
0

 Bike Navigation Assistant

By

Akshat Khajuria

Arvind Arunasalam

Saumil Agrawal

Final Report for ECE 445, Senior Design, Spring 2018
TA: Nicholas Ratajczyk

May 2, 2018
Project No. 48

Abstract
Currently, people find it difficult to use navigation applications on their phone and ride a bike at
the same time. In this report, the development of a bike navigation assistant is discussed. To
use this system, a cyclist only needs to input their destination on a mobile application. The
mobile application then communicates with LEDs and a beeper on the handlebar of the bike that
tell the cyclist where to go. There are two sets of LEDs and if the left LEDs light up, a left turn
needs to be made and similarly if the right LEDs light up, a right turn needs to be made. The
LEDs start lighting up when the upcoming turn is less than 50 meters away. Additionally, for
safety, there are blinkers and the LEDs and the buzzer are used warn the cyclist if there is an
obstruction less than five meters away.

i

Introduction 1
1.1 Purpose 1
1.2 Functionality 1
1.3 Subsystem Overview 2
1.4 Physical Design 3

2 Design 4
2.1 Input Devices Module 4
2.2 Central Processing Module 7
2.3 Output Feedback Module 10
2.4 Power Module 11

3 Design Verification 1​3
3.1 Cellphone 1​3
3.2 Ultrasonic Sensor 13
3.3 Speedometer 14
3.4 Bluetooth Module 15
3.5 Microcontroller 16
3.6 LEDs, Beeper and Blinkers 16
3.7 Power Supply 16

4 Cost and Schedule 17
4.1 Costs 17
4.2 Schedule 18

5 Conclusion 20
5.1 Accomplishments 2​0
5.2 Uncertainties 2​0
5.3 Future Work 20
5.4 Ethical Considerations 2​1

6 References 2​2

7 Appendix 2​3

ii

Introduction

1.1 Purpose
In today’s world, it is quite difficult for people to use bikes in places that they are not very
familiar with specific locations and directions. It can be a big hassle to use Google Maps or a
similar application on your phone as it results in stopping frequently to check for directions.
Moreover, there are numerous safety concerns regarding riding bikes, especially on crowded
streets. In 2015 in the United States, there were a over 1000 bike-related deaths and 467,000
injuries [1]. Our project aims to counter the problem of bike navigation as well as improve bike
safety by attaching a few modules to the bike.

We wanted to do this project to improve people’s experience when riding bikes. In addition to
people adding these modules to personal bikes for convenience and safety, this could be hugely
beneficial if they are added to rental bikes in big cities. When people travel to new cities, they
mostly use taxis to get from one place to another but if rental bikes had these features, they
would attract more people. Overall, the bike industry has been pretty static for the past few
years [2] and we hope that this will attract more people to the environment friendly practice of
riding bikes and result in less bike-related accidents.

1.2 Functionality
The main aim of our project is to make it easier for cyclists to navigate. To do that, we have on
bike peripherals, LEDs and a beeper on the handlebar that communicate with a mobile
application. The mobile application uses the Google Maps API to receive navigation data. It then
sends that to a microcontroller using a Bluetooth module. The LEDs and the beeper indicate to
the rider when they are approaching a turn. If the upcoming turn is a left, the left LEDs light up
and similarly if a right turn is coming, the right LEDs light up. Furthermore, as the rider gets
closer to the turn, more leds light up and the frequency of the buzzer tone gets higher.

Secondly, in order to improve bike safety, we have an ultrasonic sensor at the front of the bike
for a warning system. The ultrasonic sensor is used to light up all the LEDs and gives a
continuous beeper tone if there is an obstruction less that five meters away from the bike. We
also added blinkers at the back of the bike that the rider can control from switches on the
handlebar. This eliminates the need for the biker to use their hands to indicate when they are
turning and will allow them to keep both their hands on the handle at all times.

Finally, we created a speedometer using a reed switch and a magnet. It serves as a backup
when the GPS signals are not strong enough for the navigation component of our project.

1

1.3 Subsystem Overview

Figure 1: Block Diagram

Figure 1 represents our block diagram and we have four modules. The first one is the input
devices module where we have the cellphone that hosts the mobile application, the ultrasonic
sensor, and speedometer module that consists of the reed switch and the magnet. Next, we
have the central processing module that has the Bluetooth module that send information
navigation data from the phone to the first microcontroller. The first microcontroller also takes in
information from the ultrasonic sensor and the second microcontroller. The second
microcontroller calculates the speed of the bike and sends the distance travelled by the bike to
the first microcontroller.The main microcontroller then controls the output feedback module, that
includes that LEDs, buzzer and the blinkers. Finally we have a power module that has a battery

2

and voltage regulator that outputs 5V and powers that microcontrollers and the ultrasonic
sensor.

