
 
 

 
The TP Tracker 

 
 
 

By 

 

William Rick 

Kevin Wang 

 

 

 

 

 

 

 

 
Final Report for ECE 445, Senior Design, Spring 2018 

TA: Kexin Hui 

 

 

May 2, 2018 

 

Team No. 7 

 

  

 



Abstract 

The TP Tracker is an Internet of Things device that allows the environmentally conscious user to monitor 

their toilet paper consumption. It currently has enough memory to store the statistics of up to four users 

for a timeframe of one month. All data is stored in non-volatile memory, so it will not be erased in the 

case of power outage. The device identifies users with assigned RFID cards, and automatically logs the 

user out when the lights are turned off. The device enters a low power mode at this time, consuming 

only 330uA. When a user is logged in, the device will dispense an adjustable “serving” of toilet paper 

when signaled by a hand wave. All data is displayed on a high resolution OLED display with a clean user 

interface. Graphs and other statistics can be viewed through various menu options.  

 

 

  

1 



Contents 

1. Introduction 4 

2. Design 5 

2.1 Control Unit 6 

2.1.1 Microcontroller 6 

2.1.2 Hand Wave Sensor 7 

2.1.3 Toilet Paper Amount Tracker 7 

2.1.4 RFID Reader 7 

2.2 User Interface 8 

2.2.1 OLED Screen 8 

2.2.2 Input Buttons 8 

2.2.3 Status LED 8 

2.3 Mechanical Unit 8 

2.3.1 Motor 8 

2.3.2 Mechanical Rollers 8 

2.4 Power Unit 8 

2.4.1 AC/DC Converter 9 

2.4.2 Voltage Regulator 9 

2.4.3 Power Interrupt 9 

2.5 Light Sensing Circuit 10 

3. Design Verification 11 

3.1 Control Unit and User Interface 11 

3.2 Toilet Paper Amount Tracker 12 

3.3 Power and Sleep Mode 13 

4. Cost Analysis 14 

4.1 Labor 14 

4.2 Components 14 

5. Conclusion and Ethics 15 

5.1 Accomplishments 15 

5.2 Uncertainties 15 

5.3 Future Work 15 

5.4 Ethical Considerations 15 

References 16 

Appendix A: Schematics 17 

Appendix B: Requirements and Verifications Table 20 

2 



Appendix C: Code 26 

  

3 



1. Introduction 

The design of the TP Tracker is motivated by the environmental impact of toilet paper overuse in North 

America. The United States uses over 50% more toilet paper per capita than Japan, the UK, and other 

western European countries [1]. The Environmental Protection Agency has advocated  for the use of 

recycled toilet paper for its numerous benefits to the environment. If every person in the US swapped 

one roll for a recycled roll, 470,000 trees, 1.2 million feet of cubic landfill space, and 169 million gallons 

of water could be saved [2]. Unfortunately, most people still use paper made from cut trees due to the 

high cost of manufacturing recycled paper. However, if everyone simply used one less roll, the benefits 

could be even greater.  

The TP Tracker solves this problem in two ways. First, the device makes users aware of their usage of 

toilet paper. The philosophy is similar to that of wearing a step counter: by giving the user a tool to 

monitor themselves, they become more inclined to set goals to improve. Second, the device can 

reinforce portion control. The design of the TP Tracker is inspired by hand wave paper towel dispensers. 

These dispensers set a portion size for the user, encouraging them to only use one or two portions. 

Installing portioned paper towel dispensers in restrooms can reduce consumption by up to 30%, so it is 

worthwhile to implement the same concept for toilet paper dispensers. 

The TP Tracker meets three major high level requirements:  

1.  It dispenses a serving of toilet paper when prompted by the user, and records this to the users 

data log.  

2. It warns the user when the roll needs to be replaced.  

3. It conserves energy by entering low power mode when not in use.  

The overall design of the dispenser and description of individual components are described in section 2. 

The verification of all blocks is shown in section 3. The bill of materials for the prototype, as well as the 

cost of labor to develop the product, is covered in section 4. Finally, section 5 explores ethical 

considerations as well as further improvements to be made to the product.  

 

 

 

  

4 



2. Design 

Our design is broken into five components, shown in Figure 1. The components work together to 

recognize a user’s ID, dispense and record toilet paper when prompted by the user, and consume as 

little power as possible when not actively in use. The Control Unit is the “brain” of the product, 

controlling many core processes: reading and interpreting data from sensors, processing and displaying 

the User Interface, and sending the order to dispense. The Mechanical Unit dispenses the toilet paper 

using a continuous rotation servo, coupled with two rollers. The User Interface displays statistics and 

settings screens, while also handling user input from buttons. The Power Unit keeps the system 

powered from a wall outlet. It also enables and disables low power mode, which will cut all but the 

necessary power for the microcontroller when entering sleep mode. Finally, The Light Sensing Circuit will 

determine whether the lights in the restroom are on or off based on an adjustable brightness threshold. 

This light sensing circuit signals the microcontroller to enter low power mode and wake up. 

5 



The overall shape of the device is inspired from commercial paper towel dispensers and is shown in 

Figure 2. This generally includes a mechanical dispenser, and easily triggered wave detector. Our design 

has the addition of a perfboard accessible to the user containing the screen and buttons as well as an 

inaccessible PCB containing the control unit and sensors. 

2.1 Control Unit 

The Control Unit consists of the ATmega328P microcontroller, the Hand Wave Detector IR proximity 

sensor, the Toilet Paper Amount Tracker IR distance sensor, and the RFID reader. The microcontroller 

connects to the IR sensors, buttons, and LED through its digital pins. It connects to the OLED and RFID 

reader over SPI bus. The Light Sensing Circuit is connected to the Control Unit through digital pin as well. 

The Control Unit detects which user is signed in, prompts the dispensing of toilet paper, and tracks 

consumption. The operation of the unit is described by the flow chart in Figure 3. The circuit schematic is 

given in Appendix A.  

2.1.1 Microcontroller 

The microcontroller is the ATmega328P. This was chosen due to its large number of support libraries and 

ease of rapid prototyping. The microcontroller processes data from the sensors on the device, controls 

the dispensing motor in the Mechanical Unit, and processes the display of the User Interface. It also 

stores information on each user in its runtime variables and logs data to the onboard EEPROM, which 

stores and retains values for when the device is shut off.  

6 



2.1.2 Hand Wave Sensor 

This sensor is a Sharp GP2Y0D810Z0F Digital Distance Sensor, which has a binary output of HIGH when 

an object is present in the 2 to 10 centimeter range, and an output of LOW when no object is present in 

this range. The sensor will be mounted in a way such that it is pointing upwards towards the ceiling to 

prevent false detections of hands and other objects. It is assumed that the product will be mounted in a 

position such that there is no obstruction of view between the sensor and the ceiling of the room.  

2.1.3 Toilet Paper Amount Tracker 

This sensor is the Sharp GP2Y0A41SK0F Infrared Proximity Sensor. This short range distance sensor is 

used to track the size of the toilet paper roll to determine when the roll is running low (10% remaining). 

