

ROBOTIC WAITER FOR
RESTAURANTS

By

Cheng Jin

Jun Pun Wong

Kausik Venkat

Final report for ECE 445, Senior Design, Spring 2018

TA: Xinrui Zhu

02 May 2018

Project No. 26

Abstract
This report describes in detail the design and functionality of our project; the robotic waiter
for restaurants. It is a robotic assistant used to help restaurant staffs to deliver food to tables
in the restaurant. Our robot is able to get instructions from a central microcontroller (in the
kitchen), calculate its path to the destination and navigate its way there. The central
microcontroller will also be connected to a display that will show the table that is currently
being served. The final implementation which was not completely functional - we could not
integrate the arduino software with the physical robot; however the individual parts work.

Contents

1. Introduction 3

1.1 Purpose 3
1.2 High level Requirements 4
1.3 Block diagram 4

2. Design 5
2.1 Physical Design 5

2.3.1 Motor and Motor driver 7
2.3.2 Encoder 9
2.3.3 Arduino Software 10
2.3.4 Arduino-to-Raspberry Pi communication 13
2.3.5 Path-finding algorithm 14

3. Design verifications 16

4. Cost 20
4.1 Parts 20
4.2 Labor 20

5. Conclusion 21
5.1 Accomplishments 21
5.2 Uncertainties 21
5.4 Future Work & Improvements 22

References 23

Appendix A Requirement and Verification Table 25

Appendix B Schematics 29

1. Introduction

1.1 Purpose

The purpose of this project was to create a robotic waiter that would assist restaurant staffs in
delivering food. Manpower is still an issue in the industry with workers being inefficient and
having no-shows. They would still need to be trained and paid. We also estimate that in the
long term, robots would be cheaper (fixed cost at ~$1500) versus paying workers minimum
wage (~$1000 monthly). With our robots, restaurants could hire fewer staff and have lesser
problems.

In our project, the microcontroller on the robot would be able to receive instructions from the
Central Unit - the microcontroller in the kitchen on where to deliver the food. It would digest
that information and communicate with the Raspberry Pi which would calculate a path for the
robot to take. The microcontroller in the kitchen also displays the tables being served. Due to
time constraints, we mapped out the senior design lab and the benches (supposed to simulate
a restaurant) into our software.

1.2 High level Requirements

● Send information from the kitchen’s MCU to the robot’s MCU and vice versa.
● Given a destination, the robot is able to calculate and navigate a path to its final

destination.
● Kitchen’s MCU is able to display the list of tables our robot is serving to on the LED

display.

1.3 Block diagram

The project can be divided into two main components; the Kitchen Unit (Central Unit) and
the robot (Navigation Unit). As shown in Figure 1, both units have its very own power
distribution unit. In the power distribution units, 9V batteries are used to power the units.
Specifically, 36V is used for the Robot and 9V is used for the kitchen. The power distribution
unit also has voltage regulators and LED indicators. The voltage regulators are to provide a
stable input voltage to the components of each unit. The LED indicator functions as a safety
feature as to indicate that the circuit is powered.

Next, in the Central Unit, there is a microcontroller unit (MCU), Bluetooth module and a
display and user interface. The display is used to display the current order number and to
display if an instruction has been executed successfully. Then, the user interface is used by
the user to provide instructions on which table the robot should go. The Bluetooth module is
used to facilitate communication between the robot and the Central Unit. The MCU is used to
decide when the next order should be sent depending on the robot’s execution status.

Lastly, in the Navigation Unit, there is a MCU, Bluetooth module, motor, encoder and a
Raspberry Pi. The Raspberry Pi is used to perform the path-traversing algorithm. As the
ATMEGA328P chip used as the MCU has insufficient memory for the aforementioned
algorithm execution, the Raspberry Pi is solely used for this function. The encoder is used to
calculate the distance travelled by the robot and the motor is used to move the robot. The
MCU on the robot is used to handle the main controls of this unit. Lastly, similar to that of
the Central Unit, the Bluetooth module is used to transmit and receive data from the Central
Unit.

One addition to the Design Block Diagram from the design document is that we decided to
implement the path-traversing algorithm using A-star (A*) algorithm. Hence, this requires
that we use Raspberry Pi for the aforementioned memory issues.