1.4 Physical Design

Figure 2: Physical Design

Figure 2 shows the physical design of our project. At locations marked ‘1’ on the handle of the
bike, the microcontrollers, beeper, bluetooth module and the power supply are placed. At
location ‘2’, the LEDs are placed. At location marked locations marked ‘3’, the ultrasonic sensor
is placed. At location ‘4’, the blinkers are placed. Lastly, at locations marked ‘5’, the
speedometer module is placed.

3

2 Design

2.1 Input Devices Module

2.1.1 Cellphone

The core of this project is a mobile application that we used to interface with the Google Maps
Directions API and the bike. We developed an application that will automatically get the users
current location, take the user input for destination and then call on the Google Maps API every
specified number of seconds to get the most updated trip route. There are four things that either
the application does automatically or the user has to do in order for the navigation to start:

1. Bluetooth Connection - The user has to scan and search for a bluetooth device and
specifically connect to the HC-05 bluetooth module that is mounted on the
microcontroller

2. Current Location - The application gets this automatically every two seconds to ensure
constant route updations

3. Destination - The user enters their intended destination
4. Navigate Button - This button is used to start the navigation. Once this button is pressed,

every two seconds (until the “Stop” button is pressed):
a. The most updated current location and user inputted destination are sent to the

Google Maps Directions API which returns a JSON file. This JSON file is parsed
to generate a string that just contains the distances and another that just contains
the directions

b. The distance and direction strings are sent to the HC-05 bluetooth module
This constant communication ensures accurate and timely communication about
upcoming turns with the biker. This is portrayed in Figure 3​.

4

Figure 3. Mobile Application Logic

5

2.1.2 Ultrasonic Sensor
We used the LV-MaxSonar-EZ2 Ultrasonic Sensor [3] to detect obstacles that posed a risk to
the biker. The sensor has an operating range from 15 cm to 645 cm and has three
communication interfaces which are the Serial interface, the Analog interface, and the Pulse
Width Interface. We used the Pulse Width interface as it was the first among the three to give
out a reading and only required a single digital input pin. It works by first pulling the Trig (RX) pin
high for at least 20 microseconds. This forces the the sensor to generate sound waves. The
PULSE WIDTH pin then sends a HIGH to the microcontroller till it receives the bounced back
pulse. We obtain the distance through calculations using the time for which the PULSE WIDTH
pin was HIGH. The equation used to calculate the distance from the time taken is shown in
Equation 1. If the sensor detects an object within 500 cm, it warns the biker by forcing all the
LEDs to go HIGH and the beeper to beep continuously. Snow and rain can affect the obtained
values, hence, we chose a sensor designed specifically from outdoor use.

istance (cm) D = 2 × 29
T ime (microseconds)

Equation 1: Ultrasonic Calculation

2.1.3 Speedometer
The speedometer consists of a magnetic reed switch and a magnet. We placed the reed switch
on the bike fork and the magnet on a spoke of the wheel. Whenever the magnet comes close to
the read switch, the switch closes the microcontroller reads a HIGH and we know that the wheel
completed one revolution. The speed is calculated by measuring the diameter and calculating
the circumference of the bike wheel and dividing it by the time taken between two HIGHs that
the microcontroller reads as shown in Equation 3. This provides the instantaneous speed of the
bike. Keeping a count of the number of revolution also provides us with the total distance the
bike has covered as shown in Equation 2. Using this, we could estimate the distance to the next
turn and hence this acted as a backup for the navigation component when the GPS signal
wasn’t strong enough to provide the current location.

istance (cm) Number of Revolutions adius (cm) D = × 2 × π × R
Equation 2: Distance Travelled

peed (cm/s) S = T ime Taken (s)

Number of Revolutions×2×π×Radius (cm)
Equation 3: Bike Speed

6

2.2 Central Processing Module

Figure 4. Microcontrollers Schematic

2.2.1 Bluetooth Module
We used the HC-05 bluetooth module [4] to receive the data transmitted from the the mobile
phone and send it to the primary microcontroller. The HC-05 was connected to the primary
microcontroller using the serial interface. The mobile phone first connects to the bluetooth
device and then periodically sends data to it. The bluetooth module receives the data and
converts it to serial packets that can be sent to the microcontroller through the TX and RX pins.