It is mounted pointing downward from the top of the unit. It is placed 4 cm away from the edge of the 

roll, pointing towards the center of the roll. When a new toilet paper roll is inserted into the device, the 

microcontroller records the radius of the fresh roll and uses this metric to calculate the percentage 

remaining.  

 

The equation used to calculate the percentage of toilet paper remaining is shown as equation 1. When a 

new roll is installed, the Original Radius is updated. The distance to the center of the roll is fixed and 

known by mechanical design. The radius of the cardboard roll is generally fixed between 2 and 2.5cm. 

This variance changes the slope of the percentage calculation, but is ignored as the percentage still 

converges to zero on an empty roll and 100% on a full roll.  

 

P% T =  (Outer Radius) − (2.25 cm)  2 2  

(Original Radius) − (2.25 cm) 2 2  
Equation 1: Toilet Paper Remaining Percentage 

7 



2.1.4 RFID Reader 

The Mifare RC522 RFID reader is used in our design. The reader has a low cost and communicates over 

the SPI bus for reliable, fast data transfer to the microcontroller. The RFID reader is used to identify 

different users by recognizing the unique ID string of their login card.  

2.2 User Interface 

The User Interface displays information such as consumption of each resident, low paper warnings, and 

settings. It consists of an OLED screen, three buttons, and a status LED.  

2.2.1 OLED Screen 

The Solomon Systech SSD1306 OLED screen is used to display a text menu to users. It has a resolution of 

128x64 pixels and communicates with the microcontroller over the SPI bus. The menus are displayed in 

the following logical order: The device first prompts the user to tap an RFID card to sign in. This brings 

the user to their statistics page, showing current usage, average calculations, and a histogram of this 

month’s usage. When prompted by the user, the display shows the settings menu, allowing the user to 

adjust serving size and other adjustable values.  

2.2.2 Input Buttons 

There are three input buttons which provide Up, Down, and Enter functionality for the menu. They are 

debounced, as shown in the circuit in Appendix A. They are run as active high to properly interface with 

the libraries used with the OLED. 

2.2.3 Status LED 

The status LED illuminates when the toilet paper level is below the 10% mark. It LED is red because it is 

used as a warning color, and is easily visible from a distance.  

2.3 Mechanical Unit 

This unit handles the dispensing of the toilet paper. It contains rollers which are driven by a motor.  

2.3.1 Motor 

Our design uses a small, continuous rotation servo to drive the rollers. It has adjustable speed, and runs 

on 5V. At max speed it has a peak draw of approximately 500mA, but under normal conditions it only 

draws 100mA. 

2.3.2 Mechanical Rollers 

We use a two roller design to feed toilet paper. The bottom roller is driven by the motor, and the top is a 

passive roller. The passive roller allows the paper to grip the rubber threads on the bottom roller. 

8 



2.4 Power Unit 

The design is powered from a wall outlet. The power supply must consist of an AC to DC converter and a 

voltage regulator to ensure the microcontroller and sensors receive the correct voltage. The AC/DC 

converter is a packaged 5V converter. This is used instead of batteries for convenience to the user. The 

Power Interrupt Circuit will receive a binary signal from the microcontroller to enter or leave low power 

mode. It will also cut the power to all sensors and the motor to eliminate leaked power. In the case that 

the microcontroller is in low power mode. Finally, there is a 3.3V regulator which provides power to the 

RFID reader. 

In normal operation, the unit is expected to draw approximately 250 mA, but may peak at 800 mA. This 

is shown in Table 1. In sleep mode the unit is expected to draw 275 uA. The actual power consumption 

will be discussed in section 3, but it is close to these estimates. 

2.4.1 AC/DC Converter 

This product uses a simple 5V wall adapter. We have chosen one with a max current of 2A, to ensure 

plenty of overhead and low ripple.  

2.4.2 Voltage Regulator 

The voltage regulator chosen is a Texas Instruments TLV62568DBVR. This is a buck regulator which is 

adjustable from 1V to Vin, with a maximum input of 5.5V. This switching regulator was chosen for its 

high efficiency and low output ripple. It also has a maximum output of .5A which is much higher than the 

peak current of the RFID reader. The circuit is shown in Appendix A.  

2.4.3 Power Interrupt 

A pnp MOSFET is used to interrupt power to the sensors and motor. The particular the FQP27P06 is used 

because of its low switching voltage and high maximum current. An inverter is used at the gate due to 

the sleep mode requirements of the ATmega. The ATmega must drive pins low on sleep mode, and the 

pnp requires a high input to cut power. The circuit is shown in Appendix A.  

  

9 



 

 Peak Current Nominal Current Sleep Current 

Servo 500mA 100mA 0A 

OLED 100mA 20mA 0A 

Prox Sensor 10.5mA 5mA 0A 

RFID 150mA 100mA 0A 

ATMEGA 20mA 20mA 100uA 

Distance Sensor 22mA 12mA 0A 

Light Sensor - 115uA 115uA 

3.3V Regulator - 35uA 0A 

Inverter - 60uA 60uA 

TOTAL 822mA 262mA 275uA 

Table 1: Current Draw Estimates 

2.5 Light Sensing Circuit 

The light sensing circuit outputs High when the light in the room is above an adjustable threshold, and 

Low when the light level is below the threshold. This is achieved by comparing the voltage across a 

biased photoresistor and a potentiometer. Setting the potentiometer allows the light threshold to be 

set. As shown in the schematic in Appendix A, both the photoresistor and potentiometer are in series 

with a 100KΩ resistor to limit current. A 20KΩ potentiometer is used to cover the entire range of the 

photoresistor. The photoresistor has a resistance of about 2KΩ when light, and 18KΩ when dark. The 

voltages from the photoresistor and potentiometer are read by a comparator which converts this to 

logic high or low. The comparator chosen is a high efficiency model. Because of this, it has an open drain 

configuration. It cannot drive the output high, only ground it, and as such must be biased between 5V 

and ground.  

 

  

10 



 3. Design Verification 

Individual unit tests have been completed as per the requirements and verifications table in Appendix B. 

This section will highlight some of the more significant tests (functional tests) and their respective 

results. 

3.1 Control Unit and User Interface 

The results of this section are best shown in usage of the full working model. For the test case, we have 

populated User 4 with a month’s worth of usage data. See figures 4 and 5 for the reference screens. 

Upon turning the device on, we see the Power Up screen prompting the user to tap an RFID card to 

login. It also shows the percentage of toilet paper remaining. When User 4’s RFID card is tapped to the 

reader, the Stats1 page is shown. This shows the Daily, Weekly, and Monthly servings for this User to 

day. While on Stats1, a serving will be dispensed if the user triggers the handwave sensor. This serving 

will update the stats. Pressing up brings up the Stats2 page, showing average daily usage over the week, 

month, and previous month. Stats2 also shows the current day of the month in the top left corner. 

Pressing down brings up the Stats3 page, showing a histogram of the months usage to day. This is 

dynamically scaled. If enter is pressed on this screen, the histogram becomes interactive as on the 

Histogram screen. Up and Down now cycle through days of the month showing the usage per day. 