Figure 1. Block Diagram

2. Design

2.1 Physical Design

The structure of our robot is similar to that of a cart. As shown in Figure 2, it has two 6
inches drive wheels at the front sides of the robot and two caster wheels in the back. Having
three levels of compartments, the bottommost compartment is designed for all the electrical
and mechanical components. The power unit and adaptor are placed on the middle
compartment. Lastly, food and other loads are placed at the topmost compartment.

Figure 2. Physical Design of Robot

As shown in Figure 3, both motors and wheels are at the front sides of the robot. Through this
configuration, the encoders can be fixed outside of the wheels.

Figure 3. Motor and Wheels of the Robot

2.2 Power Distribution Unit
There are some design constraints that had to be adhered to, while designing the Power
Distribution Unit. First, the motor driver requires an input voltage of at least 20V and an
input current of at least 1.7A. Second, both MCUs in the Central Unit and the Navigation
Unit operates in voltage between 1.8V and 5.5V. Third, the Bluetooth modules used in the
Central Unit and the Navigation Unit requires and input voltage of 3.3V and a current of
approximately 50mA. Lastly, the Raspberry Pi requires 5V of input voltage and 3A of input
current.

Therefore, we have decided to use 9V 560mAh batteries are the batteries can be easily
obtained. An input voltage of 36V is used on the robot and a 9V input is used on the kitchen
unit. The aforementioned input voltage on the robot is obtained by connecting 4 9V 560mAh
batteries in series.

There are 3 voltage regulators used to provide steady DC voltage to the components of each
unit. First, we used the MCP1700 3.3V voltage regulator to power the Bluetooth module.
Second, we used the L7824C 24V voltage regulator to power the motor driver. Lastly, we
used the MC7805CT 5V voltage regulator to power the ATMEGA328P MCU and the
Raspberry Pi.

attery Life (hour) .7B = Load Current (mA)
Battery Capacity (mAh) × 0 (1)

As shown in the battery life calculation formula in equation (1), 0.7 is used to account for
external factors. For example, manufacturing tolerance of the battery and the internal
resistance of the battery. Therefore, using equation (1), by drawing 1.7A using the 24V
Voltage Regulator onboard the robot, we estimate that the battery life on the robot to be 0.23
hours (equivalent to 13.8 minutes). Consequently, we had to resort to powering the robot
through an adapter that converts the 120V AC voltage from the wall plug to a DC voltage of
24V. In contrast, for the Central Unit, the display requires 2.5mA, the bluetooth module
requires 50mA and the MCU requires 0.2mA. Therefore, using equation (1), the battery life is
estimated to be 10.6 hours (equivalent to 636 minutes).

2.3 Robot (Navigation Unit)

2.3.1 Motor and Motor driver
We chose two bipolar stepper motors for robot, because stepper motor has very small error
margin. Stepper motors also operate in a large range of voltage. However, since the speed of
the motor is related to the torque, we also chose to use stepper motors that has gearbox. In
this project, we used the stepper motors from the 17HS19-1684S series from StepperOnline.
This is because that motor came with a gearbox and had various gear ratios. Using a gear

ratio of 19:1, the motor could provide speed range from 4 to 39 RPMs which was enough for
us to accelerate the robot from a relative low speed. This is shown in Figure 4.

Figure 4. Torque Curve of 17HS19-1684S-PG19 Stepper Motor[1]

To interface between the circuit and the motor, we chose the MYSWEETY TB6600 4A
9-42V Stepper Motor Driver. This is so that the motor is able to receive the correct input
voltage. Since the stepper motor requires 1.68A rated current, we configure the driver to
provide the motor with 1.7 A.

 (2)tep Angle otor Step Angle icro StepS = M ÷M

Using Equation (2), the final step angle is calculated. Due to the fact that our motor uses a
gear box, the step angle is too small to output such relatively high torque. Therefore, we used
1 micro step for our driver.

Figure 5. Graph of Speed vs Delaymicroseconds

The relationship between the speed of the motor and the delay time can be represented using
a hyperbolic curve as shown in Figure 5. Since the slope is not a constant, we used step
functions to simplify the acceleration code. In Figure 6, we divided the whole movement into
three parts: acceleration, stable part, deceleration. The robot can accelerate to highest speed
after several steps. We increased the number of steps to make acceleration more smooth.