2.2.2 Primary Microcontroller
The microcontroller will serve as the core processing unit for our project will be the interface
between the mobile application and the devices on the bike. For the purposes of our project, we
will be using the ATmega328P - PU [5] since it provides 14 I/O pins and has 32KB of flash
storage which will be enough to serve the purpose of our project. Additionally, the
microcontroller can be easily interfaced with our bluetooth module and programmed to perform
the required work. We mounted the bluetooth module to this microcontroller and this
microcontroller is also connected to the secondary microcontroller via the I2C protocol. It
performs multiple tasks:

1. Receives data from the mobile application via the bluetooth module and parses this
information to generate two arrays for distances and directions.

2. Receives revolution count data from the speedometer and uses that to calculate the
distance traveled in a scenario where GPS is not available.

7

3. Based on data received from the phone and calculations done on data received from
speedometer, the microcontroller logic determines if the LEDs and buzzer should turn
on. It also contains logic for determining which specific LEDs light up and with what
frequency should the buzzer turn on.

4. Receives data from the ultrasonic sensor and in the scenario where the distance to the
closest object is less than seven meters, sends a signal to light up all the LEDs and to
turn on the buzzer

This logic is demonstrated in​ ​Figure 5​.​ Figure 14 which is in the appendix is a supplement to
Figure 5 and consists of the LED/Buzzer Logic which specifies exactly which LEDs should light
up and with what frequency the buzzer should turn on based on the distance to and direction of
the next turn.

Figure 5. Primary Microcontroller Logic

8

2.2.3 Secondary Microcontroller
The secondary microcontroller’s primary purpose is to interact with the reed switch and calculate
the speed of the bike. The microcontroller reads a HIGH every time the reed switch is closed
and calculates the speed using the diameter of the bike wheel and time between two wheel
revolutions. It also sends the total distance travelled by the bike to the main microcontroller. The
logic of the microcontroller can be seen in Figure 6. We decided to use a second microcontroller
because we ran out I/O pins on the main microcontroller and we didn’t want the speedometer
logic to interfere with the main logic as it used a lot of delays. That would have made the
calculations of speed inaccurate.

Figure 6. Secondary Microcontroller Logic

9

2.3 Output Feedback Module

2.3.1 LEDs
There are two sets of 4 LEDs on each side of the handlebar. The LEDs in the direction the turn
needs to be made, light up when the turn is 50 meters away. One LED lights up when the turn is
in the range of 40-50 meters, two LEDS light up when the turn is 30-40 meters away, three
when the turn is 20-30 meters away and all four LEDs light up when the turn is less than 20
meters away. Moreover, all 8 LEDs light up when the ultrasonic sensor detects an object less
than 5 meters away.

2.3.2 Beeper
In addition to the LEDs a beeper is attached on the bike. We used the beeper ​CEM-1203(42)
[6]​. ​This was used to augment the LEDs in case the rider doesn’t notice the LEDs. The beeper
has better chance of catching the rider’s attention. Like the LEDs, it buzzes when approaching a
turn or when there is an obstacle less than 5 meters away. The frequency of the beeper
increases as the rider gets closer to a turn and it plays a constant tone if there is an obstruction
in front.

2.3.3 Blinkers
To improve bike safety, we attached blinkers at the back of the bike. These are controlled by
switches attached on the handlebar. They blink at a constant frequency as long as the rider
presses the switches.

10

2.4 Power Module

Figure 7. Power Module Schematic

2.4.1 Battery Pack
To power all our electronic components, we used a 9 V/10000mAh battery pack. At full charge,
this battery pack would have sufficient power to ensure that all components can function
continuously for at least 40 hours as shown in Equation 4. The battery pack has an USB port
that is connected to the system through a USB connector which has one end soldered onto the
board. When the battery has been drained, the biker can easily remove the pack, and recharge
it.