Through this screen we have verified the populated data is correct. 

If Enter is pressed on the Stats1 page, the Settings menu is brought up. These screens are highlighted in 

Figure 5. The settings menu is scrollable with the Up/Down buttons and all of the options are shown on  

11 



Settings1 and Settings2. Upon selection of an option, a Confirmation screen is shown where the user can 

continue or cancel. The Change Roll option brings up the Change Roll screen where the thickness of the 

new roll is displayed. This value is then used to calculate the percentage remaining. Verification of this 

feature is shown in section 3.2. If Serving Size is selected, the Serving Size screen is shown. This allows 

the user to select a serving multiplier. The default is 10. For example, choosing 5 halves the original 

serving size. The maximum multiplier is 15 and the minimum is 1. This changes the duration of motor 

rotation rather than the speed, and the operation has been verified. The other menu options are Change 

Day and RESET DATA. Change day allows the user to manually increment the day of the month. RESET 

DATA does exactly what it says. It resets all user data, essentially equivalent to a factory reset.  

At any point, if the lights are turned off for more than eight seconds, the unit will log the current user 

out, update the user’s data, store it to non-volatile memory, and enter low power mode. This has been 

verified by unplugging the unit while in sleep mode after some dispensing of servings. Upon reboot and 

login, the correct data was displayed.  

3.2 Toilet Paper Amount Tracker 

To accurately display the percentage of toilet paper remaining, the radius of the roll must be precisely 

measured. To do this, we first measured the voltage output of the distance sensor. These measurements 

are shown in Figure 6. The output of the sensor is nearly linear with inverse distance. Using this fit line, 

we could calculate percentage of TP remaining from Equation 1.  

12 



 

Figure 6: Distance Sensor Measurements 

 

The percentage measurement is noisy, varying +/- 5%. With more time we would add a filter to smooth 

this output. Other solutions might be a 5V regulator on the ATmega input, or better insulation of the 

sensor wires. 

3.3 Power and Sleep Mode 

To test the current draw of the circuit, we placed an ammeter between the power supply and the pcb. 

During normal operation with the servo running, the circuit draws 220mA on average. When the servo is 

not running the circuit only draws about 160mA. This is lower than anticipated. The servo seems to be 

drawing less than the nominal value, but it still has enough torque to dispense paper so it is not a 

problem.  

When sleep mode is activated, the current draw drops to 330uA. This is slightly higher than the 275uA 

expected value. This is caused by the microcontroller waking up every 4 seconds to check if the lights are 

on. When this functionality is removed, the current draw drops to 265uA.  

  

13 



4. Cost Analysis 

4.1 Labor 

We assume a labor cost of $35 hourly. It is estimated that we have worked approximately 10 hours each 

per week, for the project timeframe of 10 weeks. This incurs a labor cost of $17,500 shown in Equation 

2. This is just the labor for production of the prototype. 

 
17,500.5 0 weeks $2 * hr

$35 * 2 * week
10hrs * 1 =   

Equation 2: Labor Cost Calculation 

4.2 Components  

This is just a cost calculation of components used in the prototype. Bulk ordering of components would 

significantly reduce the costs, possibly up to 30% or more. 

Component Manufacturer Serial Price($) Quantity 

IR Prox Sensor Sharp GP2Y0D810Z0F $5.95 1 

IR Distance Sensor Sharp GP2Y0A41SK0F $14.00 1 

Microcontroller Atmel Atmega328p $3.00 1 

OLED  SSD1306 $9.99 1 

Servo Adafruit LLC 169 $5.95 1 

RFID reader Mifare RC522 $6.00 1 

RFID card QIAOYUAN  $0.80 5 

Photoresistor API PDV-P8001 $0.95 1 

Potentiometer Bourns 3362P-1-104LF $1.02 2 

Comparator Microchip MCP6548-I/P $0.58 1 

Inverter Texas Instruments SN74AH $0.52 1 

Pushbutton   $0.50 4 

Voltage Regulator Texas Instruments TLV62568DBVR $1.10 1 

MOSFET interrupt Fairchild FQP27P06 $0.95 2 

Assorted RLC   $5 1 

Enclosure Wood   $5 1 

TOTAL   $67.98  

Table 2: Prototype Component Costs 

 

14 



5. Conclusion and Ethics 

5.1 Accomplishments 

The TP Tracker has reached a functional milestone. It contains functionality for dispensing toilet paper in 

adjustable servings, provides useful data on a visually appealing user interface, and tracks toilet paper 

usage on a daily, weekly, and monthly basis.  

5.2 Uncertainties 

There are a few points where performance is not yet known. We cannot make estimates as to how 

waterproof the components are, or how they will perform under the stresses of a humid bathroom. 

There is also the issue of noise on the toilet paper remaining measurement. The source of this has not 

yet been located, but ideas have been discussed in the results section which may solve it. The noise may 

be coming from external sources, or from ripple in the pcb supply current. These are only two minor 

problems which don’t interfere excessively with the operation of the prototype.  

5.3 Future Work 

Possible additions to this project could include the ability to transmit data over wifi to a database for 

better storage and analytics. Currently, all usage data is stored on the machine. This becomes 

cumbersome to manage in a commercial setting where multiple devices are installed. Two serial pins on 

the microcontroller have been left open for the ability to add a wifi module in the future. In addition, 

RFID can be deprecated for the use of mobile phone login using NFC. By shifting data storage to a cloud 

solution, users could also access their data more easily, such as through a website or mobile application. 

In addition, all intensive data analytics can be computed on a server, rather than the embedded device. 

This would decrease the development cost of the unit as a whole. 

5.4 Ethical Considerations 

There is the issue of potential harm to others through disclosure of information [5] [6]. This is touched 

upon in IEEE Codes 2 and 9, which state that an invention should avoid conflict and avoid injuring users. 

We believe this includes not only physical safety, but the security of information and personal privacy of 

our users. Personal usage data is only displayed to the current logged in user. However, we cannot 

control external peer pressure from roommates to share the said information; we can only provide the 

option of restricting visibility. This product is designed such that everyone can become more aware of 

their own usage, not for purposes of spying or regulation. Participation should be voluntary. Another 

ethical issue brought up is that female users may generally have higher toilet paper usage than males. 

We do not want to violate IEEE Code 8 and discriminate against any gender. This product is designed for 

use as a personal tracker. If one would like to share their usage voluntarily, this is an option, but it is 

designed primarily for personal tracking and improvement. Therefore, there should be no inherent 

gender-based discrimination. It is also known RFID is not the most secure sign in method. Other login 

methods may be explored if this is ever marketed in public areas such as hotels and airports.  