Figure 6. Speed vs Encoder Count Curve of Acceleration

2.3.2 Encoder
The encoder is connected to the motor. It is used to calibrate the rotation speed of the wheels
as well as calculate the distance the robot has moved (using number of rotations of the
wheel). Since the encoder can provide information about the robot’s position and this can be
accessed in the Arduino code, there is no need for sophisticated equations to determine speed
and time. We also chose the KY-040 rotary encoder because it was cheap and easy to use.
One rotation of the knob on the encoder is equivalent to 30 counts. Inside the encoder there
are two switches: A to C and B to C, as shown in the left figure in Figure 7.

Figure 7. Encoder Switches and output pin signals[2]

When the encoder rotates, this two switches will change from open to closed or from closed
to open, creating square waves on pin A and pin B, as shown in the right graph of Figure 7.
When both the switches is open or closed, the rotation is recorded and we renew the count. If
the knob is rotated clockwise, A to C Switch will open first and the encoder will increase the
count. Otherwise, B to C Switch will open first and encoder will decrease the count.[7]

2.3.3 Arduino Software

Figure 8. Overview of information relay in entire robotic waiter system

Figure 8 shows the overview of how information is distributed in our robotic system. The
microcontroller in the kitchen would send the destination (a table number) to the microcontroller on
the robot. Then, it would send the starting position and the destination to the Raspberry Pi which
would calculate the optimized path to take and send it back to the Arduino.

Figure 9 shows the flowchart consisting of the various states that the microcontroller in the robot can
be in. If it is in “WAITING”, the robot is either waiting for a new delivery at its homebase (kitchen)
or it has reached its destination and is waiting for the food to be served. If it is in “SEEKING PATH”,
it has received a new destination to travel to and has already sent the coordinates to the Raspberry Pi
which is still calculating the path. The only way to exit this state is for the Raspberry Pi to send the
encoded path back to the Arduino. The ‘DIRECTION HANDLER’ is the intermediate state before
every action, whether turning or moving straight, takes place. In Figure 11, this state is also the exit
condition once the robot has reached its destination. “TURN”, “ACCELERATE”, “MAINTAIN” and
“DECELERATE” are action states where the robot is moving.

Figure 9. Flowchart for microcontroller in robot

In the “WAITING” state in Figure 10, the first course of action would be to check if the robot is at
homebase or not. This would result in different chunks of code run. If the robot is at its homebase, it’s
waiting for the next instruction from the kitchen microcontroller. It will check that from the
getDestination() function call. If a valid table number returned from that, the robot would
update message_to_pi , which would be sent to the Raspberry Pi through an interrupt call (not
shown in Figure 12) and it will move to state “SEEKING PATH”. If the robot is at a table making a
delivery, we would run getButtonValue() to check if the button has been pressed to indicate
that the delivery has been made. If it has, it would update message_to_pi and change state to
“SEEKING PATH” like before.

Figure 10. Flowchart for the “WAITING” state

In “SEEKING PATH”, the code will run in a loop that will only break when it receives the entire
encoded message from the Raspberry Pi. More information on this would be covered in section 2.3.4.

Figure 13 below shows the flowchart for the the “DIRECTION HANDLER” state. Each run through
the state only happens for one action sequence. First, the letter is extracted from the
message_from_pi to identify what that action is. If it is ‘D’, then we have come to the end of the
instruction and the robot has reached its destination. So we would flip the boolean atHomebase to
recognize that and move to WAITING state from earlier. If not, we would extract the number that
followed the letter. If the letter was ‘S’, then we would calculate and set pre-calculated distances for
the robot to travel in the “ACCELERATE”, “MAINTAIN” and “DECELERATE” states and set state
to “ACCELERATE”. If the letter was ‘T’, then we would set turn_count , the amount the robot
has to turn and set the state to “TURN”.

Figure 11. Flowchart for ‘DIRECTION HANDLER’ state

If the robot has reached the “TURN” state, we want it to keep turning until the turn_count runs out.
Since we don’t want the arduino loop to keep waiting until the entire turn happens, in each loop()
we would execute the turn action for 100 counts or until turn_count is goes to 0.

If the robot has reached the “ACCELERATE” state, that it means it is ready to start moving forward.
We wanted to ensure that the robot moves at a fast pace but at the same time, we could not
immediately shoot the speed of the robot because it might damage the motors so we have an
“ACCELERATE” and “DECELERATE” phases. The part of the motion when the robot moves at its
max velocity is called “MAINTAIN”.