Components Max Power
Consumption

Quantity Subtotal Power
Consumption

Microcontroller 0.2mA 2 0.4mA

Ultrasonic sensor 2mA 1 2mA

Bluetooth Module 50mA 1 50mA

LEDS 15mA 8 120mA

11

Blinkers LEDs 15mA 2 30mA

Buzzer 35mA 1 35mA

Total Power
Consumption

 237.4mA

Table 1: Power Requirement of Components

uration (h) 42.12 hD = 237.4 mA
10000 mAh =

Equation 4: Uptime of System with Fully Charged Battery

2.4.2 Voltage Regulator
All our components require 5 Volts to work but our battery pack supplies 9 Volts. To step down
the supply voltage, we used a L7805cv 5V voltage regulator [7]. The potential maximum current
requirement of our circuit is around 500 mA which is well within the voltage regulator’s limit of
1500 mA. A 0.1μF and a 0.33μF capacitor connected to the output and the input of the voltage
regulator to keep the output variance to a minimum. The output is connected directly to the two
microcontrollers, the bluetooth module and the ultrasonic sensor. All the other components are
powered through the microcontrollers.

12

3 Design Verification

3.1. Cellphone
In order to verify the application’s correct functioning, we checked if the application can call the
Google Maps Directions API and show the correct trip route on a test label in the application.
We additionally wanted to make sure the latency was not high for which we checked the latency
results on the Google Maps Developers Console. For the first, we sent in different origin and
destinations to the API via the application and compared the returned distances and directions
with the distances and directions obtained when inputting the same origin and destination on
http://maps.google.com. The correct result was obtained in 100% of the cases. As shown in
Figure ?, we were able to achieve a low latency that improved the applications performance.
The median latency we obtained was 31 ms.

3.2 Ultrasonic Sensor
It order to verify that the ultrasonic sensor was functioning properly, we performed 2 different
verification methods. The first verification method was done using the Pulse Width interface. We
wired the sensor to a microcontroller and connected the microcontroller to a computer. We then
placed the sensor at a specific distance from a wall and started to take readings. Using
Equation 1, the microcontroller calculated the distance and sent it the computer so that we could
see the calculated distances on the serial monitor. We then compared the measured distance
with the actual distance and checked if the difference between the 2 values was less than 5cm
as shown in Figure 8.

Figure 8: Ultrasonic Sensor Distance Error (cm)

The verification method involved the Analog Interface. We connected TRIG pin of the sensor to
a microcontroller and the ANALOG pin to an oscilloscope. We placed the sensor a set distance

13

away from a wall and started to take readings. We observed the voltage on the oscilloscope and
plotted the voltage values against the distances to ensure that the ultrasonic sensors was
working within the intended range as shown in Figure 9.

Figure 9: Output Voltage against Distance

3.3 Speedometer
In order to test our setup for the speedometer, we had to verify if the microcontroller detects
every time the magnet comes in close proximity to the reed switch. To do this, we spun the
wheel of the bike at two different speeds and measured the number of times the microcontroller
detected a HIGH.

Figure 10: Reed Switch HIGH vs Time

14

In​ ​Figure 10, the first section of the graph shows the data when we spun the wheel at a lesser
speed. As can be seen, the HIGHs that are read by the microcontroller are spaced out. In the
second section, we spun the wheel faster, and the HIGHs read by the microcontroller are much
more concentrated. This clearly shows that the microcontroller was able to detect every single
time the magnet crossed the reed switch because otherwise if the microcontroller wasn’t
detecting some, the HIGHs would not be so concentrated when the wheel was spun at a faster
rate.

3.4 Bluetooth Module
In order to verify the correct functioning of the HC-05 module, we connected it to an Arduino to
show the strings the module was receiving on a serial monitor. We additionally developed a test
application to send test strings of varying length to the bluetooth module. We set a delay of two
seconds and measured the latency of sending strings of varying length to the bluetooth module.
In Figure 11, we show the latency for a string containing 30 words and in Figure 12 we show the
latency for a string consisting of 240 words. We find that there is no major difference between
the latency plots and that the overall latency is 2.00​ ​± 0.26 seconds which is in line with our
tolerance analysis from the Design Document.

Figure 11: Bluetooth Latency with 30 words

Figure 12: Bluetooth Latency with 240 words

15

3.5 Microcontroller
To ensure the correct functioning of the microcontroller, we first measured the power and
current supply. We obtained an input voltage of 5V and input current of 0.2 mA which met our
specified verification. For the second verification, we developed a test mobile application
through which we could send test strings to the microcontroller via the bluetooth module to
ensure that the correct LEDs light up. We sent different test strings from the mobile application
and the correct LEDs lit up 100% of the time with very minimal latency.