15 



References 

[1] New Scientist, “Toilet Paper Use is a Growing Problem,” New Scientist, p. 5-5, April 24, 2010. [Online]  

 

[2] Noelle Robbins, “Not a Square to Spare,” Earth Island Journal, vol. 25, no. 3, p. 57, 2010. [Accessed: 

3-Feb-2018] 

 

[3] Javier C. Hernandez, “China’s High Tech Tool to Fight Toilet Paper Bandits,” The New York Times, 

March 20, 2017. [Online] Available: 

https://www.nytimes.com/2017/03/20/world/asia/china-toilet-paper-theft.html. [Accessed: 5-Feb- 

2018] 

 

[4] Adafruit, “Measuring Light,” 2018. [Online] Available: 

https://learn.adafruit.com/photocells/measuring-light. [Accessed 7-Feb-2018] 

 

[5] ACM.org, “ACM Code of Ethics and Professional Conduct,” 2018. [Online] Available: 

https://www.acm.org/about-acm/acm-code-of-ethics-and-professional-conduct. [Accessed: 5-Feb-2018] 

 

[6] IEEE.org, "IEEE IEEE Code of Ethics", 2018. [Online]. Available: 

https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 6-Feb-2018] 

 

 

 

 

 

  

16 

https://www.nytimes.com/2017/03/20/world/asia/china-toilet-paper-theft.html
https://learn.adafruit.com/photocells/measuring-light
https://www.acm.org/about-acm/acm-code-of-ethics-and-professional-conduct
https://www.ieee.org/about/corporate/governance/p7%E2%80%908.html


Appendix A: Schematics 

 

 

 

Figure 7: Control Unit Schematic 

 

Figure 8: 3.3V Regulator Schematic 

17 



 

Figure 9: Light Sensor Schematic 

 

Figure 10: MOSFET Interrupt Schematic 

18 



 

Figure 11: Input Button Active High Debounce Schematic 

 

  

19 



Appendix B: Requirements and Verifications Table 

Control Unit 

Microcontroller 

Requirements Verification Verified?(Y/N) 

1. Can store usage data for 4 
average users for up to one 
month in EEPROM (based on 
calculations described in prior).  
 
  

1.  
A. Create a program to populate EEPROM 

with a simulated month’s worth of data 
for four users (based on the calculations 
described prior).  

B. Check if the program succeeds with 
populating the memory by reading the 
data at each address written to the 
EEPROM in step A.  

 
Y 
 
 
 
Y 

 

Hand Wave Sensor 

Requirements Verification  

1. Outputs HIGH when a hand 
sized (flat, square 7 cm) object 
is directly above the sensor at a 
distance of 2-10 cm, with 98 
percent accuracy. 
 
2. Outputs LOW when hand 
sized object is at a distance 
outside the distance range of 
2-10 cm, with 98 percent 
accuracy. 
 
*May output HIGH or LOW 
when hand sized object is 
between 10 and 15 cm.  
**There is a 1 cm tolerance on 
all measurements in this 
section. 

1. 
A. Connect sensor to microcontroller and 

connect microcontroller to computer 
through USB. Open a serial connection to 
computer. Create a software program to 
display the output value (HIGH/LOW) of 
the sensor every .25 seconds.  

B. Record 100 samples each for hand sized 
objects at distances of 3, 5, 7, and 9 cm. 
Ensure false negative rate is less than 2 
percent.  

2. 
A. Repeat step A in part 1 above. 
B. Record 100 samples each for hand sized 

objects at distances of 50, 25, and 16 cm. 
Ensure false positive rate is less than 2 
percent.  

 
Y 
 
 
 
 
 
Y 
 
 
 
 
Y 
Y 

 

Toilet Paper Amount Tracker 

Requirements Verification  

20 



1. At a distance of 10 cm from 
the center of the roll, the 
tracker will determine 
percentage of roll left relative to 
measured radius when new roll 
is loaded. 
2. User will prompt 
microcontroller to record new 
initial radius of roll when 
replacing roll.  

1.  
A. Connect sensor to microcontroller and 

connect microcontroller to computer 
through USB. Open a serial connection to 
computer. Create a software program to 
display the output value (distance) of the 
sensor every .25 seconds.  

B. Measure toilet paper roll radius with 
ruler. Install roll and record output 
distance shown on serial monitor. Verify 
the output distance with ruler. 

C. Repeat for rolls with approximately 10%, 
25%, 50%, 75%, and 100% left.  

2.  
A. Use menu to record radius of new roll. 
B. Verify roll reads completely full.  

 
Y 
 
 
 
 
 
Y 
 
 
 
Y 
 
 
Y 
Y 

 

RFID Reader 

Requirements Verification  

1. Must identify the 16B unique 
ID of multiple unique 13.65MHz 
RFID cards within a range of 1 to 
4 cm, one at a time, each within 
5 seconds.  

1.  
A. Connect sensor to microcontroller and 

connect microcontroller to computer 
through USB. Open a serial connection to 
computer. Create a software program to 
print the 16B ID value read by the RFID 
reader to the serial monitor. Hold an 
individual RFID card parallel to the reader 
within a distance of 1 to 4 cm. Confirm 
that a value is displayed on the serial 
monitor within 5 seconds and record the 
value displayed on the serial monitor. 

B. Repeat step A for another RFID card with 
a different 16B ID value. If the values 
differ, the reader is functioning properly. 

 
Y 
 
 
 
 
 
 
 
 
 
 
Y 
 

 

User Interface 

OLED Screen 

Requirements Verification  

21 



1. Refresh screen at a rate of at 
least 2 frames per second. This 
ensures a fluid user interface 
experience. 

1.  
A. Connect the screen to the microcontroller 

and connect the microcontroller to a 
computer via USB connection. Create a 
software program to move a single 1 x 1 
dot in a straight horizontal line from the 
top left of the screen to the top right of 
the screen. The screen has a horizontal 
width of 128 pixels and the program will 
move the dot one pixel to the right every 
0.5 second (500 milliseconds). Therefore 
the pixel should move two pixels to the 
right each second, and thus will require 
(128 pixels) / (2 pixels per second) = 64 
seconds to move from the left side of the 
screen to the right side of the screen. 

B. At the start of the software program, start 
a software timer in the code. When the 
pixel reaches the last (rightmost) pixel in 
the horizontal line, stop the timer. Print 
the finished timer value to the serial 
monitor and verify that it is within 64 +/- 
1 seconds. 

 
Y 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Y 

 

Input Buttons 

Requirements Verification  

1. Button is pressable and 
debounced. 

1. Connect sensor to microcontroller and connect 
microcontroller to computer through USB. Open a 
serial connection to computer. Create a software 
program display the output (HIGH/LOW) of the 
button to a serial monitor at a 9600 baud rate 
(9600 bits per second is more than enough speed 
for a 10 millisecond segment detection of a 1 bit 
‘button press’ message). Ensure when the button 
is pressed there is a smooth transition with no 
bounce. Check if the serial monitor displays the 
button press. 

Y 

 

Status LED 

Requirements Verification  

22 



1. Must be visible from 1 meter 
away with a drive current of 15 
+/- 5 mA. 

1.  
A. Measure current through LED with 

multimeter. Ensure current is within 
correct range. 