The logic in each of these three states are actually pretty similar. First, we would move the robot and
then update the encoder counter. If the encoder counter has exceeded the max_encoder_value
which was pre-calculated in “DIRECTION HANDLER”, then we would move to the next state. For
“DECELATE” this would mean moving to “DIRECTION HANDLER” state.

2.3.4 Arduino-to-Raspberry Pi communication
Communication between Arduino and Raspberry Pi is done through i2c communication protocol. I2c
communication protocol allows one “master” chip to connect with one or “slave” chip. But in our
scenario, we only need “slave” chip. The configuration for this can be seen in figure 14 below. Since
Raspberry Pi is the master, it would keep send requests to the Arduino when it wants data but because
in our setup, Arduino sends the coordinates, the Arduino would send a blank message whenever it
does not need any calculations. When the arduino needs computations to be done, it would send a
message with the starting and ending coordinates that the Raspberry Pi would be trained to identify
and perform the calculate_path and return the solution.

Figure 12. Arduino Uno and Raspberry Pi i2c connection

2.3.5 Path-finding algorithm
We plotted the room in a 2D grid where each square is a 1cmx1cm square. We also included all the
obstacles in the room and the tables and the delivery locations. This allows for us to quickly navigate
there. Astar graph search is used to calculate the path taken. We went with this over
Breadth-First-Search due to its speed and also the ability to include our own heuristic function. This
heuristic function allows us to minimize the amount of turning done.

2.4 Kitchen Unit (Central Unit)

Figure 13. Algorithm of the Kitchen Unit Software

As mentioned in Section 1.3, the main function of the Kitchen Unit’s MCU is to decide on when the
Kitchen Unit should send the next instruction to the robot. Therefore, the first step is to establish a
Bluetooth connection via the Bluetooth modules between the robot and the Kitchen Unit. Next, the
software checks if the robot has executed the first instruction. The reason for this is because if the
robot is not executing the first instruction, the MCU has to change the LCD display when the robot
returns to the kitchen. The kitchen knows if the robot is at the kitchen when the Bluetooth module in
the Kitchen Unit receives a flag from the Bluetooth module in the robot. The kitchen would then
check if the queue is empty. If the queue is not empty, the kitchen would send the next task to the
robot when the robot is at the kitchen.

3. Design verifications

3.1 Power Distribution Unit
To verify that the power supply from the voltage regulators meet our requirements, we
connected the input of the voltage regulators to the output of the batteries. First, the input of
the 3.3V voltage regulator is connected to 36V. This is achieved by connecting 4 9V batteries
in series. Second, we connect the output of the 3.3V voltage regulator to a multimeter. Then
through the multimeter, the output of the 3.3V voltage regulator is measured. Then, these
steps are repeated with the 5V voltage regulator and the 24V voltage regulator. Lastly, the
steps are repeated with the 3.3V voltage regulator and the 5V voltage regulator using an input
voltage of 9V. This is because the input voltage of the Power Distribution Unit in the robot is
36V and the input voltage of the Power Distribution Unit in the Kitchen Unit is 9V. Shown
in Figure 14, Figure 15 are the output voltage from the 3.3V voltage regulator, 5V voltage
regulator and the 24V voltage regulator.

Figure 14. Output voltage of the 3.3V and 5V voltage regulator

Figure 15. Output voltage of the 24V voltage regulator

3.2 Microcontroller in Robot
This unit controls the movement of the robot. It calculates the route and generate instructions
to the motor driver. So the requirements of this part are focused on accuracy of movement.
Hence, this part focuses on the calibration tests, achieved by decreasing the error in software.
For convenience, we assume the direction in front of the robot is positive y direction. The
horizontal direction is x direction. Robot’s left side is positive direction. We use the right
back corner of the robot as the starting point. We measure movement of that point to get the

error of the robot. There are three requirements for movement. First, error in displacement in
x-axis should be less than 5 cm for every 1 meter moved in y-axis. This means that the robot
should go straight in y direction. Second, error in movement in y-axis should be less than
±0.8cm for every 1 meter moved. Third, error in angle when turning should be within ±5°.

istance (cm) D = Encoder count
 Diameter of wheel ×π (3)

First, we allow the robot to go 200 encoder counts in different places of the test room. Using
Equation (3), one encoder count equals to 1.6 cm as the diameter of the wheel is 15.24 cm
and the encoder count for one rotation is 30. Using the same formula, 200 encoder counts
equal to 319.2 cm. We marked the end points of right caster wheels and measured the
movements in y direction and x direction. The two pictures in Figure 15 shows the result of
this calibration.