3.6 LEDs, Beeper and Blinkers
To ensure that the LEDs and the beeper were functioning as required, we sent test data from
the cellphone. This included sending different distances and directions to the microcontroller
and checking if the correct LEDs lit up and the correct beeper tone played. We were able to
verify this by sending distances in the range of 40-50 meters, 30-40 meters, 20-30 meters and
less than 20 meters and checking if one, two, three or four LEDs lit up respectively for both left
and right turn. Similarly we checked if the beeper played the correct frequency corresponding to
the distance. All the LEDs and the beeper worked as expected. To check the blinkers we
attached the switches on the handlebar and made sure the blinkers turned on whenever the
switches were pressed.

3.7 Power Supply
To ensure that we were getting a consistent 5V power supply, we used a voltage regulator. We
tested it’s functioning by providing various input voltages from 0V to 25V. We find that the output
voltage from the voltage regulator is 5 ​± 0.03372V which falls within our 10% tolerance limit
specified in the initial requirements.

16

4 Costs and Schedule

4.1 Costs

4.1.1 Parts

Part Model Unit Cost ($) Quantity Total ($)

Ultrasonic Sensor LV-MaxSonar-EZ2 27.95 1 6.00

Microcontroller ATmega328P-PU-ND 4.30 2 8.60

Bluetooth Module HC-05 10.95 1 10.95

Beeper CEM-1203(42) 1.95 1 1.95

Battery KMASHI 10000mAh
Portable Power Bank

13.99 1 13.99

Reed Switch N/a 1.95 3 5.85

Magnet N/a 3.95 1 3.95

Switches N/a 2.95 2 5.90

Various Capacitors,
Resistors, LEDs

N/a N/a N/a 5.76

Table 2: Parts Cost

The total cost for our parts is $62.95.

4.1.2 Labor

Name Hours Invested Hourly Rate Total Cost =
Rate*Hours*2.5

Akshat Khajuria 150 $30 $11250

Arvind Arunasalam 150 $30 $11250

Saumil Agrawal 150 $30 $11250

Total 450 NA $33750

17

Table 3: Labor Cost

4.1.3 Total Cost
The total cost for parts and labor is $62.95 + $33750 = $33812.95

4.2 Schedule

Week Task Person

2/19/18 Design Doc: Circuit Schematics, Calculations
Design Doc: Functional Overview, Requirements, Flow
Chart, Conclusion
Design Doc: Introduction, Block Diagram, Functional
Overview, Requirements

Arvind Arunasalam
Akshat Khajuria

Saumil Agrawal

2/26/18 Design review, Designed ultrasonic sensor circuit
Design review, Researched how to integrate Google
Maps API with mobile application
Design review, determined how to connect bluetooth
module to the application

Arvind Arunasalam
Akshat Khajuria

Saumil Agrawal

3/5/18 Started PCB layout
Determined how to get current location on the app every
2 seconds
Researched how to make the speedometer work

Arvind Arunasalam
Akshat Khajuria

Saumil Agrawal

3/12/18 Developed PCB circuit
Started building the mobile application
Developed PCB circuit

Arvind Arunasalam
Akshat Khajuria
Saumil Agrawal

3/19/18 SPRING BREAK Team

3/26/18 Developed ultrasonic sensor logic for microcontroller
Continued working on mobile application
Developed speedometer logic for the microcontroller

Arvind Arunasalam

Akshat Khajuria
Saumil Agrawal

4/2/18 Developed parsing logic to get distances and directions
Debugged the application
Developed I2C code to send distance to main
microcontroller

Arvind Arunasalam

Akshat Khajuria

Saumil Agrawal

4/9/18 Integrated all the code and developed logic to use
distance instead of GPS

Arvind Arunasalam

18

Worked on storing all distances and directions on the
microcontroller
Worked on code to choose GPS or distance for
navigation

Akshat Khajuria

Saumil Agrawal

4/16/18 Wired the bike and tested the perf board
Wired the bike and tested the application and bluetooth
module
Wired the bike and tested sensors and output peripherals

Arvind Arunasalam
Akshat Khajuria

Saumil Agrawal

4/23/18 Worked on final paper and presentation
Worked on final paper and presentation
Worked on final paper and presentation