B. Ensure easy visibility of illuminated LED 
from 1 meter.  

 
Y 
 
 
Y 
 

 

Mechanical Unit 

Motor 

Requirements Verification  

1. Servo will be adjustable from 
0 to 1 rotations per second.  

1. Attach a marked wheel to the motor. Connect 
the motor to the microcontroller. Create a 
software program to rotate the motor at a 
predetermined speed, and be able to adjust the 
speed up or down from hardcoded values in the 
program. Verify rotation speed with stopwatch by 
tracking how long it takes for the marking to 
complete one rotation.  

Y 

 

Roller 

Requirements Verification  

1. Roller must be able to grip 
the toilet paper when paired 
with the motor on the opposite 
side of the paper. 

1. 
A. Insert roll of toilet paper on to roller. 

Clamp the beginning sheet of toilet 
between the motor and the passive roller. 

B. Attempt to dispense 5 servings. If the 
paper dispenses consistently, the roller is 
working. 

 
Y 
 
 
Y 
 

 

Power Unit 

AC/DC Converter 

Requirements Verification  

1. The converter must output a 
voltage of 5+/- 1 volts DC. 
 

1. Connect the AC/DC converter to a standard 
United States household wall outlet (120V 60Hz). 

Y 

23 



Connect a voltmeter to the plug of the AC/DC 
converter and measure the output voltage. 

 

Voltage Regulator 

Requirements Verification  

1. The regulator circuits must 
output 3.3 +/- 0.3 V, 
respectively.  

1. Measure voltage output with multimeter when 
connected to final circuit during both low power 
and normal modes. Ensure voltage is within 
specified ranges. 

Y 

 

Power Interrupt Circuit 

Requirement Verification  

1. Less than 100 uA will flow to 
all connected sensors when 
HIGH signal is given from 
microcontroller. Conversely, 
power will be virtually 
unrestricted when output is 
LOW.  
2. Less than 20 mA will flow in 
total while in sleep mode.  

1.  
A. Set input to interrupt circuit HIGH from 

microcontroller. Read current flow to 
sensors with a multimeter and ensure it is 
limited. 

B. Set input to interrupt circuit LOW from 
microcontroller. Ensure all sensors run as 
expected.  

2. 
A. Connect an ammeter between the power 

supply and circuit.  
B. Ensure the unit is in sleep mode. 
C. Measure Current.  

 
Y 
 
 
 
Y 
 
 
 
Y 
 
Y 
Y 

 

Light Sensing Circuit 

Requirements Verification  

1. Photoresistor circuit can 
distinguish between an average 
lit room and average dark room. 
2. Light threshold is adjustable 
such that different brightness 
thresholds can be set. 
 

1. Connect circuit output to a multimeter. Turn 
lights on and off, ensure HIGH and LOW values 
are output, respectively. Attempt this test in a 
variety of brightnesses. Tune if necessary. 
2. Adjust tuning potentiometer. Ensure both HIGH 
and LOW can be output from the circuit in dark 
and light environments of varying brightness/lux. 
 

Y 
 
 
 
Y 

24 



*What constitutes as a “lit” and 
“dark” room are up to the 
interpretation of the user. Lux is 
used to determine the 
resistance of different light 
levels. [4] The user is able to set 
whatever threshold they want, 
and whenever the lux is above 
or below that threshold, the 
circuit will output a binary 
(HIGH/LOW) value. 

Table 3: Requirements and Verifications for All Blocks  

25 



Appendix C: Code 

/* final_demo 

 * - Full Working Prototype 

 * - 4-22-2018 

 */ 

#include <Arduino.h> 

#include <avr/sleep.h> 

#include <EEPROM.h> 

#include <MFRC522.h> 

#include <Servo.h> 

#include <SPI.h> 

#include <U8g2lib.h> 

#include <Wire.h> 

 

/////////////////// 

//PIN ASSIGNMENTS// 

/////////////////// 

#define RFID_RST_PIN 2 

#define LIGHT_SENSOR_PIN 3 

#define OLED_SS_PIN 4 

#define ENTER_PIN 5 

#define UP_PIN 6 

#define DOWN_PIN 7 

#define OLED_RST_PIN 8 

#define SERVO_PIN 9 

#define RFID_SS_PIN 10 

#define DIST_SENSOR_PIN A0 

#define PROX_SENSOR_PIN A1 

#define LED_PIN A2 

#define OLED_DC_PIN A4 

#define MOSFET_PIN A5 

 

/* SCREEN STATES */ 

#define WELCOME         0 

#define STATS           1 

#define SETTINGS        2 

#define CHANGE_ROLL     3 

#define CHANGE_SERVING  4 

#define LOGOUT          5 

#define CHANGE_DAY      6 

#define STATS2          7 

#define STATS3          8 

#define GRAPH           9 

 

////////////////// 

//USER RFID KEYS// 

////////////////// 

#define USER1 3152062345 

#define USER2 1923064761 

#define USER3 2130017437 

#define USER4 4083157929 

 

/* RFID  Setup */ 

MFRC522 rfid(RFID_SS_PIN, RFID_RST_PIN); // Instance of 

the class 

MFRC522::MIFARE_Key key;  

// Init array that will store new NUID  

uint32_t cardID = 0; 

byte nuidPICC[4]; 

boolean first_time = true; 

boolean was_asleep = false; 

 

/* OLED Setup */ 

// 

U8G2_SSD1306_128X64_NONAME_F_4W_HW_SPI(rotatio

n, cs, dc [, reset]) 

U8G2_SSD1306_128X64_NONAME_2_4W_HW_SPI 

u8g2(U8G2_R0, 4, A4, 8); 

 

/* Servo */ 

Servo myservo; 

unsigned long lights_off_time; 

 

volatile long sleep_counter = 0; 

uint8_t day = 0; 

uint8_t days_added = 0; 

 

void setup() { 

  // Define OUTPUTS 

  pinMode(RFID_RST_PIN, OUTPUT); 

  pinMode(OLED_SS_PIN, OUTPUT); 

  pinMode(SERVO_PIN, OUTPUT); 

  pinMode(RFID_SS_PIN, OUTPUT); 

  pinMode(LED_PIN, OUTPUT); 

  pinMode(OLED_DC_PIN, OUTPUT); 

  pinMode(MOSFET_PIN, OUTPUT); 

  pinMode(0, OUTPUT); 

  pinMode(1, OUTPUT); 

  pinMode(A3, OUTPUT); 

  // Write Unused Pins LOW 

  digitalWrite(0, LOW); 

  digitalWrite(1, LOW); 

  digitalWrite(A3, LOW); 

  // Enable Power to MOSFET 

  digitalWrite(MOSFET_PIN, HIGH); 

  digitalWrite(LED_PIN, HIGH); 

 

26 



  // Define Inputs 

  pinMode(LIGHT_SENSOR_PIN, INPUT); 

  pinMode(ENTER_PIN, INPUT); 

  pinMode(UP_PIN, INPUT); 

  pinMode(DOWN_PIN, INPUT); 

  pinMode(DIST_SENSOR_PIN, INPUT); 

  pinMode(PROX_SENSOR_PIN, INPUT); 

 

  // OLED Initialization 

  u8g2.begin(ENTER_PIN, DOWN_PIN, UP_PIN, 

U8X8_PIN_NONE, U8X8_PIN_NONE, U8X8_PIN_NONE); 

  u8g2.setFont(u8g2_font_t0_17b_tr); 

