (USB). The main controller can enable/disable

4

subsystem power and monitor subsystem overcurrent. A reset switch is to make warm reset if needed.

The TPS2022 is at 1.5-A load, and the TPS2023 is at 2.2-A load.

According to the data sheet from TI, when the output load exceeds the current-limit threshold or a short

is present, the TPS202x limits the output current to a safe level by switching into constant-current mode.

Pulling the overcurrent (OC) logic output low to inform main controller. In our circuit, we connect the OC

pin to the EN pin, so that when the current is beyond the current threshold and OC logic output goes

low, the power switch will be cut off.

Figure X Power Switch Application

TPS2022/2023 --- power distribution switch

Robot schematic R6, R7, R8, R9 are pull-up resistor, 10k OHM

TPS2202D schematic C7, C9, C10, C6 follow EVN design and mapping to C1, C2, C3 and C4 (Table 4)

TPS2203D schematic C8, C12, C11, C5 follow EVN design and mapping to C1, C2, C3 and C4 (Table 4)

Figure X TPS20xxEVM-292 Bill of Materials

5

The circuit for power switch, We’ve followed the evaluation modules (EVM) design and also bill of

material that include schematic, PCB layout guide, component manufacture and selection.

2.2 Vehicle Module

2.2.1 H-bridge Circuit

We used H-Bridge circuits to drive our motors. The advantage of a H-Bridge circuit is that it can drive the
motor in both directions. For example, we could let the motor move forward, backward, or stop by
controlling the logic pin. This will give us the ability to rotate the vehicle about its center and to drive the
vehicle backwards. Logic table is shown below.

Table X H-Bridge Control Table

Enable Logic Pin 1 Logic Pin 2 Result

High Low High Forward

High High Low Reverse

High Low Low Stop

High High High Stop

Low / / Off

2.2.2 Servo Motor

We decided to use a hook and a servo motor as the “mechanical arm” of our robot. The hook was 3D-
printed so that it could match the dimension of the servo motor. Both the hook and the servo motor will
be attached on the vehicle with self-adhesive rubber, which enables us to change the position of the
mechanical arm easily.

2.2.3 Infrared Sensor

The infrared sensor serves two purposes in our project. It will tell the Microcontroller to stop the vehicle

when approaching edge of the table. It will also tell the Microcontroller to stop the vehicle and drop the

hook when approaching the plate. We gathered readings from the infrared sensor above different

surfaces: white table surface, ground, and black plate edge. We then added two boundary values in the

control code to differentiate between these three different types of scenarios.

2.2.4 Physical Design

The physical design of our project is based on the Sparkfun RedBot Basic Kit[c]. We added the servo
motor and the Raspberry Pi camera in the front. We also placed the infrared sensors at the bottom of
the vehicle. Figure 2 demonstrates the physical layout of our project.

6

Figure 2 Physical Design

2.3 Control Module

2.3.1 Microcontroller (ATmega328p)

We used an ATmega328p microprocessor manufactured by Microchip Technology for this project. It will

receive signals from Raspberry Pi and the infrared sensors. Analog pins are necessary to read accurate

inputs from infrared sensor, while digital pins can suffice for the control of the motors. Initially we

planned to use two digital pins as communication lines between the microcontroller and Raspberry Pi.

However, as we moved forward with the project, we decided to implement i2c communication between

Pi and microcontroller since it provided more convenient interface. Unfortunately, i2c communication

required specific pins from both sides, which gave us some trouble assembling different hardware parts.

Table X Pin Layout for MCU[a]

Type Pin Number Pin Name Description
Digital Output 2 PD0 connected to H-Bridge Pin 2 to control left motor
Digital Output 3 PD1 connected to H-Bridge Pin 7 to control left motor
Ground 8 GND connected to ground
Analog Input 6 PD6 connected to Infrared sensor output
Analog Input 7 PD7 connected to Infrared sensor output
Digital Output 11 PB3 connected to H-Bridge Pin 10 to control right motor
Digital Output 12 PB4 connected to H-Bridge Pin 15 to control right motor
Power 20 AVCC connected to voltage booster
Analog Input 18 A4 Connected to Raspberry Pi
Analog Input 19 A5 Connected to Raspberry Pi