Arvind Arunasalam
Akshat Khajuria
Saumil Agrawal

Table 4: Schedule

19

5 Conclusion

5.1 Accomplishments
We were able to successfully design and build a system which can correctly indicate to the biker
the distance to and the direction of the next turn. To notify the biker, we were able to integrate
this logic with LEDs and a buzzer that turn on based on how far the biker is from a turn and
what the direction of the next turn is. Our system periodically updates to ensure accuracy and
can provide a new route if the biker misses a required turn. In addition, we added blinkers that
were successfully integrated as well and the biker could turn them on by pressing button placed
on the left and right handles. We mounted this setup on a bike and road tested it. We tested
primarily in the evenings and the application communicated with the microcontroller consistently
and accurately and the LEDs and buzzer turned on at the right times and caught our attention
even when we were driving on a busy road. Overall, we were able to accomplish our primary
goal of being able to help a user navigate on a bike without having to pull out their phone and
that for us was an accomplishment.

5.2 Uncertainties
One of our biggest uncertainties was the speedometer. The speedometer worked fine and
produced accurate readings but the reed switch was extremely brittle and easily broke. During
road tests, our final reed switch broke and the speedometer stopped working. This was not a
major issue since we were testing in an area with strong GPS strength, but not having a working
speedometer can lead to latency issues if riding the bike in an area with low GPS strength.
Another major concern was the accuracy of the ultrasonic sensor. When we were verifying the
correct functionality of the ultrasonic sensor, we did it in a controlled environment. Our obstacle
was a fixed big object (a wall), the are around the sensor was clear, dust was minimal and there
was no snow or rain. When we mounted it on the bike and tested the system on the road, the
sensor did not perform as expected. The readings obtained were inaccurate and the false
positive rate was extremely high. We decided to disable the ultrasonic sensor as false warnings
are a hazard to bikers.

5.3 Future Work
We plan on developing a more compact circuit in the future with neater wiring to prevent the
possibility of wires getting in the way of the bike’s regular operation. A more compact circuit will
lead to a more user friendly design and that will be our first step towards commercializing the
bike. We hope to potentially partner with bike sharing companies in big cities, partner with bike
manufacturing companies and also sell our product as a standalone product.

20

5.4 Ethical Considerations
The greatest ethical risk with our project is that people who are not familiar with our bike’s
navigation system can pose a potential risk to public safety since the LEDs, and other features
incorporated can confuse them, thus resulting in accidents. To ensure that the IEEE Code of
Ethics #1 “to hold paramount the safety…public or the environment” [8] is abided by, we plan on
including a tutorial on the mobile application (that is communicating with the microcontroller) to
explain how to use the navigation assistant, and also make users aware of some of the potential
risks inherent with using the navigation assistant without prior experience.

Another ethical risk with our project is if someone was to hack into the users mobile application
and change the final destination, it could lead to kidnappings or other malicious acts. To ensure
that IEEE Code of Ethics #9 “to avoid injuring others….malicious action” [8] is abided by, we
need to incorporate certain security measures that would help mitigate this risk.

Our project is an effort to contribute to intelligent systems and thus is an implementation of the
IEEE Code of Ethics #5 “to improve the understanding….including intelligent systems” [8]. The
other codes are not of concern to us due to the following reasons: we plan on working together
as a group and bring up any concerns as and when they arise, we have an organized plan and
timeline for the project and will work towards the project with integrity, we are not requesting
sponsorship other than the $40 funding from the Electrical and Computer Engineering
department, and lastly we hope to work closely with the course staff to deliver an impactful
project.

21

6 References
[1] Centers for Disease Control and Prevention (CDC). Web-based Injury Statistics Query and
Reporting System (WISQARS). Atlanta, GA: Centers for Disease Control and Prevention,
National Center for Injury Prevention and Control. [Online] Available at
https://www.cdc.gov/motorvehiclesafety/bicycle/index.html.

[2] NBDA.com, “Industry Overview 2015”, 2018 [Online]. Available at
https://nbda.com/articles/industry-overview-2015-pg34.htm.

[3] maxbotix.com “LV-MaxSonar -EZ Series Datasheet”, 2018 [Online]. Available at
https://www.maxbotix.com/documents/LV-MaxSonar-EZ_Datasheet.pdf.

[4] GM Electronic, “HC-05 Bluetooth Module User Manual”, 2018. [Online]. Available at
https://www.gme.cz/data/attachments/dsh.772-148.1.pdf.

[5] microchip.com, “ATMega328P - PU Microcontroller Data Sheet”, 2018. [Online]. Available at
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-AT
mega328-328P_Datasheet.pdf.