 

  // RFID MFRC522 Initialization 

  rfid.PCD_Init(); 

 

  // Servo Initialization 

  myservo.attach(SERVO_PIN); 

  myservo.write(90);  

  

  Serial.begin(9600); 

} 

 

void loop() { 

  what_day(); 

  

  if (digitalRead(LIGHT_SENSOR_PIN) == HIGH) { 

    first_time = true; 

  } 

  

  // Look for new cards and verify if card has been read 

  if (rfid.PICC_IsNewCardPresent() && 

rfid.PICC_ReadCardSerial()){  

    if (rfid.uid.uidByte[0] != nuidPICC[0] ||  

        rfid.uid.uidByte[1] != nuidPICC[1] ||  

        rfid.uid.uidByte[2] != nuidPICC[2] ||  

        rfid.uid.uidByte[3] != nuidPICC[3] ) { 

          cardID = saveHex(rfid.uid.uidByte, rfid.uid.size);  

          Serial.println(cardID); 

    } 

  

    else { 

      Serial.println(F("Card read previously.")); 

    } 

  

    rfid.PICC_HaltA();  

  } 

  

  // OLED Write to Screen 

  u8g2.firstPage(); 

  do { 

    draw();  

  } while(u8g2.nextPage());  

  

  if (digitalRead(LIGHT_SENSOR_PIN) == LOW) { 

    if (first_time) { 

      lights_off_time = millis(); 

      first_time = false; 

    } 

 

    if (millis() - lights_off_time >= 2000) { 

      if (cardID != 0) 

        logout(); 

  

      while (digitalRead(LIGHT_SENSOR_PIN) == LOW) {  

        was_asleep = true;  

        SPI.end(); 

        digitalWrite(MOSFET_PIN, LOW); 

        digitalWrite(RFID_RST_PIN, LOW); 

        digitalWrite(OLED_RST_PIN, LOW); 

        digitalWrite(RFID_SS_PIN, LOW); 

        digitalWrite(OLED_SS_PIN, LOW); 

        digitalWrite(OLED_DC_PIN, LOW); 

        digitalWrite(11, LOW); 

        digitalWrite(12, LOW); 

        digitalWrite(13, LOW);  

        sleep_now(); 

      } 

    } 

  } 

  

  if (was_asleep) { 

    was_asleep = false; 

    first_time = true; 

    digitalWrite(MOSFET_PIN, HIGH); 

    digitalWrite(LED_PIN, HIGH); 

    SPI.begin(); 

    u8g2.begin(ENTER_PIN, UP_PIN, DOWN_PIN, UP_PIN, 

DOWN_PIN, U8X8_PIN_NONE); 

    rfid.PCD_Init(); 

  } 

} 

 

/********************* 

 * DISPLAY VARIABLES * 

 *********************/ 

// User Object 

struct User { 

  uint8_t daily_servings[31]; 

  int previous_month; 

27 



}; 

User CurrentUser; 

 

// Shared Variables 

uint8_t button = 0; 

uint8_t response = 0; 

uint8_t draw_state = 0; 

 

// Settings Variables 

const char *settings_list =  

  "Logout\n" 

  "Change Roll\n" 

  "Serving Size\n" 

  "Change Day\n" 

  "RESET DATA\n" 

  "Exit Settings"; 

 

// Stats Variables 

String username; 

uint8_t weekly; 

int monthly; 

 

// Roll Thickness Variables (change_roll()) 

const float dist_slope = .0004715; 

const float dist_offset = 0.01485; 

const float inner_radius = 2.25; 

const float dist_to_holder = 9.5; 

float full_roll_radius = 4.25; //Radius of New Roll 

float curr_roll_radius = 4.25; //Radius of Roll Currently 

float percentage = 100; 

float previous_percentage = 100; 

 

 

 

/********************* 

 * DISPLAY FUNCTIONS * 

 *********************/ 

/* 

 * Draw Function 

 * - Called in each loop to determine which page to display 

 */ 

void draw(void) { 

  switch(draw_state) { 

    case WELCOME: welcome_page(); break; 

    case STATS: stats_page(); break; 

    case SETTINGS: settings_page(); break; 

    case CHANGE_ROLL: change_roll(); break; 

    case CHANGE_SERVING: change_serving(); break; 

    case STATS2: stats_page2(); break; 

    case STATS3: stats_page3(); break; 

    case GRAPH: graph_page(); break; 

  } 

} 

 

/* 

 * Welcome Page 

 * - Displays welcome text 

 * - Only page where user variables are set, when RFID 

detected 

 */ 

void welcome_page() { 

  u8g2.setCursor(0, 20); 

  u8g2.print("Tap RFID card"); 

  u8g2.setCursor(0, 40); 

  u8g2.print("to sign in"); 

  u8g2.setCursor(50, 60); 

  u8g2.print(percent_left()); 

  u8g2.setCursor(75, 60); 

  u8g2.print("%"); 

 

  if (cardID) { 

    read_eeprom(); 

    draw_state = STATS; 

  } 

} 

 

/* User Statistics Page 

 * - Displays Username and Daily/Weekly/Monthly 

statistics 

 * - Only page where dispense() is allowed 

 * - Press SELECT to go to Settings Page 

 */ 

void stats_page() { 

  u8g2.setCursor(0, 15); 

  u8g2.print(username); 

  u8g2.setCursor(80, 15); 

  u8g2.print(percent_left()); 

  u8g2.setCursor(110, 15); 

  u8g2.print("%"); 

  

  u8g2.setCursor(0, 30); 

  u8g2.print("Daily: "); 

  u8g2.setCursor(80, 30); 

  u8g2.print(CurrentUser.daily_servings[day]); 

 

  u8g2.setCursor(0, 45); 

  u8g2.print("Weekly: "); 

  u8g2.setCursor(80, 45); 

  u8g2.print(weekly); 

 

28 



  u8g2.setCursor(0, 60); 

  u8g2.print("Monthly: "); 

  u8g2.setCursor(80, 60); 

  u8g2.print(monthly); 

 

  // Check if handwave detected 

  dispense(); 

 

  switch(u8g2.getMenuEvent()) { 

    case U8X8_MSG_GPIO_MENU_SELECT: draw_state = 

SETTINGS; break; 

    case U8X8_MSG_GPIO_MENU_NEXT: draw_state = 

STATS2; break; 

    case U8X8_MSG_GPIO_MENU_PREV: draw_state = 

STATS3; break; 

    case U8X8_MSG_GPIO_MENU_UP: draw_state = 

STATS2; break; 

    case U8X8_MSG_GPIO_MENU_DOWN: draw_state = 

STATS3; break; 

    default: break; 

  } 

} 

 

 

 

void stats_page2() {  

  // u8g2.drawVLine(x, y, height) 

  // top left screen = 0,0 

  int maximum = 1; 

  for(int i = 0; i<30; i++){ 

    if(CurrentUser.daily_servings[i] > maximum){ 

      maximum = CurrentUser.daily_servings[i]; 