7

2.3.2 Raspberry Pi and Camera

Raspberry Pi and its camera served as “eyes” to our robot. Initially we plan to write a shell script that ran

on Raspberry Pi at start up to constantly taking photos. Then our object detection script will run on the

photos taken and derive location information of the butter. However, later on we realized that it took

around 5 seconds for Pi’s camera to take a photo and store it to disk. Such latency will greatly reduce

the effectiveness of our object detection code. As a result, we modified the design to make the camera

constantly taking videos of the environment. And the object detection program will run on each frame

of the video stream. We used PiCamera library for the video stream implementation[b].

2.4 Object Detection Module
Our object detection module will detect the butter in an image (video frame) and output a bounding

rectangle of the butter. For the detection methods we tried and used, please see section 3.3. According

to the coordinates of the bounding rectangle, we could derive the location information of the butter

using the equation described below.

(𝑥, 𝑦, 𝑤, ℎ) is the coordinates of the rectangle, where

𝑥, 𝑦 denotes the top-left corner of the rectangle and 𝑤, ℎ

denotes the size of the rectangle.

(𝑤𝑖𝑚𝑎𝑔𝑒 , ℎ𝑖𝑚𝑎𝑔𝑒) denotes the size of the image

𝑣𝑖𝑒𝑤 denotes the field of view of our camera, which is

62°

The angle our vehicle should turn will be calculated as:

𝑎𝑛𝑔𝑙𝑒 = (
𝑥 +

𝑤
2

𝑤𝑖𝑚𝑎𝑔𝑒
− 0.5) × 𝑣𝑖𝑒𝑤

Figure X Example of Bounding Rectangle

8

3. Design Verification

3.1 Circuit Verification

3.1.1 Booster Verification

We did the bench test in order to check whether the power booster works. Since our battery supply is

providing 3.7 V, and the input range of the booster we used is 1.8V to 5.5V, we apply the voltage from

1.8V to 5.8V to the booster and use multimeter to check whether the output pin gives stable 5V. And

according to the data below, our booster satisfied the requirement.

Table X Test Results for the Booster

Input Voltage (V) Output Voltage (V)

1.8 4.935

2.2 4.962

2.6 4.977

3.0 4.965

3.4 4.963

3.7 4.961

4.2 4.965

5.8 5.119

3.1.2 Power Switch Verification

Based on our design, we plan to use 2 batteries in parallel to provide 3.7V input. To test whether the

power switches could prevent overcurrent, we used 4 batteries which will provide 6.1V instead. The

consequence is that the power switches become hot and the USB port is no longer powering the

Raspberry Pi. Also, the MCU chip is disabled, preventing the motor from running. After we disconnect

the batteries for a while, we apply 2 batteries again which makes all components work normally. The

test shows that the power switches work as we expected.

Figure X Test Setup for Booster

Figure X Test Results for Booster

9

3.1.3 USB port verification

The USB port in our PCB is simply designed to power the Raspberry Pi. To test if we could successfully

convert the batteries power to the USB port, we apply 3.7V as input and connect the Raspberry Pi

through USB to check whether it has been activated. As the figures shown below, the Raspberry Pi has

been activated.

3.2 Vehicle Verification

3.2.1 H-Bridge Chip and Motor Verification

The ability for our vehicle to execute the command from Raspberry Pi accurately is critical to our project.

We loaded different test programs onto an Arduino Board, telling the vehicle to turn different angles,

and compared the result with the expected result. The figure below showed the car’s position after we

issued the command for it to first turn 60°, move forward and then turn 30°. The initial position of the

vehicle was vertical to the edge of the table. As can be seen, the final position was almost parallel to the

edge of the table, satisfying our requirement of an error smaller than 5°.

Figure X PCB Powering Raspberry Pi (1) Figure X PCB Powering Raspberry Pi (2)

Figure X After Turning
90°

10

3.2.2 Infrared Sensor and Hook Verification

To test the command chain between our infrared sensor and our hook, we issued the command for the

car to move toward a plate and observed the vehicle’s behavior.