Figure 16. Two results of calibration test

The red lines on the figures is the y axis. The blue arrows point to the most frequent end point
of the robot. In Figure 16, the left figure was taken at southern part of the test room. Right
figure was taken at eastern part of the test room. As shown, the two figures gave us very
different result. This may be due to the slight gradient of the floor. Small difference of
inclination angles of floor could change the results of this calibration. Hence, we have to find
a average value for a certain location. The errors in y direction are relatively small which
goes from -0.4 cm to 0.8 cm. The reason for this is the encoder and motor stop backlash. One
thing that we found is that the robot tend to slant towards the left side. This can be due to
manufacturing errors such as the slight difference of diameter of wheels and the abrasion of
the wheels. The result of the average error of the x direction was 6.67 cm, which is equivalent
to 4 encoder counts. It is smaller than 5 cm per meter in movement. We adjusted the robot
position for every 100 encoder count movement to decrease the error. After 100 encoder
counts in movement, the robot will go right for 2 encoder counts.

To calibrate the turning of the robot, we also used the encoder count. When the encoder count
equals to 16, the degree of turning was closed to 90°. However, this method gives us a very

large error margin; the error is bigger than 5°. Then we changed the code and used Arduino
execution cycles to control when to stop, because the Arduino execution cycles have much
smaller resolution as compared to the encoder. We used a counter and when the counter
equals to 1934, the robot stops at 90°. We marked the midpoint between two front wheels and
midpoint between two caster wheels in the back before robot turned. We marked the two
points again after the robot turned. Then we connected the points in two straight lines as
shown in Figure 17. The turning angle error is smaller than 3°.

Figure 17. Result of turning code

3.5 Communications Unit
To verify that the Bluetooth module is able to transmit and receive data from 0.05m to 8m,
we have created an Arduino program. In Figure 17, the first step is to establish a Bluetooth
connection with the Bluetooth module. Using a phone application, I am able to establish a
connection between my phone and the Bluetooth module. Then, the Arduino checks if 0 (in
text) or 1 (in text) is received by the Bluetooth module. When the Bluetooth module receives
1, the Arduino will turn on the LED. On the other hand, when the Bluetooth module receives
0, the Arduino will turn off the LED. From this, I am able to change the state of the LED
from a varying distance. The process of switching the state of the LED is repeated for
distances between 0.05m and 8m.

Figure 17. Algorithm of Communications Unit Verification

3.6 Motor
As what we talked about in design part, our motor should keep its velocity while carrying a
relative big load. In our requirement, the motors should provide enough power to carry about
2kg weight in 10(±20%) RPM (about 10 meter per minute). Then we did the test with our
robot. We put a dumbbell which was marked 5kg on the top of the robot. We let our robot run
200 encoder counts. One encoder count was . 200 encoder counts was5.24π/30 .6 cm 1 ≈ 1
319.2 cm. We set the delay time between pulse as 600 microsecond in order to get a
relatively large speed. Then we used stopwatch to measure the time for movement. Then we
repeated the steps four times and calculated the average time. The result was 19.09s. So that
the speed was 16.7142 cm/s, which was equal to 10.0285 m/s. And that just reached our
requirement. Because delay time could not be smaller than 600 microseconds when we did
the unloaded motor test, we didn’t use that speed when we actually built our robot. Our motor
can reach that speed for short-time use.

4. Cost

4.1 Parts

Part Retail Cost ($) Quantity Total Cost ($)

Stepper motor 47.00 2 94.00

Stepper motor driver 14.99 2 29.98

Bluetooth receiver/transmitter 10.99 2 21.98

Rotary encoder 9.29 1 9.29

LCD 20x4 character display 19.95 1 19.95

Arduino Uno 19.99 2 39.98

Raspberry Pi 3 B+ 35.00 1 35.00

24V AC to DC Adaptors 8.96 2 17.92

Heavy duty 50 Ft extension cord 21.99 1 21.99

DC Power Adaptor 8.99 1 8.99

Grand Total 299.08

Table 1. Parts Costs

4.2 Labor

Name Hourly
Rate

Total Hours
Invested

Total = Hourly Rate × 2.5 × Total
Hours Invested

Cheng Jin $30.00 150 $11,250

Jun Pun Wong $30.00 150 $11,250

Kausik Venkat $30.00 150 $11,250

Total N/A 450 $33,750

Table 2. Labor Costs
Machine shop cost: $55/hour * 5 hours = $275
Total cost = $299.08 + $33,750 + $275 = $34324.08