    } 

  } 

  

  for (int i = 0; i < 31; i++) { 

    u8g2.drawVLine(i*4, 64 - 

(48*CurrentUser.daily_servings[i])/maximum, 64); 

  } 

  u8g2.setCursor(0, 11); 

  u8g2.print("Press ENTER"); 

 

  switch(u8g2.getMenuEvent()) { 

    case U8X8_MSG_GPIO_MENU_SELECT: draw_state = 

GRAPH; break; 

    case U8X8_MSG_GPIO_MENU_NEXT: draw_state = 

STATS3; break; 

    case U8X8_MSG_GPIO_MENU_PREV: draw_state = 

STATS; break; 

    case U8X8_MSG_GPIO_MENU_UP: draw_state = 

STATS3; break; 

    case U8X8_MSG_GPIO_MENU_DOWN: draw_state = 

STATS; break; 

    default: break; 

  } 

} 

 

int delta_x = 0;  

void graph_page() { 

  int maximum = 1; 

  for(int i = 0; i<30; i++){ 

    if(CurrentUser.daily_servings[i] > maximum){ 

      maximum = CurrentUser.daily_servings[i]; 

    } 

  } 

  

  for (int i = 0; i < 30; i++) { 

    u8g2.drawVLine(i*4, 64 - 

(48*CurrentUser.daily_servings[i])/maximum, 64); 

  } 

 

  switch(u8g2.getMenuEvent()) { 

    case U8X8_MSG_GPIO_MENU_SELECT: draw_state = 

STATS2; delta_x = 0; break; 

    case U8X8_MSG_GPIO_MENU_NEXT:  

      if(day+delta_x < 29) 

        delta_x++; 

      break; 

    case U8X8_MSG_GPIO_MENU_PREV:  

      if(day+delta_x > 0) 

        delta_x--;  

      break; 

    case U8X8_MSG_GPIO_MENU_UP: 

      if(day+delta_x < 29) 

        delta_x++;  

      break; 

    case U8X8_MSG_GPIO_MENU_DOWN:  

      if(day+delta_x > 0) 

        delta_x--;  

      break; 

    default: break; 

  } 

 

  u8g2.drawDisc((day+delta_x)*4, 64 - 

(48*CurrentUser.daily_servings[day+delta_x])/maximum, 

2); 

  

  u8g2.setCursor(0, 11); 

  u8g2.print("Day"); 

29 



  u8g2.setCursor(30, 11); 

  u8g2.print(day+1+delta_x); 

 

  u8g2.setCursor(75, 11); 

  u8g2.print("Use:"); 

  u8g2.setCursor(110, 11); 

  u8g2.print(CurrentUser.daily_servings[day+delta_x]); 

} 

 

void stats_page3() { 

  u8g2.setCursor(0, 15); 

  u8g2.print("Day"); 

  u8g2.setCursor(30, 15); 

  u8g2.print(day+1); 

  u8g2.setCursor(75, 15); 

  u8g2.print("Avg's"); 

 

  u8g2.setCursor(0, 30); 

  u8g2.print("Weekly: "); 

  u8g2.setCursor(75, 30); 

  u8g2.print(weekly/7.0); 

 

  u8g2.setCursor(0, 45); 

  u8g2.print("Monthly: "); 

  u8g2.setCursor(75, 45); 

  u8g2.print(monthly/30.0); 

 

  u8g2.setCursor(0, 60); 

  u8g2.print("Prev Mo.: "); 

  u8g2.setCursor(75, 60); 

  u8g2.print(CurrentUser.previous_month/30.0); 

 

  switch(u8g2.getMenuEvent()) { 

    case U8X8_MSG_GPIO_MENU_SELECT: draw_state = 

SETTINGS; break; 

    case U8X8_MSG_GPIO_MENU_NEXT: draw_state = 

STATS; break; 

    case U8X8_MSG_GPIO_MENU_PREV: draw_state = 

STATS2; break; 

    case U8X8_MSG_GPIO_MENU_UP: draw_state = STATS; 

break; 

    case U8X8_MSG_GPIO_MENU_DOWN: draw_state = 

STATS2; break; 

    default: break; 

  } 

} 

 

/* Settings Page  

 * - Select from list of settings 

 * - Each item has a confirmation screen 

 *  - "ok" returns 1 

 *  - "cancel" returns 2 

 */ 

void settings_page() { 

  // button contains which item you selected. Begins 

indexing at 1 

  button = u8g2.userInterfaceSelectionList( 

    "Settings", 

    button,  

    settings_list); 

 

  // response contains 1 for "ok" and 2 for "cancel" 

  response = u8g2.userInterfaceMessage( 

    "Selection:",  

    u8x8_GetStringLineStart(button-1, settings_list), 

    "", 

    " ok \n cancel "); 

 

  if (response == 1) { 

    switch(button) { 

      case 1: logout(); draw_state = WELCOME; break; 

      case 2: draw_state = CHANGE_ROLL; break; 

      case 3: draw_state = CHANGE_SERVING; break; 

      case 4: draw_state = STATS; change_day(); break; 

      case 5: reset_eeprom(); draw_state = STATS; break; 

      case 6: draw_state = STATS; break; 

    }  

  } 

} 

 

/* Page for Changing Rolls  

 * - Used when a new roll is inserted, detect and set initial 

thickness of full roll 

 * - Updates screen with thickness of roll  

 */ 

void change_roll() { 

  full_roll_radius = measure_roll(); // Measure roll 

thickness 

  

  u8g2.setCursor(0, 15); 

  u8g2.print("Thickness: "); 

  u8g2.setCursor(0, 30); 

  u8g2.print(full_roll_radius); 

 

  if (u8g2.getMenuEvent() == 

U8X8_MSG_GPIO_MENU_SELECT) { 

    draw_state = STATS;  

  }  

} 

 

30 



uint8_t serving_size = 10; 

/* Page for Adjusting Serving Size (multiplier)  

 * - Sets the multiplier for the dispense delay 

 * - Stores multiplier in serving_size 

 */ 

void change_serving() { 

  // response contains 1 if value is set 

  response = u8g2.userInterfaceInputValue("Serving Size", 

"Size = ", &serving_size, 0, 15, 2, "x");  

  if (response) 

    draw_state = STATS; 

} 

 

/* Page for Changing Day  

 * - Increments the Day by 1 

 */ 

void change_day() { 

  if (day == 29) { 

    CurrentUser.previous_month = monthly; 

    for (int i = 0; i < 31; i++) { 

      CurrentUser.daily_servings[i] = 0; 

    } 

  }  

  

  days_added++; 

  what_day(); // updates 'day' with correct value 

  day = day % 30; 

  

  CurrentUser.daily_servings[day] = 0; 

  weekly = 0; 

  monthly = 0; 

 

  // Calculate number of servings this month 

  for (int i = 0; i < 31; i++) { 

    monthly += CurrentUser.daily_servings[i]; 

  } 

 

  // Calculate number of servings this week 

  for (int j = 0; j < 7; j++) { 

    weekly += CurrentUser.daily_servings[(day-j+31) % 31]; 