Figure 3 Approaching the Plate

Figure 4 Reaching the Plate and Dropping the Hook

3.3 Object Detection Verification
It is crucial for our object detection program to find butter as well as to have a low false positive

detection rate. Thus, we must take both parameters into account when testing our object detection

module. We have tried three object detection modules during the development of our project and we

listed the verification for each of them below.

3.3.1 Verification of Haar Classifier model

We started with Haar Classifier using OpenCV for object detection. After training the Haar Classifier, we

ran them against 40 test images we took manually and logged the results of each test image. Since we

were not satisfied with the result of our first classifier, we increased sample size and trained a second

11

classifier. We did comparison between those two classifiers as well. The full results can be found in

Appendix B.

In short, both classifiers hold the same accuracy of around 62%. The only progress is that the second

model has a smaller number of false positive detections. The false positive detections decreased by

about 20% from first round to second round. Below is the result we got from both classifiers on the

same test image.

3.3.2 Verification of model trained with Tensorflow Object Detection API

For the Tensorflow object detection model, we also ran the training result against 40 test images we

took. To get better results, we exported the trained graph after different number of steps to compare

the results. Among the models we exported, the one after 17349 steps gives the best results. It has a

detection rate of around 68% and it has very few false positive detections. The model after 59640 steps,

surprisingly, has only a detection rate of 35.29%. We also exported two other models after that, and

they gave even worse results. Appendix C contains a complete comparison between the model after

17349 steps and the model after 59640 results.

After testing with images, we also incorporated the model with video stream. However, the model

performed terribly with video stream. It could only detect butter that is very close to the camera. To get

Figure X Result of 1st Classifier Figure X Result of 2nd Classifier

Figure X After 17349 Steps Figure X After 59640 Steps

12

better results, we added more photos of butter being far away from the camera into the training

process. Unfortunately, the exported model performed even more poorly with video stream.

3.3.3 Verification of HSV Color Detection Model

After the failure of our first two methods, we turned to HSV Color Detection as a last resort. And

learning from the experience with Tensorflow models, we decided to test the new detector directly with

video stream. We took a video of about 90 seconds on the Raspberry Pi with color detection running

and wrote a python script to break the video into frames. While the video is rolling, we were manually

moving the butter and similar-color objects (in this case, a yellow box) around the camera to simulate

different scenarios. Then we selected around 600 frames randomly from all the frames and counted the

number of correct detections. Below is the result we got:

Table X Color Detection Tests

In the case with similar color object, our detection program gave a detection rate of 49.13%. In the case

without similar color objects, our detection program gave a detection rate of 99.70%. The overall

accuracy is 75.98%.

 Detected Not Detected

With Similar
Color Object

141 146

Without Similar
Color Object

324 1

Overall 465 147

Figure X Detecting Butter Figure X Detecting Box

13

4. Costs

4.1 Parts
For the parts used in this project, we mainly purchased them from Digi-Key and Amazon. Below is the

table of individual part cost. Notice that not all the parts were used in the final project. Some of the

parts (e.g. the Arduino board) were mainly used for the convenience of development and testing.

Table X Parts Cost

Part Manufacturer Retail Cost ($) Count Total Cost ($)

Raspberry Pi 3B
Motherboard

Raspberry Pi Foundation 35.91 1 35.91

Raspberry Pi Camera
Module V2

Raspberry Pi Foundation 26.45 1 26.45

Rechargeable Li
Battery

Amazon Basics 13.88 /8-pack 1 13.88

Li Battery Charger Amazon Basics 14.99 1 14.99

Hobby Gear Motor Sparkfun 3.95 1 3.95

Servo Motor Sparkfun 8.95 1 8.95

Sparkfun QRE1113
Infrared Sensor

Sparkfun 2.95 2 5.90

SN754410 H-Bridge
Chip

Texas Instruments 2.35 2 4.7

ATMEGA328P Microchip Technology 2.20 2 4.40

Arduino Uno Arduino 22.00 2 44.00

Total 163.13

4.2 Labor
We will use the following formula to calculate the labor cost for each team member:

𝑙𝑎𝑏𝑜𝑟 𝑐𝑜𝑠𝑡 = 𝑖𝑑𝑒𝑎𝑙 𝑟𝑎𝑡𝑒 × 𝑎𝑐𝑡𝑢𝑎𝑙 ℎ𝑜𝑢𝑟𝑠 𝑠𝑝𝑒𝑛𝑡 × 2.5

Table X Labor Cost

Team Member Hourly Rate ($/Hour) Total Hours (hour) Total Cost ($)