5. Conclusion

5.1 Accomplishments

We did not manage to completely build the robotic waiter system. The kitchen
microcontroller was able to take in input for a table and send that information to the robot’s
microcontroller through bluetooth. The software on the robot’s microcontroller was able to
gather that and pass the starting and ending coordinates to the Raspberry Pi which was able to
calculate and encode a path back to the robot’s microcontroller. Unfortunately, while the
path-finding algorithm did work on smaller mazes (6x6, 10x10), it did not work for a the
replica of the Senior Design Lab. While we were able to simulate that the robot’s software
was able to cycle through the various states correctly and we were able to control the motors
and encoders on the robot to enable it to move straight or turn, we were not able to integrate
both of them together. Also, the power distribution units of both the Central Unit and the
Navigation Unit has provided the correct voltage and current to each components in the
aforementioned units.

5.2 Uncertainties

Some hindrance that we are unable to overcome in this project is that the ATMEGA328P
chips could not be bootloaded. This means that the process of loading the program data into
the chip’s memory has failed. This can be related to our PCB design. As we have failed to
consider the miniscule sizes of the capacitors used on the Arduino, some of the pads tore off
as a result of multiple desoldering and resoldering. Hence, some capacitors may not be
attached correctly on the PCB. A solution that we propose is to have the chip bootloaded
using a circuit implemented on a breadboard. In this way, we are able to make sure that the
chip is fully functioning. Also, to counter this problem, use bigger components on the PCB to
ease soldering.

Next, we have failed to consider that the required power far exceed the ability of our
batteries. In other words, our batteries do not have enough capacity to run the robot for a
significant amount of time. One solution is to scale down the robot and use motor drivers that
requires smaller amount of voltage. By doing this, power sources may be cheaper and can be
obtained more easily.

We also faced trouble with our software. While developing, the A-star path-finding algorithm
was able calculate the path successfully for smaller mazes (grids of 6x6, 10x10 size).
Unfortunately, it did not successfully calculate the path for the maze that reflected the Senior
Design Lab. We did spend time trying to resolve that issue but we could not get to bottom of
it. If we had more time, we would have used python stepper to step through the recursive
function to see why the search function did not return a path.

5.3 Ethical Considerations
There are several safety concern in our projects. First, we have a power system on the robot
which we need to regulate. We use power sources and AC to DC adaptor on our robot. The
power adaptor has rise for aging and leaking. The adaptor and extend wire should be checked
every year and exchanged if they are aging. This acts according to IEEE Code of Ethics
Conduct #1 [].

Also looking at IEEE Code of Ethics Conduct #9, we need to ensure the robot’s navigation is
not harmful to humans around it. To ensure that, we plan on controlling the speed of the robot
to a fairly slow pace - slower than humans’ walking speed. If somehow, the speed crosses a
certain range that we deem risky, we will have some circuit breakers or safety measures that
will completely stop power to the robot so that it does not harm anyone by moving extremely
rapidly.

5.4 Future Work & Improvements

There are several ways to improve our project. First, we suggest to integrate the path-finding
algorithm with the robot movement code. In this way, we can have a fully functioning robot.
Next, we can also use rechargeable batteries with higher capacity to power our robot. As
rechargeable batteries with voltage above 20V are not common, we suggest to scale down the
robot and use a motor driver that is able to operate in the range of 12V. Also, to save space,
we also suggest that an electrical casing can be implemented to encapsulate all of the
electrical components for safety purposes. If this step is to be implemented, space may be an
issue and hence, we suggest to use a smaller bluetooth communication module that is able to
change its function to be the slave (receiver) or the master (transmitter) readily.

For future development, we suggest building a charging port. Using IR beacons, the robot is
projected to be able to return to its charging port once it has completed all the task. By
implementing this, the users will not have to manually remove its battery and charge it before
putting it back when the robot has to be used again. Next, we recommend implementing
collision avoidance and collision detection. This is so that the robot can be used in a real-life
setting safely. Lastly, we suggest to improve the path-finding methodology such that the
tables and the obstacles would not have to be pre-programmed. By doing this, the robot is
able to be used whenever the user wants it to be used.