[6] Sparkfun.com “CEM 1203(42) Magnetic Buzzer Datasheet”, 2018. [Online]. Available at
https://cdn.sparkfun.com/datasheets/Components/General/cem-1203-42-.pdf.

[7] mouser.com “L7805CV Voltage Regulator Datasheet”, 2018. [Online]. Available at
https://www.mouser.com/datasheet/2/389/l78-974043.pdf

[8] IEEE.org, "IEEE Code of Ethics", 2018. [Online]. Available at
http://www.ieee.org/about/corporate/governance/p7-8.html.

22

7 Appendix

Requirements Verification

Cellphone:
1) The mobile app on the cellphone

should get the correct data from
Google Maps which should be
converted into data which can be read
by the microcontroller

6 points

1) Send test data from the Google Maps
and check on a terminal if it can
process the data and make it readable
for the microcontroller

Ultrasonic Sensor:
1) should be be able to determine the

presence of a significant sized object
up to 6.5 meters away 95% of the
time

5 points

1) Place an object up to 6.5 meters away
from the ultrasonic sensor and check
if the the sensors give out a value on
the oscilloscope.

2) Connect the sensor to a
microcontroller which is hooked up to
a computer. Have the microcontroller
calculate the distance between the
sensor and the object and display the
value on the serial monitor

Speedometer:
1. The Speedometer must periodically

calculate the the speed at which the
bike is moving and pass the
information to the microcontroller.
Speedometer should give accurate
speed 95% of the time

5 points

1) Spin the bike’s wheel and check if the
microcontroller detects a change
when the magnet on the wheel
spokes comes into close contact with
the reed sensor on the bike fork

The​ ​LEDs:
1) The correct LEDs should light up

when a signal is received from the
microcontroller

2) The LEDs should catch the biker’s
attention within 0.5 seconds at least
90% of the time

5 points

1) When the biker is approaching a right
turn the right LEDs on the handlebar
should start blinking and similarly for a
left turn, the left LEDs should light up.
When the biker is too close to the
vehicle in front, the corresponding
LED should light up.

2) Perform rider tests where the biker
uses a stopwatch to measure the
reaction time.

3) Create a test application that allows a
user to send any random current

23

location and final destination to the
bike. Observe if the correct LEDs light
up when the values input by the user
are close to a turn.

The​ ​Blinkers
1) The correct blinker should turn on

based on which switch is pressed
95% of the time

5 points

1) Press left/right buttons to ensure that

the correct blinker is lighting up

Buzzer:
1) The Buzzer should produce the

correct sound of at least 70 dB when
a signal is received from the
microcontroller

2) The buzzer should catch the biker’s
attention within 0.5 seconds at least
90% of the time

5 points

1) When the biker is approaching a turn,
the corresponding tone should be
played and when the biker is too close
to another vehicle, the corresponding
tone should be played.

2) Perform rider tests where the biker
uses a stopwatch to measure the
reaction time.

3) Create a test application that allows a
user to send any random current
location and final destination to the
bike. Observe if the buzzer beeps with
the correct frequency when the values
input by the user are close to a turn.

Microcontroller
1) Microcontroller should not use more

than 200mA current when powered by
a 5V source

2) The microcontroller should be able to
process information received from the
mobile application and ultrasonic
sensor and send the required output
to LEDs and the beeper 95% of the
time.

12 points

1) Measure correct power and current
supply using a voltmeter and
multimeter

2) Develop test script and run 100 times
to ensure microcontroller is receiving
data and then sending it to the
appropriate LEDs and beepers

The bluetooth module
1) The bluetooth module should

communicate information from the
mobile application to the bike in 2
seconds with a tolerance of +/- 0.885s

2) Bluetooth module should be receiving
the correct data and sending it to the
microcontroller 95% of the time.

1) Develop multiple test scripts with
varying amounts of data that has to be
transmitted via the bluetooth module
to the microcontroller to ensure data
transmission is done in time

2) Ensure data being sent to
microcontroller is accurate by looking
at the serial monitor

24

5 points

Power supply
1) It should give a voltage of 5V with

enough current to power all devices
with a variability of 10%

2 point

1) Measure the power supply with a
multimeter and ensure that both
voltage and current stay with intended
levels

Table 5: Requirements and Verification

 ​Figure 13: PCB Board

25

Figure 14. LED/Buzzer Logic

26

Figure 15. Google Maps API Latency

Figure 16. Voltage Regulator Output Voltage

27