Yu Jie Hsiao 30 60 4500

Yuxiang Sun 30 60 4500

Yuchen He 30 60 4500

Total 13500

The total cost of our project is $163.13 + $13500 = $13663.13

14

5. Conclusion

5.1 Accomplishments
In the end, we were able to get all the individual modules of our project working. Our vehicle was able

to move by itself on the table, without falling off. Our vehicle was also able to direct itself toward the

butter and drop the hook after detecting the plate.

5.2 Uncertainties
The major problem with our project is that we had difficulty integrating all different parts together. We

believed the main reason was the inconsistency between software design and hardware design. Our

design change in the software module were not fully demonstrated in our hardware design. For the

communication between our Raspberry Pi and microcontroller, we initially planned to use two GPIO pins

from Raspberry Pi and two digital pins from the microcontroller. Later on in the project, we realized such

communication protocol is naïve and did not provide real-time communication. So we did some

research and decided to implement i2c communication instead. However, i2c communication required

specific pins from the microcontroller, which we already connected with other parts on the PCB.

5.3 Ethical considerations
The main ethical consideration of our project is the use of open-source framework. Following IEEE code

of ethics, we made sure that we cited properly in the comment section of our code. We also made sure

we included the license paragraph, if any, in our code.

5.4 Future work
For future work, we believed there were two major aspects we could work on to improve our project.

The first aspect would be the optimization of our object detection program. Currently our python script

is only reporting the largest contour it finds in the video frame as “butter”. However, due to change in

environment lighting, it’s very likely that there will be discrete portions on the butter that did not satisfy

the color range. If we could implement some program to merge contours that are close to each other

using concepts like Manhattan distance, we could probably getting more accurate location information

about the butter.

The second aspect we could improve is the integration between hardware parts and software parts. As

mentioned in section 5.2, we should come up with a different microcontroller pin layout to satisfy the

communication needs of all parts.

15

References

 [a] Arduino Pin Layout. Available at: https://www.pinterest.com/pin/728457308447211461/

[b] Picamera Documents. Available at: https://picamera.readthedocs.io/en/release-1.13/

[c] SparkFun RedBot Basic Kit. Available at: https://www.sparkfun.com/products/retired/13166

https://www.pinterest.com/pin/728457308447211461/
https://picamera.readthedocs.io/en/release-1.13/

16

Appendix A Requirement and Verification Table

Table X System Requirements and Verifications

Requirement Verification Verification
status

(Y or N)

Boost Converter

Given input in the range of 2.5V to 3.7V,
the boost converter must provide
constant 5V output to satisfy the needs
of all components.

We plan to apply different voltages (2.5V
~ 3.7V) to the boost converter using
function generator in lab. And we will use
the multimeter to measure the output
voltage of the regulator, which should
always be 5V.

Y

Power Switch

The power switch is able to limit the
output current even if the input current
is exceeding the threshold.

We plan to connect the power switch with
resistors on the breadboard. And we will
use function generator to apply different
voltages across the resistor. We will use a
multimeter to measure the output current
from the switch, which should be below
the threshold.

Y

Infrared Sensor and Microcontroller

The microcontroller should stop the
vehicle when the infrared sensor’s reading
suggests that the vehicle is approaching
the edge.

We loaded test programs that drive the
vehicle toward the edge onto the vehicle
and observed the vehicle’s movement

Y

The microcontroller should stop the
vehicle when the infrared sensor’s reading
suggests that the vehicle already reached
the plate.

We loaded test programs that drive the
vehicle toward the palte onto the vehicle
and observed the vehicle’s movement.