References

[1] “Arduino – Sending A String Over Bluetooth Using The HM-10”, Joshua Hrisko,
Engineers’ Maker Portal, 2017, [Online]. Available at:
https://engineersportal.com/blog/2017/9/20/hm-10-bluetooth-module

[2] “ATMEGA328/P”, Microchip, n.d., [Online]. Available at:

http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega328_P%20AVR%20M
CU%20with%20picoPower%20Technology%20Data%20Sheet%2040001984A.pdf

[3] Bei Xuying, Ping Xueliag, Gao Wenyan, “Calibration of systematic odometry errors

for wheeled mobile robots,” Application Research of Computers, Vol. 35, No.9, Sept
2017. IEEE Code of Ethics, IEEE, web page. Available at:
https://www.ieee.org/about/corporate/governance/p7-8.html

[4] “Bluetooth Interface with HM-10”, Thrasyvoulos Karydis, 2015,

[Online]. Available at: http://fab.cba.mit.edu/classes/863.15/doc/tutorials/
programming/bluetooth.html

[5] “CSTCE16M0V53-R0”, Murata Electronics North America, n.d., [Online].

Available at: https://www.murata.com/~/media/webrenewal/support/library/
catalog/products/timingdevice/ceralock/p16e.ashx

[6] “HOW TO USE BLUETOOTH 4.0 HM10”, Dan Chen, Instructables, 2015, [Online].

Available at: http://www.instructables.com/id/How-to-Use-Bluetooth-40-HM10/

[7] Keyes KY-040 Arduino Rotary Encoder User Manual, Henry’s Bench, 2015,

Available at: http://henrysbench.capnfatz.com/henrys-bench/arduino-sensors-and-
input/keyes-ky-040-arduino-rotary-encoder-user-manual/

[8] “LMV358MMX”, Texas Instrument, n.d., [Online]. Available at:

http://www.ti.com/lit/ds/symlink/lmv358-n.pdf

[9] “L78L24C”, STMicroelectronics, n.d., [Online]. Available at:

http://www.alldatasheet.com/datasheet-pdf/pdf/22640/STMICROELECTRONICS/L
78L24C.html

[10] “MC7805CT”, Micro Commercial Components, n.d., [Online]. Available at:

http://www.mccsemi.com/up_pdf/MC7805CT(TO-220).pdf

[11] “MCP1700”, Microchip, n.d., [Online]. Available at:
http://ww1.microchip.com/downloads/en/DeviceDoc/20001826D.pdf

[12] TB6600 Stepper Motor Driver User Guide, datasheet, DFRobot, 2017. Available at:

https://forum.arduino.cc/index.php?action=dlattach;topic=531835.0;attach=247209

Appendix A Requirement and Verification Table
Module Requirements Verification Verification

status (Y or N)

Power
Distribution
Unit

1. For the kitchen unit, the 5V
voltage regulator must provide
5V(±5%) given a 9V(±10%)
input. The 3.3V voltage
regulator has to provide
3.3V(±5%) from an input
voltage of 9V(±5%).

1a. For the kitchen unit, connect
the output of the 5V voltage
regulator to a multimeter.

1b. Connect an input voltage of
9V to the 5V voltage regulator.

1c. Measure the voltage.

1d. Repeat for the 3.3V voltage
regulator. It should provide
stable voltage of 5V (±5%) for
and 3.3V (±5%) respectively.

Y

2. For the robot unit, the 24V
voltage regulator must provide
24V (±5%) given an input
voltage of 36V (±5%). The 5V
voltage regulator has to
provide 5V (±5%) given an
input voltage of 36V (±5%).
The 3.3V voltage regulator has
to provide 3.3V (±5%) from
an input voltage of 36V
(±5%).

2a. For the robot unit, connect
the output of the 24V voltage
regulator to a multimeter.

2b. Connect an input voltage of
36V to the 24V voltage
regulator.

2c. Measure the voltage.

2d. Repeat the same for 5V and
3.3V voltage regulator. It should
provide stable voltage of
24V(±5%), 5V (±5%) and 3.3V
(±5%) respectively.

Y

3. The 24V voltage regulator
in the robot must provide
stable current of 1.7A(±5%).

3a. Connect the regulator with
its battery power source.

3b. Use a multimeter to measure
the output current. The current
must be remain 1.7A.

Y

4. The voltage regulators must
maintain temperature of chip
below 150°C.

4a. While doing the
measurement of current, use
temperature gun sensor to
measure the IC temperature.
Ensure that it will not be higher
than 150°C.