  }  

  

  draw_state = STATS; 

} 

 

/* Manual Logout  

 * - Logs user out when pressed 

 * - Resets cardID 

 * - FUTURE: store CurrentUser object to EEPROM 

 */ 

void logout() {  

  write_eeprom(); 

  cardID = 0; 

  draw_state = WELCOME;  

} 

 

////////////////////// 

// HELPER FUNCTIONS // 

////////////////////// 

 

/* RFID HEX Helper Function  

 * - Converts 4 byte-buffered RFID value into one 32 bit 

value 

 */ 

uint32_t saveHex(byte *buffer, byte bufferSize) { 

  uint32_t longhex = 0; 

  for (byte i = 0; i < bufferSize; i++) { 

    longhex += (uint32_t)buffer[i] << (8*(bufferSize-i-1)); 

  } 

  return longhex; 

} 

 

/* Dispense Function  

 * - Rotates servo motor to dispense paper 

 */ 

void dispense() { 

  if (!digitalRead(PROX_SENSOR_PIN)) { 

    CurrentUser.daily_servings[day]++; 

    weekly++; 

    monthly++; 

    myservo.write(105); 

    delay(100*serving_size); 

    myservo.write(90); 

  } 

} 

 

/* Roll Measuring Function 

 * - Function to measure distance of roll from sensor 

 */ 

float measure_roll(){ 

  float dist_to_roll = 

1.0/(dist_slope*float(analogRead(DIST_SENSOR_PIN))-dist

_offset); 

  return dist_to_holder - dist_to_roll; 

} 

 

/* Roll Percentage Left Function 

 * - Function to calculate percentage remaining of roll 

 */ 

int percent_left(){ 

31 



  curr_roll_radius = measure_roll(); 

  percentage = 100*(curr_roll_radius*curr_roll_radius - 

inner_radius*inner_radius)/ 

  (full_roll_radius*full_roll_radius - 

inner_radius*inner_radius); 

 

  // Discard values with delta > +/- 4 of the last read 

percentage 

  if (percentage > previous_percentage + 10 || percentage 

< previous_percentage - 10) { 

    return previous_percentage; 

  } 

  

  // Clean the percentage value of noise 

  if (percentage > 100) { 

    percentage = 100; 

  } 

  else if (percentage < 0) { 

    percentage = 0; 

  } 

 

  // Turn on LED if below 10% 

  if (percentage <= 10) { 

    digitalWrite(LED_PIN, LOW); 

  } 

  else { 

    digitalWrite(LED_PIN, HIGH); 

  } 

  

  previous_percentage = percentage; 

  return percentage; 

} 

 

/* Read from EEPROM 

 * - Sets username, daily, monthly, and weekly from 

recently read CurrentUser object 

 */ 

void read_eeprom() { 

  if (cardID == USER1) { 

    EEPROM.get(0, CurrentUser); 

    username = "User 1"; 

  } 

 

  else if (cardID == USER2) { 

    EEPROM.get(100, CurrentUser); 

    username = "User 2"; 

  } 

 

  else if (cardID == USER3) { 

    EEPROM.get(200, CurrentUser); 

    username = "User 3"; 

  } 

 

  else if (cardID == USER4) { 

    EEPROM.get(300, CurrentUser); 

    username = "User 4"; 

  } 

  

  else  

    return; 

  

  monthly = 0; 

  weekly = 0; 

  for (int i = 0; i < 31; i++) { 

    monthly += CurrentUser.daily_servings[i]; 

  } 

  

  for (int j = 0; j < 7; j++) { 

    weekly += CurrentUser.daily_servings[(day-j+31) % 31]; 

  }  

} 

 

/* Write to EEPROM Function 

 * - Writes new data to EEPROM before low power mode 

 * - Only called from logout() function 

 */ 

void write_eeprom() { 

  EEPROM.put(500, day); // store current day 

  

  if (cardID == USER1) { 

    EEPROM.put(0, CurrentUser); 

  } 

 

  else if (cardID == USER2) { 

    EEPROM.put(100, CurrentUser); 

  } 

 

  else if (cardID == USER3) { 

    EEPROM.put(200, CurrentUser); 

  } 

 

  else if (cardID == USER4) { 

    EEPROM.put(300, CurrentUser); 

  } 

 

  else 

    return; 

} 

 

/* Updates what day it is 

32 



 * - Calculates how many days passed since poweron 

 */ 

void what_day() { 

  day = (((millis() + (sleep_counter*4000)) / 86400000) + 

days_added) % 30; 

} 

 

/* Reset the EEPROM 

 * - clears all EEPROM values with 0 

 */ 

void reset_eeprom() { 

  for (int i = 0; i < 31; i++) { 

    CurrentUser.daily_servings[i] = 0; 

  } 

  CurrentUser.previous_month = 0; 

 

  EEPROM.put(0,CurrentUser); 

  EEPROM.put(100,CurrentUser); 

  EEPROM.put(200,CurrentUser); 

  EEPROM.put(300,CurrentUser);  

  

  weekly = 0; 

  monthly = 0;  

} 

 

 

 

 

 

 

/////////////////////////////// 

// Low Power/Sleep FUNCTIONS // 

/////////////////////////////// 

void sleep_now() { 

  

  set_sleep_mode(SLEEP_MODE_PWR_DOWN); 

  watchdogOn(); 

  sleep_enable(); 

  sleep_mode(); 

 

  /////////////////// 

 

  sleep_disable(); 

  watchdogOff(); 

 

  //Serial.println("Woke Up"); 

  

  //Serial.print("Sleep Count: "); 

  //Serial.println(sleep_counter); 

  

} 

 

 

//SEE PAGE 78 of atmega328p manual for more detail 

void watchdogOn(){ 

  //MCUSR = MCU Status Register 

  //Clear WDRF(Reset Flag)(bit3) so watchdog doesn't 

cause system reset 

  MCUSR = MCUSR & B11110111; 

  //WDTCSR = Watchdog Timer Control Register 

  //set WDCE and WDE to 1 

  //WDCE must be set to allow changes to WDE 

  //Allows changes to prescalers for 4 clock cycles 

  WDTCSR = WDTCSR | B00011000; 

 

  //Setting Prescaler value to 512K or ~4seconds 

  //Other options:  

  //.25s = B00000100 

  //.5s  = B00000101 

  // 1s  = B00000110 

  // 2s  = B00000111 

  // 4s  = B00100000 

  // 8s  = B00100001  

  WDTCSR = B00100000; 

 

  //Enable the watchdog timer interrupt 

  WDTCSR = WDTCSR | B01000000; 

  MCUSR = MCUSR & B11110111; 

} 

 

void watchdogOff(){ 

  //Clear Reset Flag 

  MCUSR = MCUSR & B11110111; 

  //Set WDCE to 1, set WDE and WDIE to 0 to stop 

watchdog timer 

  WDTCSR = (WDTCSR | B00010000) & B10110111; 

} 

 

ISR(WDT_vect){ 

  sleep_counter++;  

} 

 

33 