Y

The vehicle can move straight forward
and backward. The angle offset should
be within ±10°.

We plan to write a test program. it will
apply a constant voltage V to both motors
for 10 seconds. We will draw the path on
the table and measure the angle offset
using a protractor.

Y

The vehicle can rotate about its center.
The center should only shift within 2 cm
every time the vehicle rotates 60°.

We will write a test program and load that
to the microcontroller. It will perform a
rotation of the vehicle every 10 seconds.
And we measure the center shifting using
a ruler.

Y

Object Detection Module

The program can detect yellow, cubed
butter in the size smaller than 12cm *
3cm * 3cm[10].

We will write a test program asking the
detector to run with at least 500 positive
images of cubed butter (either

Y

17

The accuracy rate should be 80% at
least.

automatically created by classifier or
manually taken by us).
We will re-train our detector until the
80% accuracy is met.

The program can distinguish butter from
other kitchen objects of similar color:
orange juice, honey mustard. The
accuracy rate should be 80% at least.

We will write a test program asking the
detector to run with at least 500 negative
images of orange juice or honey mustard.
We will re-train our detector until the
80% accuracy is met.

N

The programs should output an angle
between the vehicle and the target. And
this angle should be within ±10° from
the actual angle.

We will place the butter and Raspberry Pi
camera both on the table. Then we will
compare the actual angle measured by a
protractor with the angle calculated by
our detector.

Y

18

Appendix B Comparison between Haar Classifiers

Table X Comparison between Two Classifiers

Image Name Previous Classifier (500 +1000) New Classifier (3500 + 7000)

 Find Butter? Total # of detections Find Butter? Total # of detections

TestPos_0 Yes 5 Yes 3

TestPos_1 Yes 5 Yes 5

TestPos_2 No 4 Yes 3

TestPos_4 Yes 8 Yes 4

TestPos_5 Yes 4 Yes 2

TestPos_6 Yes 7 Yes 4

TestPos_7 Yes 6 Yes 2

TestPos_8 Yes 4 Yes 5

TestPos_9 Yes 4 Yes 2

TestPos_10 Yes 9 Yes 9

TestPos_11 Yes 2 No 4

TestPos_12 No 3 No 2

TestPos_13 No 3 No 2

TestPos_14 Yes 3 No 1

TestPos_15 Yes 4 Yes 3

TestPos_16 No 4 Yes 2

TestPos_17 No 4 No 4

TestPos_18 No 2 No 3

TestPos_19 Yes 5 Yes 3

TestPos_20 No 7 No 9

TestPos_21 Yes 8 Yes 3

TestPos_22 Yes 5 Yes 10

TestPos_23 Yes 3 No 1

TestPos_24 Yes 5 Yes 2

TestPos_25 Yes 6 Yes 8

TestPos_26 No 3 Yes 3

TestPos_27 No 4 No 1

TestPos_28 Yes 3 No 3

TestPos_29 Yes 6 Yes 2

TestPos_30 No 2 No 1

TestPos_31 N/A 4 N/A 3

TestPos_32 Yes 7 Yes 7

TestPos_33 No 7 Yes 8

TestPos_34 N/A 7 N/A 5

TestPos_35 N/A 7 N/A 5

TestPos_36 N/A 5 N/A 5

TestPos_37 N/A 5 N/A 5

TestPos_38 N/A 5 N/A 5

TestPos_39 N/A 6 N/A 5

19

Appendix C Test Results of Tensorflow Model

Table X Comparison of two Tensorflow Models

Image No. 17349_graph 59640_graph

1 yes no

2 yes yes

3 yes yes

4 yes no

5 yes yes

6 yes yes

7 no no

8 yes no

9 yes no

10 yes yes

11 no no

12 no no

13 no no

14 yes no

15 no yes

16 no yes

17 no no

18 yes yes

19 yes no

20 yes yes

21 yes no

22 yes yes

23 no no

24 yes no

25 yes yes

26 yes no

27 no no

28 yes no

29 yes no

30 yes no

31 no no

32 yes yes

33 yes no

34 no no

 Accuracy 67.60% 35.29%