Y

Control Unit
(Kitchen Unit)

5. Delay of data transmission
between bluetooth and
microcontroller should be less
than 2s.

5a. Connect both a bluetooth
receiver and transmitter to two
different arduinos.

5b. Measure the timestamp as
the transmitter sends the signal.

5c. Measure the timestamp as
the receiver receives the signal.

5d. Subtract the two values to
get the time taken to transmit the
message (data).

Y

Control Unit
(Robot)

6. Delay of data transmission
between bluetooth and
microcontroller should be less
than 2s.

6a. Connect both a bluetooth
receiver and transmitter to two
different arduinos.

6b. Measure the timestamp as
the transmitter sends the signal.

6c. Measure the timestamp as
the receiver receives the signal.

6d. Subtract the two values to
get the time taken to transmit the
message (data)

Y

 7. Error in displacement in
x-axis should be less than 5
cm for every 1 meter moved in
y-axis.

x-axis is the axis
perpendicular to the starting
position of the robot. y-axis is
the axis parallel with the
starting position of the robot.
The y-axis and x-axis 90°
apart.

7a. Align the robot along the
edge of the tiles in the discussion
room (beside the senior design
lab).

7b. Using arduino, get the robot
to move a certain distance.

7c. Once the robot has reached
his destination, measure the
perpendicular distance from the
side of the tile to the robot. This
is the error in displacement.

Y

 8. Error in movement in y-axis
should be less than ±0.8cm for
every 1 meter moved

x-axis is the axis
perpendicular to the starting
position of the robot. y-axis is
the axis parallel with the

8a. Align the robot along the
edge of the tiles in the discussion
room (beside the senior design
lab).

8b. Mark the starting position
using chalk.

Y

starting position of the robot.
The y-axis and x-axis 90°
apart.

8c. Using arduino, we get the
robot to move a certain distance.

8d. Once the robot has stopped
moving, we measure the distance
travelled from the starting
position. This is parallel with the
side of the tiles.

 9. Error in angle when turning
should be within ±5°

9a. Before moving, mark a
straight line on the robot, cutting
across the midpoint and
perpendicular with the front &
back.

9b. Using chalk, mark points on
the floor exactly below the end
of the line on the robot.

9c. Using arduino, make the
robot turn 90°.

9d. Using chalk, remeasure the
points as in step 2.

9e. Remove the robot from the
area with the chalk markings.

9f. Draw straight lines across
between each pair of points. The
acute angle between the line is
the angle of the turn

Y

Calculation Unit
(Robot)

10. Time to calculate path is
smaller than 5s.

10a. Run the path-finding
software on the raspberry pi and
time it electronically. The time
taken should be lesser than 5s

10b. Repeat this with multiple
table set-ups to ensure that the
path-finding algorithm does not
just pass the test because of an
easy setup

Y

Communication
Unit

11. The bluetooth transmitter
and receiver should be able to
transmit data for a distance of
0.05m to 8m without the
presence of physical barriers
between them.

11a. Configure the Bluetooth
module on a breadboard,
connected to an Arduino.

11b. Connect the Bluetooth
module with phone application.
11c. Place the bluetooth

Y

transmitter 0.05m away from
receiver.

11d. Send a flag from the phone
application to toggle the LED on
an arduino. Repeat for a distance
of 0.08m.

Mechanical
Unit

12. The motors should provide
enough power to carry about
2kg weight and move with a
speed of 10 (±20%) RPM
(equivalent to about 10 meter
per minute).

12a. Add 2kg load onto the robot
and get it to move 10m.

12b. Measure the time taken by a
stopwatch. Ensure the speed is
2.5m (±20%) per minute.

Y

 13. The encoder can count the
rotations of wheel accurately.
The acceptable error rate of
result is within ±5%.

13a. Get the robot to move a
distance of 2-3m. Measure this
distance accurately.

13b. While the robot is moving,
data from the encoder connected
to the MCU must be recorded to
find the total rotations the
wheels have done.

13c. Using the number of
rotations, calculate the distance
and compare it with the actual
distance (measured earlier). The
difference should be within 5%.

Y

Table 3. Requirement and Verifications

Appendix B Schematics

Figure 18. PCB Schematics of the Kitchen Unit

Figure 19. PCB Schematics of the Navigating Unit

